Statistisk sentralbyrd

« Statistics Norway

Data processing in Sas, Spss, Stata, R
and Python. A comparison

Kristian Leno

4377131404 WOS | 11Vl

Pz
(@)
>
=
m
X
~
W)
(@)
(@)
C
<
m
Pz
=
n

L/ec0c

In the series Documents, documentation, method descriptions, model descriptions and standards
are published.

© Statistics Norway
Published: 13 January 2023

ISBN 978-82-587-1659-1 (electronic)
ISSN 2535-7271 (electronic)

Symbols in tables Symbol

Category not applicable
Figures do not exist at this time, because the category
was not in use when the figures were collected.

Not available
Figures have not been entered into our databases or
are too unreliable to be published.

Confidential
Figures are not published to avoid identifying persons
or companies.

Decimal punctuation mark

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Preface

When we are working with Statistical data we use software programs for data processing, analysis
and tabulation. Which software to choose is depending on different factors like financial matters,
management decisions, staff requests and so on. Five of the most commonly used software
packages are the commercial Sas, Spss and Stata and the non-commercial R and Python.

This document gives a brief comparison between these software packages on how to do basic data
processing for statistical surveys. It is meant to help employees who know one of the packages to
learn some basics of the other ones. This is needed if the company changes from one software to
another. It will also be useful for staff who co-operates with other companies who use other
software than he or she usually works with. We can also use it as an introduction to one or more of
the different softwares.

The versions used of the different software for this document are:

e Sas 9.4 M6
e Spss 27.0.1.0
e Stata 16.0

e R 4.0.0

e Python 3.10.5

As software always develop some of the program examples may be outdated when new versions
arrive.

The author would like to thank Christian Thindberg and Anne-Marte Krogsrud for valuable
comments.

Statistics Norway, 30 November 2022

Christian Thindberg

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Contents
L] - T o 3
BN 141 T ¥ T o T o 7
2. The USer iNtEIrfAaCES ...ttt ettt sttt ase s sase s e sas s s e s ass s ssssasessessns 8
2,10 GBS e e b e s b bbb b e s b bbb e 8
2.2, SPSS ettt et b e Rt E e bRt e Rt b e SR et e Rt SR e et e R e bt Rt et e nRe e Rt e e e besReeneenreras 10
0 T - | - PSP POU PP 11
2.4, R et e et h R e e Rt R e R e b e Rt e e Rt h R e et renr e e e e ens 12
2D PYENON e ettt et b s b bt e et s b e s e e e be st e s eneenes 14
3. NaMING CONVENTIONS......uueiiiiiiiiiieiieiettinsseettessee s s sses e sase s ssssasessessasssssssassssesssasessessanessas 16
L0 T 4 T=T g X o 18
A0, SAS ettt ettt ettt ettt e te e bt e te et e e be et e et e et e e te e be et e e b e et e et e et e e be e be e beenbaenbeenbaens 19
A PSS ettt ettt ettt et ettt e ettt e et e et e et e et e e bt et e e be et e et e e be e be et e e beenbeenbeebeens 19
4.3, LT ittt ettt et e b et e et e et e et e e b e et e et e et e e be et e e be e beenbeereens 20
QLA Rttt bttt h ettt a b A et oAbt b e b et e a e e bt b et et eheebeebe b et ehesbenbeteneas 20
A5, PYENON bbbt h e bttt b e b et et a e bt e b et eheebesbenteneas 21
= = N 22
EXE@CULION ...iiiiiiiieeeeitiieiiininnnneeettiessssssnnnsesssesssssssnnnssssssssssssssnnnsssssssssssssssnssssssssssssssnnnsssssssssssssens 23
IMPOIE OF FIlES c.eeeeeiieeerierretierrrneteessnereesssneeeesssnnesssssnsesssssnnessssssnsssssssnsssssssnnesssssnnensssssnsassssen 24
0 Y- 1S OO O O O T TSP PO PP PPPORUPTOIUPRROP 24
72 S PSS ittt ettt sttt sttt et te st e et et st e e ate et e s be s bt e te et e e bt eabeeateenteenbe e beeabeeaee 25
2 T - 1 = [P O O O T T P O P OO P OTO PP P PO PPRRPPRPRRRPPRN 27
T Rttt sttt h b bt oAbt b et et h e bt e b ent e bt b et et ene b e be b eneene 28
7D PYENON ettt ettt a bbbt be bt e e ne b be st et ene 29
8. Getting to KNOW OUK data.........ccoiviirneeiiiiiniiiiinnnneeniiinnisssssseesiissnsssses 32
8.1, FreqUENCY TADIES ..ottt sttt ettt b e et a et et ens 32
8.2. DeSCriPLiVE STATISTICS c.veeriieiiieriieriereertest ettt ettt s e st e st e sate st e sabesatesabesnbesnbesnsesasesans 40
8.3. Descriptive StatiStiCs SroUPEAiviiiiriiririeierieseetere ettt ess et sbe s essestesbsessessesbesssensensas 45
0. CONAILIONSeeeeeeeiiiiiinieeeettteeeessssenneeseeesssssssnnnssssssssssssssnnssssssssssssssnnsssssssssssssssnnssssssssssssnnnnanes 49
1S Y= LSS ST SO PO PP PP PPRRPPRRTRRPPRN 49
0.2, PSS ittt ettt ettt b bt e bt e bt e b e e bt e bt e bt e b e e s Rt e e Rt e ea b e e h e e e atesa b e e Rt e e abe s Rt e eateenbesntesabeeaee 49
1S G T - | - [OO O OO TP P PP P PP PPOIUPUIOPPPRRPRINt 50
0. Rttt h bt a ekt e et e h e A et e bRt h e A et eat e b e e b et et eheeb e s b et e st ebesbe s entenes 50
1R T = V1 o To] o OO OO OO OO OO OO U O OO O OU PSP URPUS P RPPRRPI 50
10. Dealing With dUuplicates......cccccvvvvmeiiiiiiiiiiirnnneiiiiiniineeeniiiessssssssssestiissssssssssssssssssssssssssssssssssssss 52
T0. T S ittt ettt et et r e e r e E e r e e Rt e E e e E e e Rt e Rt e Rt e Rt e Rt e Rt e r e e Rt e b eeare e reenreereens 52
10,2, PSS tettiteite et et et et sttt et et et e ettt e et et e b e et e et e et e et e et e et e et e et e et e e be e be e be e be e be e beebeenbeebaens 53
L0 T = | 2= TP PP PP PSPSRPRPRI 54
TO.. Rttt sttt st ettt s b e s b et et bbb et e Rt e b e ket e Rt e Rt e R b et e Rt e b e b et et eneebe et et entebe st ensenteneas 55
105, PYENON ettt sttt sttt sttt e be et et e s b e e Rt et e beebeeRaenteteeaeententenes 56
11. Labels for variables and data valuescooeiiiieiiiniieiiniieiinieecicseecssssaeessssasecsenne 58
L PR Y= TP PRSP PRRUSPRRPRPRI 58
1 s PSS tettiteete ettt ettt ettt ettt ettt et ettt e e et e e bt et e et e et e et e et e et e e be e be e be e be e be e be e beebeenbeenbeens 60
1.3 ST ettt ettt ettt ettt e et e et et e et e e b e e be e be e be e be e be e beebeenbeebeens 61
THi, Rttt ettt sttt et s b e bt etk b e e et R e b A et e Rt e Rt e R b et et e R e e b et e st entebe st et entebe st e senteneas 62
11D, PYENON et b et e bt b et e b nes 64
12, StOrIiNG AtASELS ..uuueereeeeriiiiiiiiiirrnntetiiiiissssssssnsessssess 67

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

13.

14.

15.

16.

17.

18.

19.

20.

12T S ettt et h et E e R E e Rt h e e e bRt R e e e e Rt e bt Rt e re Rt ere e e e rene 67
1 2., PSS ittt ettt ettt ettt ettt ettt ettt ettt et e bt e bttt et e et e e b e et e e bt e be e be e b e e bt e be e beebeenreereens 68
12,30 SEALA ct ettt h e R et et b e b e e et n e b nne e nea 68
T2 Rttt h bttt h b bt a e bt A et a e Rt b e b et et e bt e b et et eatebe b et et eheebenaenteneas 68
12,5 PYENON ettt b ettt h e bttt h e bt et ae bt e e et bt sbesaebeneas 69
Automatic INVOCation at StArt-UP..........cceviiiiiivmeriiiiiniiiisnnneetiiiesisissssssssiisssssssssssssssssssssssssssssssns 70
13T S8 ettt et et E e e bRt R e e e Rt R e et e R e e Rt R e e e e R e eR e e R e e R e Rt ene et enrenne 70
1302, PSS ittt ettt ettt ettt ettt ettt ettt ettt e bttt et e et e et e e bt et e e b e e be e be et e e b e e be e reebeenbeereens 71
13,3 SEALA ceteteee et bbbt R et b e b e et n e b n e enea 72
12 Rttt h ettt h ettt h b b et h e bt E et e a e e R e e b e b et eae e bt e b et et entebe b et enteheebententeneas 73
1304 PYENON ettt ettt b ettt b e bt et b e b et et a e bt e b et ebeebenaebeneas 73
MaAtChiNG FIlESuueeeeiiiieiiiiretiirnetienrneriessneeeesssenesssssnsesssssnnesssssansssssssnsssssssnsssssssanssssssansassssen 74
T.T. SAS ittt sttt h ettt h b bt h e bt At e a e e bbb et et e bt e b et et entebe b et et eneebenaebeneas 75
T, 2. PSS ettt ettt sttt r e et r e e et et Rt Rt e Rt e Rt Rt e r e e r e e r e e r e e reenreereeas 80
T3, STALA ettt bbb e bbb s r s ne e 84
T4, Rttt bt h e h bbbt R et R e Rt R e et bt R et et a e bt e e et e bt e r e neneeneas 89
TS, PYENON .ttt b e et h ettt b e bt e b en e bt et et ebeebesaebeneas 92
14.6. A MatChiNg COMPATISON ettt ettt ettt sttt ettt et ettt e st et eneebesbenaeneas 98
AZBIEBATION ...cuueeeeiiiiiiiiiiinnneriiiiesiissssssseeriisssnssssss 929
15T, SAS ettt ettt ettt h e bt et h bt et a e bt b et et h e b e b et eat e bt et et et entebeebententene 100
152, PSS ittt ettt ettt ettt ettt b bbbt e bt e b e s b e e bt e b e e R e e e Rt e Rt e e Rt e s Rt e s Rte s Rt e eatesnbesatesabeenbeenreeaee 101
15,30 STALA ceeiectc e a e st b e bt s resres 102
154 Rttt bbbt h ekt h bt et a e bt b et et a e b e b et ea e e bt b et et ene et et et eneene 102
15D PYENON ettt ettt b e et b e b et bbb et ne b sh et et ene 104
RESEFUCLUNING FIl@Sueeeeeiiiieeriieirnerierreeteesrnereesssneesesssnnesssssnsssssssnnesssssanssssssensssssssnnesssssansases 108
TB.T. SAS ettt ettt ettt ettt et h bttt h e Aot a e h e bt et e a e bt b et et h e b et et eat e bt et e et et entebesbenbentene 109
1.2, PSS ittt ettt h e R R e R e e R e e R e e R e e e R et e R e e e Re e e R e e e neeeneeeneeeneeenreenreeaee 110
T6.3. STALA c.eetiriecte e bRt st a b sre e reres 111
T84, Rttt h ettt h b e Rt h e h bbbt R et e ae bt b et e e e Rt b e nne e e st ene 111
16,5, PYTNON .ttt ettt bt a e b b et et b e b et et ne b e b et et ene 113
RECOUING...cciiiiiiinnnniiiiiiiiiiinnneeriiiiosssssssssessissnns 118
1710 SAS ettt ettt ettt h ettt h e bt et Rt b b et et eh e b et et en e e bt b et et e st ebeshebentene 118
17 2. PSS ettt h e R R e R R e e R e e e R e e e R et e R e e s Re e e Reeeneeeneeeneeeneeenreenreenee 119
17,30 SEALA ettt et a b sr s rens 120
D704, Rttt h bt h bR bt h e bt h e bRt ae bt b et e e Rt b nn et enene 121
17D PYENON ettt ettt b et a s b b et et b e b et et ne et e b e nbeneene 122
LT T ot oo T LT 125
18T, SS ettt e r e h e bt et a b bt a e b sre e renes 129
L T Y o 11 ST PP PO PP PP PP 131
18.3. STALA ceiiiiiii e e e 132
184 Rttt h ettt h ettt h bt et R bt E b et Rt bt b et e ae bt e b et et e Rt b e nr et eneene 134
185, PYENON ittt ettt et s h e ettt s b e et et et e s bt et et e teeae et e teabeestenbatas 136
MISSING VAIUEScueeeiiiieiiiiinnitiinttiennneetessnnetssssnssssssssssssssssnsssssssnsesssssasssssssansssssssnsssssssanssses 139
10T, 5SS ettt bbbt h et a Rt bt e a et e bt s he e e e bt s b e seereres 139
102, PSS ittt ettt h e bR e R e R e R e e R e e R e e e R e e s Re e s ReeeReeeReeeneeeneeeneeenneenreenreenee 141
1.3 SHALA e a e s b s 143
10,3 Rttt ettt h ettt h ettt h bt e e R bt E b et Rt e bt b et e ae e bt b et et ene b e nr et eneene 145
LS Y 1 g T o DO OO OO U SO OTRPRPRRP 147
Date and time FOrMALSccciiiiirriiiiiniiinnttiensnetreseesseessnssssssasesssssasssssssansssssssnsssssssansases 149
20,7, SAS ettt Rt E e bRt E e Rt R et e b e sb e e Rt e be Rt sbeerere 149

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

20,2, SPSS ettt et E e bt R e R et h e R e et e Rt s R e e e et e eb e e Reeeenresreetenren 150
20.3. STATA ettt et e e R bt s b b et b e s e e e e st b e nennenee 151
2004, R et e h Rt h e R e et s bR et b e R e e e et benretenee 152
20,5, PYENON ettt bbb bt b e bt et ne b e be e 154
P TR - 1 T L= 1T o N 157
21T, GBS ettt ettt E e bt et et Rt R e e et Rt e Rt et e Rt eR e et et e ebeeRe e benresreeteren 161
27,2, SPSS ettt ettt E e Rt E e Rt SR e e e R e R e e Rt et e Rt e Rt et et e e b e e Rt etenreereererens 166
2713, STATA ettt Rt E et s bR a et b e s R e e e e st b e nenenee 172
214, R e et R et R et R bR et b e b e e e e st e b e renenees 178
2.5, PYENON et bttt b e b et b e bt e et besbe e 182
R €T - T o 1 1 187
22,7, SAS ettt E Rt h Rt Rt R e e e Rt h R e et h e R e e e e st b e nneneenee 187
22.2. SPSS sttt ettt sttt h et E e b e e R Rt SR e e et e e Rt Rt et e Rt e Rt et et e e be e Rt eeenreeneereren 190
22,3, STATA ottt b At ae bt A et et b b et et h e b e b et et ebe s b et et e bt ebesbebeneas 192
22,4, R ettt et h e e bRt h R bt R bt E e e et b e bt e e e st b e rentenee 195
22,5, PYENON ittt sttt e b et b e e it et et s bt et e besbe s st etenbesbeenbebens 198
P R 0 T-1 -) Cof o T- T2 7= 200
23T, S5 ettt h e E R R e Rt R et h e Rt bt Rt bR e e et bt e b et et e st benrentenee 200
23,2, EXPOIT ottt ettt e r e e et et r e e R e e Rt e r e e r e e r e e re e re e reereen 203
23,3, PSS ettt ettt ettt r e E e Rttt E e e r e E e e Rt e Rt e Rt e Rt e Rt e Rt e reereenreeaneenreen 204
2314, STATA ettt bR bbb b et h et et e e e st b e retenee 208
235, EXPOIT ettt ettt ettt ettt ettt e b et e et e et e et e et e et e et e e be e be e beebeenbeens 210
2306, Rt et h e bttt h e b et et e h e b et et h e b et et et bt s b et et eneebesbebeneas 212
23,7 PYENON ettt bttt b ettt b et e st et bt besbe b enea 216
APPENAIX Al..ceeeeiiiiiiiiiiinnneeiiiisisss 222
COMMEANT NAIMES ..ttt ettt sttt b sttt e st e b st et et e bt s b et et e st eb e st e b et ebe st et et enesbenbentenean 222
PEISON dAASEE ...ttt ettt ettt ettt b sttt e st e b st et et e bt sbe st et ent e b e st et et ene et e nae b eneene 224

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

1. Introduction

The 3 commercial software packages Sas, Spss and Stata are all developed and maintained by
American companies. They all have license models where we pay a yearly fee for the licenses.
However, Stata also has an option to pay for a version of the package once and then use it forever. If
we then want a new version of Stata, we must pay for it. The non-commercial package R can be
downloaded free from the Internet, for instance from this site: https://cran.r-
project.org/bin/windows/base/. It is also useful to download the R user interface RStudio, which can
be found here: https://rstudio.com/products/rstudio/download/. The Python software is also free.
When we use Python, we usually have a user interface as well. Both Python and a user interface may
be downloaded from the Anaconda web site: https://www.anaconda.com/products/distribution.

They all have a user interface with different windows and pull-down menus. All use programming
code that can either be written or generated through menus or wizards. Spss and Stata call their
coding sets of commands, while Sas uses sets of statements. R also uses commands, although the
commands are actually functions. Written or generated code should be stored with filename
extensions according to their defaults:

e Sas .sas

e Spss .Sps

e Stata .do or .ado
e R .R

e Python .py (or.ipynb for Jupyter Notebooks)

Each package comes with lots of modules or packages as they are called in R. For Sas the primary
need will be Sas Foundation, also called Base Sas, and Enterprise Guide. In addition, the module
“Access to PC file formats” can be useful if easy data interchange with Spss and Stata is needed. The
basics in Spss are in their Statistics Standard Edition. Stata operates with different modules
depending on the size of the data used and the complexity in the usage. Stata/IC (the smallest one)
will be suitable for most users. Whenever we need another package in R or Python we can download
from the Internet and install it.

To install the software, follow the instructions given when you received it.

This document is based on version Sas 9.4, Sas Enterprise guide 8.3, Spss 27 and Stata 16, R 4.0.0,
Python 3.10.5, but most of the functionality described will be available in previous versions.

For more info these are their web sites:
https://www.sas.com/
https://www.ibm.com/analytics/spss-statistics-software
https://www.stata.com/

https://cran.r-project.org/

https.//www.python.org/

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://rstudio.com/products/rstudio/download/
https://www.anaconda.com/products/distribution
https://www.sas.com/
https://www.ibm.com/analytics/spss-statistics-software
https://www.stata.com/
https://cran.r-project.org/
https://www.python.org/

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

2. The user interfaces

The user interface is an important part of every software. They differ, and it may be confusing to
understand the user interface when we are used to one software package and will learn another
one. We will now look at the basics of the user interfaces.

2.1.Sas

Base Sas
There are four important windows in Sas. They are usually opened when Sas is started:

e Explorer Local Sas explorer, for looking at data
e Editor Editor for writing our own programs
e Llog Execution log

e Output Listings

File Edit View Tools Run Solutons Window Help
| VDS HE &R B X0

B . = | Log - (ntitied)

RS NOTE: Copyright (c) 2002-2008 by SAS Institute Inc., Cary, NC, USA.
g "'! MOTE: SAS (r) Proprietary Software 9.2 (T52M3)

=1 % Licensed to SS5B - KLIENTER, Site 50400004,

MOTE: This zes=zion iz executing on the XP_PRO platform.

Libraries File Shortcuts
@ T NOTE: SAS initialization used:
real time 2.01 seconds
Favarite Foiders 02464 (kr) cou time 9.84 seconds

B Editor - Untitled1 =13

| = Results (& Explorer Output - (Untitled) | El Log - (Untitled) | [# Editor - Untitled1

=) C:\Documents and Settingsikrl Ln 1, Col 1

In base Sas we must write most our programs ourselves. There are a few menus which we can use
to generate statements, however we mostly have to write the statements.

Sas Enterprise guide

Sas has a module called Enterprise Guide which provides menus for generating programs. It also
gives us a flow chart of our processes. If Enterprise guide is included in your Sas license it will be the
preferred user interface.

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The main user interface in Enterprise Guide (EG) is the Process flow diagram. Every task (program)
we create will be added here as a separate icon. For every task there will be different windows in
separate tabs. These tabs may include these windows:

e Program Written syntax

e Code Generated syntax

e Log Program log with notes, warnings, and error messages
e Output Browsing of output dataset(s)

e Results Listings

e Input Data Browsing of input dataset

There is a menu bar where we can use menus or wizards to generate code and execute programs.

f& SAS Enterprise Guide (=13
File Edit View Tasks Program Tools Help %' [aq',' % 5 o B [b4 5 o | M- gqurocess Flow -

Project Tree -~ | ProcessFlow -

gqg Frocess Flow |2 Zoom - ProjectI:og Properties ~

Server List - ¥
BGAle B

uy

OLAF Servers
Frivate OLAP Servers

W

< >
Ready % sasmeta

To open an editor window where we write syntax, we use the menu File > New > Program. Each of
our programs will have an icon in the process flow. If we use the tasks in the Tasks menu to create
syntax, Sas will add the arrows between the tasks in the process flow. When we write our own
programs, we must do this linkage ourselves. We can do this by right-clicking on an icon in the
process-flow and then choose Link. A menu with the possible links will appear and we choose the
right one:

+ Link x]

[Imdg (Process Flow)
Eﬂﬂmes (Process Flow)
EZ3 TIMES_FROM_STATA (Process Flow)

OK l ’ Cancel

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

2.2. Spss

Spss has three important windows, of which the first two of these are usually opened when Spss is
started:

e Data Editor Browsing and editing of dataset in use
e Viewer Listings, both output, commands, and log
e Syntax Editor For writing commands ourselves

These are opened in separate windows. If the syntax editor is not opened, we can open it with File,
New, Syntax.

The Data editor window has two tabs, the Data and the Variable view. Here is the Data view:

. Untitled1 [DataSet0] - IBM SPSS Statistics Data Editor
File Edit Wiew

(4] .@
i [
| | [wisible: 0 of 0 Variables
[v | var | v | v || var [var [var | var |
[1] -

T —— [

—
Data View | Variable View

[[IBM SPSS Statistics Processoris ready | | | [|

The Output window when Spss is opened, all logs and listings will be written to this window:

= *Output1 [Document1] - IBM SPSS Statistics Viewer
Fie Edt View Data Transform Inzert Format Analyze DirectMarketing Graphs Utilities Add-ons Window Help

SHed M = « (& 2% & P =» H
% +=_ B0 =20

+ {E] Dutput

IBM SPSS Statistics Processor is ready | | |

10

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Spss has several menus which can be used to generate syntax. However, to generate syntax is not
the default for these menus. The default is to just run the program and show the result in the Viewer
window. To save the syntax we must tell Spss to paste the syntax into the Syntax editor. Then we
can run the pasted syntax. It is always wise to save the syntax as it makes it possible to re-run
programs and it will also document the process.

2.3. Stata

The user interface is divided into these windows:

e Review List of executed commands

e Variables Variables available for use

e Properties Attributes for variables available for use

¢ Command For writing single line commands (executed when Enter is pressed)
e Log Log and listings viewer

=%, Stata/IC 12.0 - [Results] E]@
=

File Edit Data Graphics Statistics User Window Help

=2 N ARE Nk [l e AN %)

Review TR X Variables TRx
Command rc S Variable Label
- /__ / T / -
There are no items to show, 7 / / 7 / / 7 120 Copyright 1385-2011 StataCorp L There are no items to show,
Statisticsa/Data Analysis StataCorp

45305 Lekewzy Drive

College Station, Texas 77845 USSR
B00-STATR-EC http://www._stata.com
379-896-4600 statal@stata.com
979-896-4601 (fax)

15-user S5tate network perpetuzsl license:
Serizl number: 30120533747
Licensed to: Arb.marked og bedr._adf
Statistisk sentralbyrd

< |

|

Hotes:

Properties o x
running c:h\edo\perscnal\profile.do ... el
= A
=]
log on {text) cmdlog on B
M
C:'\Documents and Settingskr\Mine dokumenter UM

In addition, these windows are important:

e Do-file editor For writing commands (opens from the Window menu or Ctrl+9)
e Dataeditor For browsing and editing data (opens from the Window menu or Ctrl+8)

11

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

24. R

The default R interface is quite simple:

R RGui (p4-bit) — O X
File Edit View Misc Packages Windows Help

EECIEOEOE

R version 4.0.0 (2020-04-24) -- "Arbor Day"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x8€_€4-wé€4-mingw32/x€4 (€4-bit)

R is free software and comes with ABSOLUTELY HO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or "licence()' for distribution details.

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation() "' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'nelp.scarc()' for an HTML browser interface to help.

Type 'g()"' to quit R.

[Previously saved workspace restored]

>

It is so simple that it is recommended to use the RStudio interface instead when working in R, so we
will concentrate on that.

The RStudio interface is divided into these windows at start-up:

e Console/Terminal/Jobs
e Environment/History/Connections
e Files/Plots/Packages/Help/Viewer

12

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

RStudio
Eile Edit Code View Plots Session Bulld Debug Profile Iools Help
QO - Ol Go to file/function = Addins ~
Console Terminal Jobs
R version 4.0.0 (2020-04-24) -- "arbor Day”

Copyright (€) 2020 The R Foundation for Statistical Computing
platform: x86_64-wb4-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
vou are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()" for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()’ for more information and
‘citation()’ on how to cite R or R packages in publications.

Type ‘demo()’ for some demos, "help()" for on-Tine help, or
"help.start()' for an HTML browser interface to help.

Type 'gq()" to quit R.
[workspace Toaded from ~/.RData]

Loading required package: rlava
>

- O X

R project: (None) ~

Environment History Connections =
2" | #* Import Dataset = List = -
1 Global Environment =
Environmer
Files Plots Packages Help Viewer =
Home * | Find in Topic
R R Resources @ Rstudio
Learning R Online RStudio IDE Support
C Task Views RS
R on StackOverflow
Getting Help with R
o Products
Manuals
An Introduction to R The R Language Definition
Writing R Extensions R Installation and
Administration
R Data Import/Export R Internals =

In the Console window our executed commands and lists will appear. Error messages will also
appear here. In the Help window we find help to the different functions (commands). When we
make Plots they will show up in the Plot window. The environment window will contain all data that

is in the memory.

In R we will usually write scripts and to do that we will open an empty program editor with File, New
File, RScript (CTRL+SHIFT+N). The RStudio Editor will now open with an empty script:

RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help
Q- Ol e Go to file/function ~ Addins *
@ untitled1
Sourceon Save | 4 S =
1]
1:1 (Top Level) 3
Console Terminal Jobs
R\..I: d LU TdUUrdLIve Projece wWiLn mdny COonur iouLors,
Type ‘contributors()” for more information and
"citation()’ on how to cite R or R packages in publications.
Type ‘demo()’ for some demos, 'help()' for on-Tline help, or
"help.start ()’ for an HTML browser interface to help.
Type 'q()' to quit R.
[workspace loaded from ~/.RData]
Loading required package: rJava
=

=0

Seurce ¥

R Seript 3

=0

- O X
& project: (None) =
Environment History Connections =
= e | # Import Dataset » | & List = -
7k Global Environment =
Environment
Files Plots Packages Help Viewer =0
b @
Home = | Find in Topic
R R Resources @ Rstudio
Learning R Online) IDE Support
CRAN Task Views ommunity
R on Sta erflow heat Sheets
Getting Help with R f
Manuals
An Intro: R The R Langu: Definition
Writing R Extens R Installation and
Administration
R Data Import/Export R Internals =

13

Documents 2023/1

Another important window is the data viewer, which opens a data frame. With this, we have an easy
and flexible way to look at our data frames. We use the View command to open a data frame in the

data viewer.

2.5. Python

We can use different interfaces when working with Python. In this document we will use JupyterLab,
which can be downloaded from the Anaconda web site:

Data processing in Sas, Spss, Stata, R and Python. A comparison

https://www.anaconda.com/products/distribution. After it is installed, we open the Anaconda

Navigator and from there we launch JupyterLab. This will open a new page in a web browser that will

look something like this:

<« C @ localhost:8888/lab
: File Edit View Run Kernel Tabs
. s o
Q

o .
.— | Name - Last Modified
| ma Ohbjects 9 maonths ago
* I Anaconda3 & manths ago

m Application... 9 manths ago

B Contacts 9 manths ago

B Documents 3 months ago

I Downloads 23 minutes ago
BB Favorites 9 manths ago
B Links 9 manths ago
| Music 4 months ago
B Onelrive 9 months ago
B OneDrive - . 3 hours ago
m Saved Games 9 months ago
B Searches 9 months ago
@ Source 2 months ago
I Videos 9 manths ago

P

E Notebook

Python 3
(ipykernel)

E Console

Python 3
(ipykernel)

Other

Terminal

Text File

M

v

Markdown File

2

Python File

B

Show Contextual
Help

We open a new notebook by clicking on the icon below Notebook and an empty notebook will be

opened:
< C @ localhostss: b
= Hle Edt View R Help
- B o+ o = ntitied pyrt
a B+ X000 »

o . I o

The notebook open with one code cell. Each cell can be either Python code, a Markdown text or raw
text. We mostly use the Markdown cells for documentation. The code cells will contain our Python

code. To choose cell type click on the code text above the cells:

14

on 3 (ipykemel) O

https://www.anaconda.com/products/distribution

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

A Untitled.ipynb x
B + ¥XO M » 1 ¢ » Code -~ H

I . Code

[1: Markdown
Raw

In Jupyter notebooks we operate in two different modes:

o Edit To type into a cell like in a normal editor. In this mode we write our code and
comments.
e Command To operate on whole cells, for instance to run, move or delete them.

We swap from code to command with ESC. From command to code we swap with Enter

To run a program, we can click on the Run icon at the top of the window (®). Or we can use these
key combinations:

e ShifttEnter = Run the program in the cell and move to next cell
e Ctrl+Enter Run the program and stay in the same cell
e Alt+Enter Run the program in the cell and add a new cell below

The code and markdown cells are input cells. This means we can write code or documentation
within them. We also have output cells. These cells show output from our Python program code.

15

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

3. Naming conventions

The naming conventions for variables are a little bit different between the packages. These variable
naming conventions could well be used for dataset names and other naming. Here are the most
important naming rules:

Rule Sas Spss Stata R Python
Max length 32 64 32 Only limited by the Only limited by
system resources the system
available resources
available
Allowed A-Z a-z Any letter allowed A-Z, a-z Any letter allowed Any letter allowed
letters
Case No No Yes Yes Yes
sensitive?
Special _allowed _.and non- _allowed, but if _.are allowed. Must | _allowed
characters punctuation put in the first start with a letter or
characters allowed (. | position it period. If it starts
is usually not indicates a macro | with a period, it
recommended) variable name cannot be followed
by a digit.
Space Not allowed Not allowed Not allowed Allowed, but not Not allowed
recommended
Numbers Allowed, but not | Allowed, but notin Allowed, but not Allowed, but not in Allowed, but not
in the first the first position in the first the first position in the first
position position position
$ Allowed in the Allowed, but in the Not allowed Allowed, but not Not allowed
first position to first position recommended as it
referto a reserved for system is used to
character format | variables distinguish between
name dataset name and
variable name
Not allowed Allowed, but in the Not allowed Allowed, but not Not allowed
first position recommended
reserved for scratch
variables
& Allowed in the Not allowed Not allowed Allowed, but not Not allowed
first position to recommended
refer to a macro
variable
! Not allowed Allowed in the first Not allowed Allowed, but not Not allowed
position to refer to a recommended
macro variable
@ Not allowed Allowed Not allowed Allowed, but not Not allowed
recommended

As we sometimes interchange datasets between software packages it is smart to name variables, so
they are valid for all of these packages at the same time. In Sas and Spss it is a convention to use

16

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

capital letters for command names and otherwise use low case letters. As Stata, R and Python are
case-sensitive we must use the commands as they are described, mostly lowercase. This goes for
Stata, R and Python variable names as well; a variable called b2 is not the same variable as B2. In Sas
and Spss the variable b2 is the same variable as B2. In labels and titles, we are free to use both
upper and lower case as we like. Sas has a notation that can allow us use any text 32 character or
less in length as a name ('name'n). However, it is recommended to stick to the name conventions.

17

Documents 2023/1

4. Operators

Data processing in Sas, Spss, Stata, R and Python. A comparison

We always have to use operators when we are working with programming software. Here are the
most used ones and how they are written:

Operator Sas Spss Stata R Python
Arithmetic:
Addition + + + + +
Subtraction - - - - B
Multiplication * * * * *
Division / / / / /
Exponentiation wE *k A ** (or A) *k
Equal (set to) =(oreq) =(oreq) = = =
Relational:
Equal (check for) = (or eq) = (or eq) == == ==
Not equal ne (or ~= or A= or <>) ne (or ~=or <>) ~=(or!=) 1= I=
Less than <(orlt) <(orIt) < < <
Less than or equal <=(orle) <= (orle) <= <= <=
Greater than > (or gt) > (or gt) > > >
Greater than or equal >= (or ge) >= (or ge) >= >= >=
Logical:
Reverse the expression not (or A or ~) not (or ~) I'(or~) ! ~
Both relations true and (or &) and (or &) & & and
Either relation true or(or|) or(or |) | | or

We can change the order of evaluation by using parentheses. It is always wise to use parentheses to

make sure that our expressions evaluate in the order we want.

18

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

4.1. Sas

The order of evaluation is depending on which group the operators belong to. The priority of
evaluation is:

Group Description Associativity
1 *%, + (as prefix), - (as prefix), NOT right to left
2 * 1/ left to right
3 + (addition), - (subtraction) left to right
4 <, <, = NE, >, >=. left to right
5 and left to right
6 or left to right
4.2. Spss

Order of evaluation

Not

Exponentiation

Multiplication

Division

Addition and subtraction

Ne

> <, >= <=

And

Or

19

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

4.3. Stata

Order of evaluation

- (negation)

- (subtraction), + (addition)

and

I=(or ~=)

> < <= >=

&

|

44. R
The operators are evaluated in the order shown below:

Operator Description Associativity
A Exponent Right to Left
-X, X Unary minus, Unary plus Left to Right
%% Modulus Left to Right
*/ Multiplication, Division Left to Right
+, - Addition, Subtraction Left to Right
<, >, <=, >=, ==, 1= Comparisions Left to Right
! Logical NOT Left to Right
&, && Logical AND Left to Right
[] Logical OR Left to Right
->, ->> Rightward assignment Left to Right
<-, <<- Leftward assignment Right to Left
= Leftward assignment Right to Left

20

Documents 2023/1

4.5. Python

Data processing in Sas, Spss, Stata, R and Python. A comparison

The operators are evaluated in a defined order (highest to lowest):

Operator Name

[0 O O S Tuple, list, and dictionary creation
String conversion

s[il, s[i:j] Indexing and slicing

s.attr Attributes

f(...) Function calls

+X, X, ~X Unary operators

X**y Power (right associative)

X*y, X1y, x/1y,x%y

Multiplication, division, floor division, modulo

Xty X-y Addition, subtraction
X <<y, X>>y Bit-shifting

x&y Bitwise and

XAy Bitwise exclusive or
x|y Bitwise or

x<y,x<:y,x>y,x>:y,x::y,x!:y,x<>y

Comparison tests

Xisy, xisnoty

Identity tests

xins, xnotins

Sequence membership tests

not x Logical negation
xandy Logical and
X ory Logical or

lambda args: expr

Anonymous function

21

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

5. Datasets

All packages except Python store data in their own proprietary format with a special extension in the
file names. Python uses open-source formats, for instance those mentioned below:

e Sas: sas7bdat

e Spss: sav

e Stata: dta

e R RData or rds

e Python: pklor parquet

Both Spss and Stata operate with active datasets. In Stata we can only have one dataset opened in
the data editor at a time and this will be the dataset the commands will be executed on. Spss also
have an active dataset for which commands will be executed. However, we can have several
datasets open at the same time. This is not recommended because then we have to make sure
which dataset is the active one and this can be confusing and it easy to execute on the wrong
dataset. It is best to have only one dataset opened at the time. To ensure this we set an option: Edit
> options, and in the General tab, tick Open only one dataset at a time. The datasets in Spss and
Stata are usually referenced to by their whole physical names unless a cd command is used. If so, we
may use the dataset name without the path given in the cd command.

Sas does not operate with active datasets. We do not use the physical names in the programs either,
we use aliases. These aliases consist of a libref which reference to the physical directory, in which the
data is stored, and the name of the dataset (without the extension). The two parts of the dataset
name is separated with a dot. The libref for temporary datasets is called Work and is defined when
Sas starts. For these temporary datasets we can omit the libref. Librefs for permanent datasets are
defined by using a Libname statement, see page 62.

R save all data in memory until we close R or actively remove the data from memory. R data are
stored in vectors with given names, and we use these names to reference the vectors. R has also
introduced data frames which are vectors organized in a way that makes it possible to treat them as
regular datasets (called data frames in R). We may use the attach command to be able to reference
variables within a data frame without using the name. There is also possible to use the with function
in R to avoid repeating the data frame names.

Python also save all data in memory until we close the Python kernel or actively remove the data
from memory. All internal data are stored in objects which can be of different formats, like lists,
dictionaries, tuples, sets, frozenset and Pandas data frames. We will mostly work with Pandas data
frames in this document; however we will look a little bit at dictionaries as well.

All folders must be created before we can write any datasets to these folders. It is wise to have a

separate folder for the datasets we want to store permanently. This is common for all the compared
softwares in this document.

22

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

6. Execution

The syntaxes all consist of commands (statements). Each command usually starts with a keyword
and ends with a special character. In Sas the statements end with a semicolon (;), in Spss a period (.)
is used and Stata uses a line break. We can change the end character in Stata, but it is usually not
recommended. If a command continues to a new line in Stata, we use /// as a continuation marker.
In Sas, Spss and R we don't need a continuation marker. In Spss it is not allowed to have an empty
line within a command.

As Spss and Stata always executes on the active dataset, we can run commands separately. For Spss
some commands are executed immediately, and some commands wait for the Execute command to
be executed. Stata and R executes commands immediately. Sas needs to put statements together in
either a Data step or a Proc step. The Data step is for regular programming and the Proc step uses

ready-made procedures. The Data step always starts with a Data statement and the Proc step with a
Proc statement. A step in Sas ends usually with a Run statement, but sometimes Quit is used instead.

When a program or syntax is written or generated, we will execute it. We may execute the whole
program or just parts of it. In Sas there is a Submit command which executes the program. In base
Sas it is found under the Run menu. As it is a command which is very often used it should be defined
to a hot-key. The hot-keys are defined under Tools > options > Keys.

In Sas Enterprise guide there are many ways to Submit a program. The easiest way is to use the F3
button. When pressed the program is submitted. If a part of the program is marked only that part is
submitted. There are always different Run options available as well.

To execute syntax in Spss we can use the menu Run. Under the Run menu there are different
choices. The most common are All and Selection. The hot-key Ctrl-R will execute the selected syntax.

In Stata a command will be executed when Enter is pressed when it is written in the Command
window. If we write the commands in the Do-file Editor, we can execute them from the Tools menu.
There is also the hot-key Ctrl+D which executes the marked text. If no text is marked all the
commands in the Do-file will be executed with Ctrl+D.

To run a script in R, we mark the lines we want to run and press CTRL+ENTER. To run a separate
command, we press CTRL+ENTER when the cursor is on a line within the command.

For Python programs in Jupyter notebooks, we run a program in a cell by using one of the
combinations CTRL+ENTER, SHIFT+ENTER or ALT+ENTER.

In Python, we have a basic part which is available when we start a Python session. However, there
are lots of other packages that may be used. These must be imported before we can use them. Itis
common practise to put these imports in the first code cell in our projects. To run the examples in
this document, we need to run these imports:

import pandas as pd
import numpy as np

from io import StringIo
import datetime as dt

Pandas are used to be able to work with data frames, which is very common when we do data
processing. Numpy is a package for numeric computations which is widely used. StringlO is very
helpful when we want to read inserted text files. Datetime is a module for extracting and calculating
on dates.

23

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

7. Import of files

As all packages store data in their own proprietary format, the first we usually do is to import data. It
may be imported from different formats. The most common formats are delimiter separated files,
fixed positions files and Excel spreadsheets. Sas Enterprise guide has a wizard (task) for importing
these types of files. Base Sas does also have a wizard, however it does not take fixed positions files
and to be able to import Excel spreadsheets we have to have a license for the module “Access to PC
file formats”. Spss has menus for importing delimiter separated files and Excel spreadsheets, but
not for fixed positions files. Stata has menus for importing all three file types. If we use menus or
wizards to import data, it is important to save the syntax that is generated.

We will now look at how we use syntax to import a fixed positions file, the file is shown in the
appendix on page 224.

7.1. Sas

DATA mdgperson ;

INFILE 'H:\MDG\Data\mdgperson.txt' TRUNCOVER LRECL=15;

INPUT
@01 hh SCHARG.
@07 state
@08 urbrur
@09 member
@10 b3
@12 b4
@13 bb
@15 bé

’

RUN;

FNRNRR R

The Data statement starts the Data step and names the output dataset. The Infile statement names
the file to be imported and the /nput statement describes the different columns to be read. It is also
used to name the variables in Sas and to decide which variables will be character ($char) and which
will be numeric. The start position is given after the @ sign and the length is given as an informat
after the variable name. Informats end with a dot (or a decimal number).

24

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

After we run this program the output data window looks like this:

& SAS Enterprise Guide - MDG.egp
Eile Edit \iew Tasks Program Tools Help %Y ﬁv % ‘% ol Bm R X |5 o[- gngDG -

mdgperson - x

&:& Program |M§”| Log Ea Qutput Data |

(%] %fFil_ter and Sort %Query Builder | Data ~ Describe » Graph ~ Analyze » | Export + SepdTo -

L2, hh)] state @ urbrur @ member @ b3 @ b4 @ b5 @ b& 2
020074 10
020074 3
050036 20
040024 20
040024 33
040024 i
050063 16
050036 24
020074 16
10 | 050063 &0
11 | 020118 77
12 | 060041
13 |020118
14 | 020074
115 | D60036
116 | 040024
050036
020074

jry

SRRSO S R S R S R R O R LN i S R =R oS = N |
L et Rt Bt Lt Ll Rt i

18
14
16
13

L - R - R o - B R - R R e R -
JE DS SIS DS S S NS DU WU DU DU AP S SIS IS NS U I
e LT O N O b R R D T R = e i
[T S S NS S NS PR NN AT S NOUEE RN A E Y G

RS QU S e

Ready W, sasmeta

7.2. Spss

DATA LIST FILE
hh
state
urbrur

'"H:\MDG\Data\mdgperson.txt' /
- 6 (A)

- 7

- 8

member - 9

b3 - 11

b4 12 - 12

b5 13 - 14

b6 15 - 15

—
O W o J

EXECUTE.
SAVE OUTFILE='H:\MDG\Data\mdgperson.sav'.

The import is done with one command, the Data list command. It gives the name of the import file in
the File subcommand. Then the variable names for Spss and the start and end positions are given.
We also decide whether a variable shall be character (A) or numeric. The Execute command is
needed for the actual import to be done. The Save command store the dataset in Spss format

25

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When the syntax is executed, the imported data will be shown in the Data editor window:

. *Untitled2 [] - IBM SPSS Statistics Data Editor

File Edt Wiew Data Transform Analyze Direct Marketing Graphs Utiities Add-onz Window Help
;ﬁH[r%;;rd ,,,‘&% i 5 = %‘%*
| | |Visible: & of & Variables
| hh " state || urbrur " member " b3 " b4 " b5 " b6 " |
1 020074 2 1 : 2 110 _ =
020074 2 1 1 0 1039 3
| 3 080036 G 1 4 2 120 1
040024 4 1 1 0 220 3
040024 4 1 2 1 2 33 2
| 6 040024 4 1 2 M 2 2 3
050069 5 2 5 4 2 16 1
060036 G 1 3 2 2 1
| 9 020074 2 1 3 2 116 1
050069 5 2 2 1 2 60 2 1
020118 2 1 1 0 1 21 2
060041 G 1 5 2 1 8
020118 2 1 5 2 2 3
020074 2 1 6 2 2 8 :
060036 6 1 5 2 118 1
040024 4 1 4 2 1 14 1
060036 6 1 6 2 1 16 1
020074 2 1 4 2 2 13 1 _
Data View | Variable View
| |BM 5PSS Statistics Processor iz ready| | | | |

It is divided into two parts: the Data view and the Variable view. The data is shown in the Data view
and the metadata is in the Variable view. The metadata consists of variable names, lengths, types,
variable labels, and value labels.

When there is invalid data for numeric fields, messages like this will appear in the log and the value
is set to missing:

Warning # 1102

An invalid numeric field has been found. The result has been set to the
system-missing value.

Command line: 50 Current case: 33 Current splitfile group: 1

Field contents: '.'

Record number: 33 Starting column: 15 Record length: 8192

26

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

7.3. Stata

infix ///

stré6 hh 1-6 ///
state 7 - 7 /1/
urbrur 8 - 8 /1/
member 9 - 9 /1/
b3 10 - 11 ///
ba 12 - 12 ///
b5 13 - 14 11/
b6 15 - 15 11/

using h:\mdg\data\mdgperson.txt
save "h:\mdg\data\mdgperson.dta", replace

Stata also uses one command to import the file, infix. This command will use more than one line;
hence we need to use the continuation marker ///. Character variables will be marked with the str
format. The variable name, start and end positions for each variable is defined and the name of the
import file is also needed. We save the dataset with the save command.

When Stata has executed the import program the data will not automatically be shown. To show the
data we open the Data editor window (hot-key Ctrl+8):

[Data Editor (Edit) - [Untitled]

File Edit Wew Data Tools
25 e 3 3 [[Fc3 LY B o i
hh[1] 020074
el hh state urbrur member b3 b4 bs 13 # | | Variables 1
g 1 020074 2 1 5 2 1 10 .
= _
% z 020074 2 1 1 0 1 33 3 Variable Eaa -
@ 3 060036 [1 4] 1 20 1 & hh
4 040024 4 1 1 0 z 20 3 W state
H 040024 4 1 z 1 z 33 z W urbrur
3 040024 4 1 z 11 z 23 E W member
7 050063 5 2 5 4 2 16 1 M b3
5 060036 3 1 3 2 z 24 1 M b4
) 020074 2 1 3 2 1 16 1 M b5
10 050083 H 2 z 1 z &0 2 W bé b
11 020118 2 1 1 0 1 27 2 Properties ks
= ~
1z 060041 [1 5 z 1 g
Mame hh
13 020118 z 1 H 2 z 3
Label
14 020074 2 1 [2 2 2 . Type 6
15 060036 3 1 H 2 1 18 1 Format %gs
16 040024 4 1 4 2 1 14 1
17 060036 3 1 3 2 1 16 1 Motes
18 02007 4 z 1 4 2 z 13 1 =
v
4 > Label v
Ready Wars: 8 Order: Dataset Obs: 48 Filter: Off Mode: Edit MUM

If we want to re-run the import, we have to close the dataset first. This may be done with the clear

command.

27

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

74. R

We use the read command to import datafiles. For fixed position files we use read.fwf. For delimited
files we can use read.csv or read.table.

mdgperson <- read.fwf(
file="H:/MDG/Data/mdgperson.txt",
col.names = c("hh","state","urbrur", "member","b3","b4","b5","b6"),
widths=c(6, 1, 1, 1, 2, 1, 2, 1),

colClasses=c("character",'"character","character", "numeric","numeric", "numeric

, 'numeric”, "numeric"),
skip=0,
na.strings="."

)

The read.fwf command will create a data frame by importing the file mentioned in the file argument.
Beware that in R we must use slash (/) and not backslash (\) to separate folder from sub-folder in the
file path. The data frame will be named mdgperson. It is assigned by using the <- operator which

means that the result of the expression to the right of <- will be assigned to the name to the left of <-

We name the columns (or variables) in the data frame by using the col.names argument. The names
are put into the concatenation function (c) in the same order as they appear in the data file.
Furthermore, we must define the width and type of each column. We do that with the widths and
colClasses arguments as seen above. As there are no space between each column in the data file, we
tell R that by using the skip argument. Finally we use the na.strings argument to identify values for
missing values, which in R is called not available (NA).

The data frame is not shown in R. However, we can use different commands to see the content of
the data frame. We can use the str command (str is short for structure) like this:

str(mdgperson)

This will write an output like this to the console window:

'data.frame': 48 obs. of 8 variables:

$: chr "020074" "020074" "060036" "040024"
$ State : Chr ll2ll ll2ll ll6ll ll4ll . .

$ urbrur: chr "1™ "1™ "1" "1" ...

$ member: num 5141225332 ...

$ b3 thum 20201114221...

$ b4 thum 1112222212 ...

$ b5 : num 10 39 20 20 33 23 16 24 16 60 ...

$ b6 :hum NA313231112...

It shows that mdgperson is a data frame with 48 observations (rows) and 8 variables (columns).
Then each variable is listed with name, type and the values of the first observations. We see for b6
that missing values are represented with the value NA (not available).

To look at the whole file we can use the View command:

view(mdgperson)

28

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Here is the beginning of the mdgperson data frame:

datoer] Pyramide.Rmd Q'] CompareWithsasExamples.R* mdgperson & Surve
Filter

“ hh state urbrur member b3 b4 b5 bé&
1 020074 2 1 5 2 1 10

2| 020074 |2 1 1 0 1 39 3
3 060036 & 1 4 2 1 20 1
4 040024 |4 1 1 0 2 20 3
5 040024 4 1 2 1 2 33 2
6| 040024 |4 1 2 I 2 23 3
7| 050069 |5 2 5 4 2 16 1
B | 06DO36 |6 1 3 2 2 24 1
9| 020074 |2 1 3 2 1 16 1
10 050069 |5 2 2 1 2 &0 2
11 020118 |2 1 1 0 1 27 2
12 0E0041 |6 1 5 2 1 8

13 020118 | 2 1 5 2 2 3

14 020074 |2 1 £ 2 2 8

15 060036 |6 1 5 2 1 18 1
16 040024 4 1 4 2 1 14 1
17 060036 | & 1 £ 2 1 16 1
18 020074 |2 1 4 2 2 13 1
19 020100 |2 1 3 2 2 21 1
20 020118 2 1 4 2 2 5

21 NEANEG 5 2 F 4 1 13 1

L S S U S

7.5. Python

We use a read method to import external files to Python data frames. To import a delimited file, we
can use the read.csv method. To import a fixed width file, we can use the read_fwf method. But first,
we should put the path to the data folder into an object, here called datapath. This will make easier
to move the examples to another folder. We must specify the width of each column (or the start and

end position) and we should name the columns as well:

datapath = 'H:/MDG/Data/'
mdgperson = pd.read_fwf(
datapath + 'mdgperson.txt',
names=["'hh', 'state', 'urbrur', 'member', 'b3', 'b4', 'b5', 'b6'],
dtype=object,
na_values={'."', ' .'},
widths=[6, 1, 1, 1, 2, 1, 2, 1]
)
mdgperson.head(11)

To convert missing values in the data file to missing values in Python, NaN (Not a Number) for

numbers, we specify na_values. We have also specified that the columns should be objects, which

means it can literally contain anything. After the import we list the 11 first rows with the head
function. Beware that the first row has the index O:

29

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

hh state urbrur member b3 b4 bb b6

0 020074 2 1 5 2 1 10 NaN
1 020074 2 1 1 0 1 39 3
2 080036 6 1 4 2 1 20 1
3 040024 4 1 1 0 2 20 3
4 040024 4 1 2 1 2 33 2
5 040024 4 1 2 11 2 23 3
6 050069 5 2 5 4 2 18 1
7 060036 6 1 3 2 2 24 1
8 020074 2 1 3 2 1 18 1
9 050069 5 2 2 1 2 80 2
10 020118 2 1 1 0 1 27 2

For some information about the data frame, we can use the info function:

mdgperson.info()
The output is like this:
<class 'pandas.core.frame.DataFrame"':

RangeIndex: 48 entries, @ to 47
Data columns (total 8 columns):

Column Non-Null Count Dtype
@ hh 48 non-null object
1 state 48 non-null object
2 urbrur 48 non-null object
3 member 48 non-null object
4 b3 48 non-null object
5 ba 48 non-null object
6 bs 47 non-null object
7 bb 36 non-null object

dtypes: object(3)
memory usage: 1.6+ KB

We see that all columns have been defined as objects, which means they are string columns. When
we want to specify the column types ourselves, we can use a dictionary in the dtype parameter:

mdgperson = pd.read_fwf(
datapath + 'mdgperson.txt',
names=["'hh', 'state', 'urbrur', 'member', 'b3', 'b4', 'b5', 'b6']
dtype={'hh': 'object', 'state': 'object', 'urbrur': 'object', 'b3
'object', 'b4': 'object', 'b6': 'object'},
na_values={'."'," .'},
widths=[6, 1, 1, 1, 2, 1, 2, 1]

y
L

)
mdgperson.head(11)

Variables not mentioned in the dtype parameter will be given a type based on the content of each
column.

30

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When we define a column as int64 the import will fail with an error message if a missing value is
found:

ValueError: Unable to convert column b5 to type int64
Instead, we can import the column as float64 as it accepts missing values.

We only need to specify the columns that will not automatically get the right column types. Columns
with letters will by default always be objects, integer values without missing values will be int64 and
integers with missing values and decimal numbers will be floaté4.

31

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

8. Getting to know our data

When our file is imported correctly to Sas, Spss, Stata, R or Python, we will use some procedures to
get to know our data. We typically use frequency tables and descriptive statistics for this purpose.

8.1. Frequency tables

We use frequency tables to get a fast overview of the distribution of variables with few distinct
values. In Stata missing values are excluded unless we add the miss option. The number of missing
values is not listed as they are in Sas and Spss. We may include the missing values as regular values
in the tables in Sas by using the missing option in the Tables statement. In R we use the exclude=NULL
argument to include NA’s in the frequency tables. In Python, we can use the fillna method to include
missing values in our calculations.

Sas
In base Sas we have to write syntax for this. In Enterprise Guide we find it under Tasks > Describe >

One-Way Frequencies and Tasks > Describe > Table Analysis. The written syntax for two One-way
frequency and one Two-way frequency tables may look like this (generated syntax from the menus
will be more extensive):
proc freq data=mdgperson;

tables state b6 state*b6;

title "Frequencies";
run;

Executed from Enterprise Guide the result will look like this:

Frequencies
The FREQ Procedure

Cumulative| Cumulative
state Frequency Percent Freguency Percent

2 17 3542 17 3542
4 12 25.00 23 60.42
3 6 1230 33 72.92
6 13 27.08 43 100.00

Cumulative Cumulative
b6| Frequency Percent Frequency Percent

1 19 5278 19 52.78
2 13 36.11 32 86.89
3 4 11N 36 100.00

Frequency Missing = 12

32

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Table of state by bt
b6
1 2 3| Total
state

Frequency 4 3 2 11
Percent 11.1113.89| 556 30.56
Row Pct 36.36 45.45|18.18
Col Pct 21.05 38.46 50.00
Frequency 4 2 2 8
Percent 1111 5.56| 53536 2222
Row Pct 50.00 25.00|25.00
Col Pct 21.05 15.38 50.00
Frequency 3 3 0 6
Percent 8.33 ©8.33) 0.00 16.67
Row Pct 50.00 50.00, 0.00
Col Pct 1579 2308 0.00
Frequency 8 3 0 11
Percent 2222 833 000 3056
Row Pct 7273 2727 0.00
Col Pct 4211 2308 0.00

Frequency 19 13 4 36
Percent 52.78 36.11 1111 10000

Frequency Missing = 12

Total

33

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Spss

The One-way frequencies in Spss are found in the menu Analyze > Descriptive statistics >
Frequencies. For Two-way frequencies we can use Analyze > Descriptive statistics > Crosstabs. When
we paste the syntax, it looks like this:

FREQUENCIES VARIABLES=state bb6
/ORDER=ANALYSIS.

CROSSTABS
/TABLES=state BY b6
/FORMAT=AVALUE TABLES
/CELLS=COUNT ROW COLUMN TOTAL
/COUNT ROUND CELL.

The frequency tables look like this:

Crosstabs
Case Processing Summary
: Cases
Frequencies Valid Missing Total
M Percent M Percent M Percent
Stalistics state * b6 36 75,0% 12 25,0% 48 | 100,0%
state hé&
N valid 48 3 state * b6 Crosstabulation
Missing 0 12
b6
1 2 3 Total

Frequency Table State 2 Count 2 5 2 T
% within state 36,4% 455% 18,2% | 100,0%
state % within b 211% 38,5% 50,0% 30,6%
Cormiatve % of Total 1,1% 13,9% 56% 30,6%
Frequency | Percent | Valid Percent Percent 4 Count 4 2 2 g
valid 2 17 354 35,4 354 9% within state 50,0% 25,0% 250% | 100,0%
4 12 25,0 250 60,4 % within b 211% 15,4% 50,0% 22,2%
5 6 125 128 729 % of Total 11,1% 5,6% 56% | 222%
& 13 271 271 100,0 Z Court 3 3 7 5
Total 48 | 1000 1000 % within state | 50.0% | 50,0% 0,0% | 100,0%
% within b 15,8% 231% 0,0% 16,7%
b6 % of Total 8,3% 8,3% 0,0% 16,7%
o 6 Count] 3 0 1
Frequency | Percent | Valid Percent Percent % within state T27% 27.3% 0,0% 100,0%
Valid 1 19 39,6 528 528 % within b 421% 231% 0,0% 30,6%
2 13 271 36,1 88,9 % of Total 22,2% 8,3% 0,0% 30,6%
3 4 83 11 1000 Total Count 19 13 4 36
Tatal 36 75,0 1000 9% within state 52,8% 36,1% 111% | 100,0%
Missing System 12 25,0 % within b 100,0% | 100,0% | 100,0% | 100,0%
Total 48 100,0 % of Total 528% | 361% | 111% | 100,0%

34

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Stata

In Stata we find the one-way frequency here: Statistics > Summaries, tables, and tests > Tables >
Multiple one-way tables. The two-way frequencies are here: Statistics > Summaries, tables, and tests
> Tables > Two-way tables with measures of association. When we write the commands tab7 and
tabulate they will be like this:

tabl state b6
tabulate state b6, row column cell

. tabulate state b6, row column cell

Key

frequency
row percentage
column percentage
cell percentage

b&
state 1 2 3 Total
2 4 5 2 11
36.36 45.45 18.18 100.00
21.05 38.46 50.00 30.56
. tabl state bé&
11.11 13.89 5.56 308.56
-» tabulation of state
4 4 2 2 8
STEte Freg. Percent Cum. >0.00 25.00 25.00 100.00
21.85 15.38 50.00 22.22
3 17 35.42 35.42 11.11 5.56 5.56 22.22
4 iz 25.00 &0.42
5 [1z .50 T72.592 5 3 3 a 6
& 13 27.08 i00.00 S0 . 08 S0. 00 9.00 100. 00
15.79 23.08 a.00 16.67
Total 43 100.00 g.33 g.33 0.00 16.67
—->» tabulation of b6 6 8 3 L) 11
72.73 27.27 a.00 100.00
be Fregq. Percent Cum .
42.11 23.08 a.00 38.56
1 19 53 78 53 78 22.22 8.33 a.00 308.56
z 13 36.11 88.83
3 4 11.11 100.00 Total 15 13 4 36
52.78 36.11 11.11 100.00
Total a6 100.00 100.00 100.00 160.00 100.00
52.78 36.11 11.11 100.00

It is also possible to add the fre package to Stata. We can do that with this command (when we have
Internet connection)

ssc install fre
Now we can make one-way frequency tables more like in Sas and Spss:

fre state b6

35

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The frequency tables:

state

Freq. Percent Valid Cum.
Valid 2 17 35.42 35.42 35.42
4 12 25.00 25.00 60.42
5 6 12.50 12.50 72.92
6 13 27.08 27.08 160.00
Total 48 160 .060 160.00
b6
Freq. Percent Valid Cum.
Valid 1 19 39.58 52.78 52.78
2 13 27.08 36.11 88.89
3 4 8.33 11.11 100.00
Total 36 75.00 100.00
Missing . 12 25.00
Total 48 100 .00

R

There are several different commands for frequency tables in R. One basic command is the table
command. It shows the distribution of one or more variables. Here is an example on a one-way
frequency, beware that the $ sign is used to separate the data frame name from the variable name:

table(mdgperson$state)

The output is very simple, with no totals (margins). The different values for the variable state in the
data frame mdgperson is in the first line of the output and the frequencies are in the second:

2 4 5 6

17 12 6 13

To add totals, we use the addmargins command. As the R commands are actually functions, we can
use a command within another command, like this:

addmargins(table(mdgperson$state))
We see that we have now added a total to the output listing:
2 4 5 6 sum
17 12 6 13 48
If we want percentages we can add the prop.table command and multiply by 100:
addmargins(prop.table (table(mdgperson$state)))*100
The percentage table:

2 4 5 6 Sum

35.41667 25.00000 12.50000 27.08333 100.00000

36

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

These to outputs may be combined with the cbind or rbind commands. cbind combines columns
while rbind combine rows:

cbind(frequency=addmargins(table(mdgperson$state)),percent=addmargins(prop.ta
ble (table(mdgperson$state)))*100)

rbind(frequency=addmargins(table(mdgperson$state)),percent=addmargins(prop.ta
ble (table(mdgperson$state)))*100)

The 2 outputs, the first as columns and the second as rows:

frequency percent

2 17 35.41667
4 12 25.00000
5 6 12.50000
6 13 27.08333
sum 48 100.00000
2 4 5 6 sum

frequency 17.00000 12 6.0 13.00000 48
percent 35.41667 25 12.5 27.08333 100

The default for these frequency tables is to omit the NA values. If we want the NA's, we add the
exclude argument:

table(mdgperson$b6,exclude = NULL)

We see that we have a column fro NA:
1 2 3 <NA>

19 13 4 12

To add cumulative frequencies, we can use the transform command which add them after the
frequency table is converted to a data frame. To convert the output table to a data frame we use the
os.data.frame function. The data frame will have to variables, state and Freq. We calculate the
cumulative frequencies by using the cumsum function for the Freq variable. The syntax looks like
this:

transform(as.data.frame(table(state=mdgperson$state)),cum_freqg=cumsum(Freq))

This gives us an output table:

state Freq cum_freq

1 2 17 17
2 4 12 29
3 5 6 35
4 6 13 48

37

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Now we can make a table with both cumulative frequencies and percentages and missing values
included:

transform(as.data.frame(table(b6=mdgperson$b6,exclude=NULL)) ,percentage=Freq/
nrow(mdgperson)*100, cum_freg=cumsum(Freq) ,cum_pct=cumsum(Freq/nrow(mdgperson)
*100

We use the nrow function to find the number of rows in the data frame. This is the output:

b6 Freq percentage cum_freq cum_pct

1 1 19 39.583333 19 39.58333
2 2 13 27.083333 32 66.66667
3 3 4 8.333333 36 75.00000
4 <NA> 12 25.000000 48 100.00000

We can use the table command for two-way frequencies also. In this example we include totals and
NA values:

addmargins(table(mdgperson$state,mdgperson$b6,exclude=NULL))

The two-way frequency with totals and NA's:
1 2 3 <NA> Sum
2 4 5 2 6 17
4 4 2 2 4 12
5 3 30 0 6
6 8 3 0 2 13
4

Sum 19 13 12 48

There are other commands for frequency tables in other R packages, like summarytools and tabular.

Python
We can use the crosstab function to create simple frequency tables:

pd.crosstab(mdgperson.state, columns="Frequency')
This will give us a table like this:

col_0 Frequency

state
2 17
4 12
5 6
6 13

38

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can add totals to the table:

pd.crosstab(mdgperson.state, columns='Frequency', margins=True)

There will be totals both in the columns and rows:

col_0 Frequency All

state
2 17 17
4 12 12
5 6 6
6 13 13
All 45 48

When we want percentages and cumulative counts and percentages we can calculate them, for
instance like this:

freqvar = 'b6'
freq = mdgperson[freqvar].value_counts(dropna=False).sort_index()
freq = pd.bpataFrame({
freqvar: freq.1index,
'Frequency': freq.values,
'Percent': ((freq.values/freq.values.sum())*100).round(2),
"CumuTative Frequency': freq.values.cumsum(),
"Cumulative Percent':
((freqg.values.cumsum()/freqg.values.sum())*100) .round(2)
}

)
freq

The output will be like this:

b6 Frequency Percent Cumulative Frequency Cumulative Percent

0 1 19 39.58 19 38.58
1 2 13 27.08 32 66.67
2 3 4 8.33 36 75.00
3 NaN 12 25.00 48 100.00

If there are NaN values in the categories they will not be included as separate rows or columns
unless we change the NaN to a valid value, for instance the text Missing. Here is an example:

pd.crosstab(mdgperson['b6'].fillna('Missing'), columns='Frequency',
margins=True)

The Nan values in the categories are now included as a Missing category as we have filled them with
the text Missing:

39

Documents 2023/1

col_0 Frequency All

b6
1 19 19
2 12 13
3 4 4
Missing 12 12
All 48 48

8.2. Descriptive statistics

These are the naming of basic statistics made on numeric variables:

Data processing in Sas, Spss, Stata, R and Python. A comparison

Statistic Sas Spss Stata R Python
Maximum Max max max max max
Minimum Min min min min min
Average Mean mean mean mean mean
Sum Sum sum sum sum sum
Number of valid N n n or count count count
values

Number of missing Nmiss N/A N/A ~sum(is.na(.)) (when using N/A
values package dplyr)

Standard deviation Std stddev sd sd std

Sas

The basic procedure used in Sas for descriptive statistics is Proc means. It is found in the menu Tasks
> Describe > Summary statistics. The output for 2 variables with some different statistics is like this:

Summary statistics

The MEANS Procedure

Variable | N Mean Minimum Maximum Sum Std Dev
member 43 34583333 1.0000000 6.0000000 | 166.0000000
b& 47 | 21.1489362 1.0000000 @ 67.0000000 994.0000000

When we write syntax, it will look like this:

proc means data=mdgperson n mean min

var member b5;
title "Summary statistics";

run;

40

max sum std;

16879542
140758485

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison
Spss
In Spss we use the Descriptives command, and it is found under Analyze > Descriptive statistics >

Descriptives. The same statistics as above will be like this in Spss:

Descriptive Statistics

M Minimum Maximum sum Mean Std. Deviation
member 43 1 & 166 3,46 1,688
b5 47 1 67 8494 21,15 14,076
Walid M {listwise) 47

The Spss syntax:

DESCRIPTIVES VARIABLES=member b5
/STATISTICS= MEAN MIN MAX SUM STDDEV.

Stata
Stata has descriptive statistics under Statistics > Summaries, tables, and tests > Tables > Table of
summary statistics (tabstat):

variable M mean min max sum sd
member A48 3.458333 1] 166 1.687984
b5 47 21.14894 1 a7 994 14.875%85

We can write the code instead of using the menus:

tabstat member b5, statistics(count mean min max sum sd) columns(statistics)
R
To get basic descriptives on a data frame we can use the summary command:

summary (mdgperson)

The output will be like this:
hh state urbrur member
Length:48 Length:48 Length:48 Min. :1.000
Class :character Class :character Class :character 1st Qu.:2.000
Mode :character Mode :character Mode :character Median :3.500
Mean :3.458
3rd Qu.:5.000
Max. :6.000

41

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

b3 b4 b5 b6
Min. : 0.000 wMmin. :1.000 Min. : 1.00 w™min. :1.000
1st Qu.: 1.000 1st Qu.:1.000 1st Qu.:11.50 1st Qu.:1.000
Median : 2.000 Median :2.000 Median :18.00 Median :1.000
Mean ! 2.667 Mean :1.562 Mean :21.15 Mean :1.583
3rd Qu.: 2.000 3rd Qu.:2.000 3rd Qu.:25.50 3rd Qu.:2.000
Max. :11.000 Max. :2.000 Mmax. :67.00 Max. :3.000
NA's 11 NA's 112

For character variables we only get information about the number of rows (Length: 48). For numeric
variables we get minimum, 15t quantile, median, 34 quantile, maximum and NA's

For more specific descriptives we may use the dplyr package. If it is not installed it can be installed
with the install.packages command

install.packages("dplyr")

Packages that are not included in the basic R language need to be loaded and attached by using the
library command:

Tibrary(dplyr)

Now we can use it to for instance list some descriptive statistics. The dplyr package can pipe
commands together and we use %>% as the pipe. First, we choose our input data frame. Then we
pipe it to our descriptives command:

[») o,
mdgperson 'A>A' - . n " " " " " m - n " "
summarize_if(is.numeric,c("sum", "mean","sd", "min", "max"))

We have chosen that we only want to use the numeric variables in the data frame by using the
is.numeric function, which will select only the numeric variables. The result is like this:

member_sum b3_sum b4_sum b5_sum b6_sum member_mean b3_mean b4_mean b5_mean
1 166 128 75 NA NA 3.458333 2.666667 1.5625 NA
b6_mean member_sd b3_sd b4_sd b5_sd b6_sd member_min b3_min b4_min
1 NA 1.687984 3.068948 0.501328 NA NA 1 0 1
b5_min b6_min member_max b3_max b4_max b5_max b6_max

1 NA NA 6 11 2 NA NA

Variables with NA's will have NA for all the descriptives. To avoid the NA's we can omit with the
argument na.rm=TRUE:

[») o,
mdgper‘son '/°>A)' - . n " " " " " n - " " "
summarize_if(is.numeric,c("sum", "mean","sd", " min", "max"),na.rm=TRUE)

Now we get figures for all the variables:

42

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

member_sum b3_sum b4_sum b5_sum b6_sum member_mean b3_mean b4_mean b5_mea

1 166 128 75 994 57 3.458333 2.666667 1.5625 21.1489
4

b6_mean member_sd b3_sd b4_sd b5_sd b6_sd member_min b3_min
1 1.583333 1.687984 3.068948 0.501328 14.07585 0.6917886 1 0

b4_min b5_min b6_min member_max b3_max b4_max b5_max b6_max

1 1 1 1 6 11 2 67 3

If we want to count the NA’'s we can do like this:

mdgperson %>% _ _
summarise_if(is.numeric,~sum(is.na(.)))

The js.na function returns TRUE when a value is NA and FALSE when it is not. The number of true
values will then be added up for each numeric variable (the dot within is.na symbolize all variables
within a data frame and is.numeric limit it to the numeric variables. The result is here:

member b3 b4 b5 b6
1 0O 0 0 112

We see that the names of the counts of NA's are the same as the original variable names. Now we
can combine the descriptives into one data frame. To do that we first put each of the descriptives in
separate data frames. Then we rename the names of the NA counts with the colnames and paste0
commands. Finally, we combine them together with the chind command:

desc<-mdgperson %>%
summarize_if(is.numeric,c("sum","mean","sd","min","max") ,na.rm=TRUE)
nnas<-mdgperson %>%
summarise_if(is.numeric,~sum(is.na(.)))
colnames(nnas) <- pasteO(colnames(nnas),'_na')
cbind(desc,nnas)

First, we create two data frames, desc and nnas. Then we change the column names for the nnas
data frame so that we add the text _na at the end of each column. We do that with the paste0
function which concatenate texts together (the 0 in paste0 tells us that there shall be no spaces
between the concatenated texts). When there is more than one element in the first argument
(colnames(nnas)), the second argument will be added to all from the first argument. Hence all the
column names will be changed. Finally, we combine the columns together with the cbind command:

member_sum b3_sum b4_sum b5_sum b6_sum member_mean b3_mean b4_mean b5_mean

1 166 128 75 994 57 3.458333 2.666667 1.5625 21.14894
b6_mean member_sd b3_sd b4_sd b5_sd b6_sd member_min b3_min
1 1.583333 1.687984 3.068948 0.501328 14.07585 0.6917886 1 0

b4_min b5_min b6_min member_max b3_max b4_max b5_max b6_max member_na b3_na
1 1 1 1 6 11 2 67 3 0 0
b4_na b5_na b6_na

1 0 1 12

43

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Python
We can use the describe method in Pandas to get a fast and brief descriptive overview of our
numeric columns. The syntax is as simple as this:

mdgperson.describe()
The result is shown here:

member b5

count 435.000000 47.000000
mean 3458333 21.148926
std 1687984 14.075848
min 1.000000 1.000000
25% 2.000000 11.500000
50% 3.500000 18.000000
75% 5.000000 25500000
max 6.000000 &7.000000

If we want all columns, we can do like this:
mdgperson.describe(include="all")

There will be some other statistics for the string columns in the output:

hh state wurbrur member b3 bd b5 b6

count 48 48 48 48000000 48 48 47.000000 36
unigque 7 4 2 NaN G 2 NaN 3
top 040024 2 1 MaM 2 2 MaM 1
freq 12 17 42 MaM 26 27 MaM 19

mean NaN NaN NaN 3.458333 NaN NaN 21.148036 NaN
std NaN NaN NaN 1.687984 MNaN NaN 14.075848 MNaN
min NaN NaN NaN 1.000000 MNaN NaN 1.000000 NaN
25% NaN NaN NaN 2.000000 MNaN NaN 11.500000 NaN
50% NaN NaN NaN 3.500000 MNaN NaN 18.000000 NaN
75% NaN NaN NaN 5.000000 MNaN NaN 25500000 NaN
max NaN NaN NaN 6.000000 MNaN NaN 67.000000 NaN

The top category shows the value with highest frequency and the freqg category contains the number
of rows the top value has.

44

Documents 2023/1

8.3. Descriptive statistics grouped

We can also group the descriptive statistics.

Sas

In Sas we add the Class statement to the Proc means procedure like this:

proc means data=mdgperson n mean min max sum std;

class state;
var member bb;

title "Summary statistics grouped";

run;

The program gives this output:

Summary statistics grouped

The MEANS Procedure

state N Obs Variable
2 17 member
b5
4 12 member
b5
S & | member
b5
5] 13 | member
b5
Spss

17
17

12
12

&
&

13
12

Mean

3.3529412
19.0588235

3.5000000
17.5000000

3.5000000
34.3333333

3.5384615
21.1666667

Minimum
1.0000000
3.0000000

1.0000000
7.0000000

1.0000000
13.0000000

1.0000000
1.0000000

Maximum

6.0000000
45.0000000

6.0000000
37.0000000

6.0000000
67.0000000

6.0000000
42.0000000

Sum

57.0000000
324.0000000

42.0000000
210.0000000

21.0000000
206.0000000

46.0000000
2540000000

Data processing in Sas, Spss, Stata, R and Python. A comparison

Std Dev

1.6934128
12.6267107

1.7837652
85203132

1.8708287
23.4150948

1.7134461
11.8615753

To group the descriptive statistics in Spss we switch to the Means procedure (Analyze > Compare

means > Means):

MEANS TABLES=member b5 BY state
/CELLS COUNT MEAN MIN MAX SUM STDDEV.

45

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

Case Processing Summary

Cases
Included Excluded Total
N Percent N Percent N Percent
member * state 48 100,0% 0 0,0% 48 100,0%
b5 * state 47 97,9% 1 21% 48 100,0%
Report
state member b5
2 N 17 17
Mean 3,35 19,06
Minimum 1 3
Maximum 6 45
Sum 57 324
Std. Deviation 1,693 12,627
4 N 12 12
Mean 3,50 17,50
Minimum 1 7
Maximum 6 I
Sum 42 210
Std. Deviation 1,784 9,520
5 N] 6
Mean 3,50 34,33
Minimum 1 13
Maximum 3] 67
Sum 21 206
Std. Deviation 1,871 23,415
6 N = 12
Mean 3,54 2117
Minimum 1 1
Maximum (3] 42
Sum 46 254
Std. Deviation 1,713 11,862
Total M 48 47
Mean 3,46 21,15
Minimum 1 1
Maximum 6 67
Sum 166 994
Std. Deviation 1,688 14,076

Stata

In Stata we stick to the tabstat command and add the By-group:

tabstat member b5, by (state) statistics(count mean min max sum sd)
columns(statistics)

46

Documents 2023/1

Here is the table:

Summary for variables: member bS
by categories of: state

Data processing in Sas, Spss, Stata, R and Python. A comparison

state N mean min max sum =d
2 17 3.352941 1 6 57 1.693413
17 19.85882 3 45 324 12.62671
4 12 3.5 1 & 42 1.783765
12 17.5 7 37 2186 9.528313
5 6 3.5 1 6 21 1.8B78829
6 34.33333 13 67 286 23.41589
B 13 3.538462 1 6 46 1.713446
12 21.16667 1 42 254 11.86158
Total 48 3.458333 1 & 166 1.687984
47 21.148%94 1 67 994 14.07585
111 R

We continue with the dplyr package when we want grouped statistics. Now we use summarize_at

with the vars argument to choose which variables we want to use:

mdgperson %>%

group_by(state) %>%

summarize_at(vars(member,b5),c("sum", "mean","sd","min", "max") ,na.rm=TRUE)

We group by state and calculate sum, mean, standard deviation, minimum and maximum values for

member and b6 and remove NA values. The result will be a data frame which looks like this:

A tibble: 4 x 11

state member_sum b5_sum member_mean b5_mean member_sd b5_sd member_min b5_min member_max b5_max

<chr> <dbl>
12 57
2 4 42
35 21
46 46
Python

We can also have our descriptive statistics grouped. Here is an example where we group by state:

<dbil>

324
210
206
254

<dbl>

wwww

viuviuiw
v

<dbT>

19.1
17.5
34.3
21.2

<dbl> <dbl>

Sy
NOooONOY
RO
N =

RPwoON
obhuviod

mdgperson.groupby(mdgperson['state']) .describe()

The result is now by state, and the statistics are transposed:

<dbi>

RREe

<dbl>

3
7
13
1

<dbl> <dbl>

[ex¥erYorNe))

member b5
count mean std min 25% 50% 75% max count mean std min 25% 50% 75% max
state
2 17.0 3.352941 1693413 1.0 200 30 500 60 17.0 19.058824 12626711 3.0 10.00 16.0 2200 450
4 12.0 3500000 1.783765 1.0 200 35 500 60 12.0 17500000 9520313 7.0 1050 155 2075 370
5 6.0 3.500000 1870829 1.0 225 35 475 B0 6.0 34333333 23415095 130 17.00 250 5250 67.0
6 13.0 3538462 1713446 1.0 200 40 500 60 120 21166667 11.861575 1.0 16.75 19.0 2575 420

47

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The sum of the values is not included in this overview. To calculate the sum, we can use the agg
function:

mdgperson.groupby(mdgperson['state']).agg(b5_Sum=("'b5"', 'sum'),
b5_N=('b5', 'count'),
b5_Size=('b5', 'size'),
b5_Mean=('b5', 'mean'),
b5_Min=(C'b5', 'min'),
b5_Max=("'b5', 'max')
)

Beware the difference between count and size. count omits NaN'’s in the calculation while size
includes them:

b5_Sum b5_N b5_Size bS_Mean bS_Min b5_Max

state
2 324.0 17 17 19.058824 3.0 450
4 210.0 12 12 17.500000 7.0 37.0
5 208.0 6 6 34333333 13.0 67.0
6

254.0 12 13 |21.16685T 1.0 42.0

If we want to calculate the number of missing values, there are no built-in aggregation function for
this. However, we can create our own functions within the aggregation. They are called lambda
functions. To calculate the number of missing values we subtract the count from the size. Beware
that there should be no brackets after size, however after count we need brackets:

mdgperson.groupby(mdgperson['state']).agg(b5_Sum=("'b5"', 'sum'),
b5_N=("'b5', 'count'),
b5_Nmiss=("'b5', Tambda x: (x).size-
(x).count()),
b5_Mean=('b5', 'mean'),
b5_Min=C'b5"', 'min'),
b5_Max=("'b5', 'max')
)

The number of missing values is now listed as a separate column:

b5_Sum b5_N b5_Nmiss b5_Mean b5_Min b5_Max

state
2 324.0 17 0.0 19.058824 3.0 45.0
4 2100 12 0.0 17.500000 7.0 37.0
5 206.0 6 0.0 34333333 13.0 67.0
] 254.0 12 1.0 21.166667 1.0 42.0

48

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

9. Conditions

Conditions are widely used in programming. We often want to do actions based on conditions.
These actions are for instance to assign values to new variables or to select which data to read or
write. A condition will be based on expressions. An expression will usually consist of one or more
operators, as described on page 18, and one or more variables and sometimes functions. We will
now look at how we use conditions when we read and write data.

9.1. Sas

An If statement is only allowed in the Data step and is used for a condition after an observation is
read. If we want to select observations upon reading, we use a Where statement. The Where
statement may be used in the Data step and most of the procedures. This means that we don't have
to make a subset of the data before we make a frequency table. We may simply use a Where
statement with the selection condition in the procedure:

proc freq data=mdgperson;

where b5 >= 11;

table b4 /missing;

title 'Persons aged 11 years and above';
run;

If we want to make a new dataset as a subset of the data, we can use a Data step like this:

data heads;
set mdgperson;
where b3 = 0;
run;

The Where statement selects the observations when the data is read. This is more efficient
compared to using an If statement instead because the observation which is finally selected is kept
during all Data step statements. This program gives the same result as the one above, but it will use
more time:

data heads;
set mdgperson;
if b3 = 0 then
output;

run;

If statements for selection should only be used when we use variables made in the actual Data step
in our conditions.

9.2. Spss

The command for selecting data in Spss is Select if. It will select which observations to keep. We can
make a temporary subset of the data if we use it together with the Temporary command. The whole
dataset is available again after the Frequency command. For a frequency table based on a subset of
data we can do like this:

TEMPORARY .

SELECT IF (b5 >= 11).
FREQUENCIES b4.

If we want a permanent subset of our data, we drop the Temporary command and add a Save
command instead:

49

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

SELECT IF (b3 = 0).
SAVE OUTFILE='h:\mdg\data\heads.sav'.

9.3. Stata

For the frequency table we can make a subset by adding an if qualifier:

tabl b4 if b5 >= 11

However, this qualifier includes the observations with missing values. To avoid this, we can add one
more condition like this:

tabl b4 if b5 >= 11 & b5 <115
To create a permanent subset of our data, we can use the keep and save commands:
keep if b3 ==

save "h:\mdg\data\heads.dta", replace

94. R

We can use the subset command in R when we create our tables. Here we tell that we will make a
frequency table for the variable state in the mdgperson data frame. We also use the subset
command to select rows where the variable b5 is greater than 11. NA's are excluded:

table(state=subset(mdgperson$state,mdgperson$b5 > 11),exclude=NA)
To create a new data frame with a subset of the data we can also use subset:
heads <- subset(mdgperson,b3 == 0)

For more use of conditions, see the chapter about missing values, page 139.

9.5. Python

We can use the /loc method to select the rows we want to use in our table. It is connected to the
column we will distribute the table by:

pd.crosstab(mdgperson.loc[mdgperson['b5'] >= 11, 'state'],
columns='Frequency', margins=True)

Now only those where b5 >= 11 are included in the table:

col_0 Frequency All

state
2 1 N
4 g B9
5 6 6
6 10 10
All 36 36

When we have a crosstab with two columns, we only need the selection once:

50

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

pd.crosstab(mdgperson.loc[mdgperson['b5'] >= 11, 'state'],
mdgperson['urbrur'], margins=True)

We can create a new data frame where we select rows according to a condition:

heads = mdgperson.loc[mdgperson['b3'] == '0']
heads

When we have more than one condition, we should use parenthesises, otherwise we may get an
error message like this:

TypeError: Cannot perform 'rand ' with a dtyped [float64] array and scalar
of type [bool]

This is due to the precedence of & and >, where & has the higher. Here is an example where we
want list heads less than 30 years old:

mdgperson.Toc[(mdgperson['b3'] == '0') & (mdgperson['b5'] < 30)]
When we want to select based on a list of values for a column, we can use the isin function:

mdgperson.loc[mdgperson['hh'].isin(['040024"', '020074'])]

Instead of using the loc method we can use the query method. The /oc selections above will be
queries like this:

heads = mdgperson.query('b3 == "0"")
mdgperson.query('b3 == "0" & b5 < 30")
mdgperson.query('hh in ["040024", "020074"]1"')

For the last one we use the in operator instead of the isin function that was used above.

51

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

10. Dealing with duplicates

There are usually some variables (or just one) that will identify each observation in our datasets.
These variables should have unique values, if not the dataset contains duplicates. Duplicates cause
problems when we match datasets and in other data processing and should be avoided. There are
several reasons for duplicates in a dataset:

e Double data entry

e The same identification used for two different units
e Mistyping of the identification

e Programming errors

To get rid of duplicates we can use some programming syntax. First, we have to find which
duplicates we have. Then we can delete the true duplicates (where all corresponding variables have
the same value for more than one observation). After we have deleted true duplicates, we find out
how to deal with the remaining duplicates and write syntax for doing these corrections.

10.1.Sas

We need a few lines of code to list the duplicates in Sas:

proc sql number;
title 'Duplicates';
select *, count(l) as no_of rows
from mdgperson
group by hh, member
having no of rows > 1
order by hh, member

’

quit;

This list will be produced:

Duplicates
Row hh state urbrur member b3 b4 b5 b6 no_of_rows
1 040024 4 1 1 0 220 3 2
2 040024 4 1 1. 0 137 2 2
3 040024 4 1 2 1 233 2 2
4 040024 4 1 211 223 3 2
5 040024 4 1 3 2 217 1 2
6 040024 4 1 3 2 7 2
7 040024 4 1 410 2 9 . 2
8 040024 4 1 4 2 114 1 2
9 040024 4 1 5 2 1 9 . 2
10 040024 4 1 510 218 1 2
11040024 4 1 610 112 1 2
12040024 4 1 6 2 211 . 2
13 060041 B 1 4 2 217 1 2
14060041 B 1 4 2 217 1 2

By looking at this list we find that for household 040024 there are duplicates for each person.
However, the data for each person differ between the duplicates. It looks like one of the households
has got a wrong household number. This should be checked and corrected. For household number

52

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

060041 we see that all variables have the same data for both observations. This looks like doubly
entered data, called a true duplicate. This should also be checked and one of them is likely to be
deleted. To delete true duplicates, we can use the noduprecs option in Proc sort. It will delete
duplicate records (the output dataset without duplicates is the one called mdgperson_noduprec):

proc sort data=mdgperson out=mdgperson noduprec noduprecs;

by hh member;
run;

The log will tell us how many records have been deleted:

NOTE: 1 duplicate observations were deleted.

If we, after some research, find that one of the household identifications is a mistype of 040034 we
can change the identification for those and sort the data again:

data mdgperson nodup;
set mdgperson noduprec;
by hh member;

if hh = '040024' and first.member then
do;
hh = '040034"';
end;
run;

proc sort data=mdgperson nodup ;
by hh member;
run;

Finally, we should re-run the duplicate check to be sure there are no duplicates.

10.2.Spss

There is a menu for duplicate checking in Spss, however it creates rather complex syntax. Instead,
we can write our own, easier syntax:

GET FILE='H:\MDG\Data\mdgperson.sav'.
SORT CASES BY hh member.
MATCH FILES FILE=*
/FIRST=first mem
/LAST=last mem
/BY hh member

EXECUTE.

TEMPORARY.

SELECT IF NOT (first mem and last mem).
LIST hh state TO last mem.

This syntax will give us the same list as the Sas program did. When we want to delete true
duplicates, we first sort the dataset by all the variables (there is a limit 64 variables, if we have more,
we can sort by the 64 variables most likely to be different). Then we check for duplicates with the
Match files command and select those who are the first within the group.

SORT CASES BY hh TO b6.

MATCH FILES FILE=*
/FIRST=first rec
/LAST=last rec
/BY hh TO b6

EXECUTE.

53

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

TEMPORARY.

SELECT IF NOT(first rec and last rec).
LIST hh TO last rec.

SELECT IF (first_rec = 1).

EXECUTE.

The Spss log does not tell us if any observations were dropped.

For the duplicates with the wrong household number, we change the number for the first
occurrence of each person with the number 040024 to 040034

IF (hh = '040024' and first mem = 1) hh = '040034"'.
EXECUTE.
SORT CASES BY hh member.

Finally, we delete the first- and last-variables.

DELETE VARIABLES first mem last mem first rec last rec.
EXECUTE.

10.3.Stata

We sort the data by the identification variables. Then we generate a duplicate checking variable
called dup. It will contain the number of records in each group. If this variable has a value greater
than 1, the observations are duplicates on the identification.

use "h:\mdg\data\mdgperson.dta", clear
sort hh member, stable

by hh member: generate dup = _N

list if dup > 1

Now we want to delete the true duplicates. First, we drop the variable dup. Then we sort on all
variables and create a duplicate identifier called dup_rec. If it has a value above 1 it is the second or
more duplicate and shall be deleted:

drop dup

sort _all, stable

by _all: generate dup_rec = _N
drop if dup_rec>1

drop dup_rec

Stata tells us how many observations were dropped:
(1 observation deleted)

We now will want to change the value of household number from 040024 to 040034 as we did with
Sas and Spss above. First, we must create the dup variable, with the syntax below it will contain a
counter within each group. Then we do our corrections:

sort hh member, stable

by hh member: generate dup = cond(_N==1,0, n)
replace hh = "040034" if hh == "040024" & dup ==
sort hh member

drop dup

Stata tells us how many changes were made:

(6 real changes made)

54

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

10.4.R

To delete rows that are exactly equal we can use the duplicated function. However when we want to
remove duplicates we use the negation ! in front of duplicated:

mdgperson_noduprec <- mdgperson[!duplicated(mdgperson),]

The syntax is somehow different from previous syntax. Within the brackets we define what to
extract from the two dimensions of the data frame. Before the comma we select our rows and with
lduplicated all rows that are not duplicates will be selected. We leave it empty after the comma and
this means all columns shall be selected. The row names (or numbers) of the selected rows will not
be updated. We can update them with this command:

rownames (mdgperson_noduprec)<-1:nrow(mdgperson_noduprec)

To list duplicates by identification variables, we can use the group_by in the dplyr package where we
count the number of rows for the id variables and filter those who have more than one:

mdgperson_noduprec %>%
group_by (hh,member) %>%
add_count() %>%
filter(n>1) %>%
arrange(hh,member)

The code above gives us this list of duplicates:
hh state urbrur member b3 b4 b5 b6 n

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>

1 040024 4 1 1 0 2 20 3 2
2 040024 4 1 1 0 1 37 2 2
3 040024 4 1 2 1 2 33 2 2
4 040024 4 1 2 11 2 23 3 2
5 040024 4 1 3 11 2 7 NA 2
6 040024 4 1 3 2 2 17 1 2
7 040024 4 1 4 2 1 14 1 2
8 040024 4 1 4 10 2 9 NA 2
9 040024 4 1 5 10 2 18 1 2
10 040024 4 1 5 2 1 9 NA 2
11 040024 4 1 6 2 2 11 NA 2
12 040024 4 1 6 10 1 12 1 2

To change the values for the first of a duplicated household we can use dplyr. We start with grouping
by hh and member and then we create a variable called member_first. This variable will have the
value 1 when it is first within the group and 0 otherwise. Then we group by member to ungroup hh
because we can't change a value that is defined in a group. We change to another hh number when
it is the first within hh 040024. Finally, we sort the data with the arrange command and remove the
variable member_first with the subset command. All these commands are piped together with %>%.

mdgperson_nodup <- mdgperson_noduprec %>%
group_by (hh,member) %>%

mutate(member_first = as.integer(ifelse((row_number() == 1), 1, 0))) %%
group_by(member) %>%
mutate(Chh=1ifelse(hh=="040024" & member_first == 1,"040034",hh)) %>%

arrange(Chh,member) %>%
subset(select=-member_first)

55

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

10.5.Python

Python can check if a record is a duplicate and can also choose which duplicate to delete. For a
duplicate record we can delete duplicates like this:

mdgperson_noduprec = mdgperson.drop_duplicates()

As the rows for these duplicates are exactly equal, it does not matter if we keep the first or last of
these rows. The intention is to get rid of all but one of the rows that are equal. That leaves us with a
data frame without true duplicates.

Beware that the index (row numbers) is not updated. If we want to update the index, we can add the
ignore_index option with the True parameter:

mdgperson_noduprec = mdgperson.drop_duplicates(ignore_index=True)
If we want to find the duplicates before we delete them, we can use the duplicated method:
mdgperson.loc[mdgperson.duplicated() == True]

To find the duplicates for identification columns we can also use the duplicated method, we just have
to add the identification columns:

mdgperson_noduprec[mdgperson_noduprec.duplicated(['hh', 'member'],
keep="first')].sort_values(['hh', 'member'])

This gives us a list of the last occurrences of duplicates. The keep=first option tells us that the first
occurrence is to be kept, hence the last will be the duplicate:

hh state urbrur member b3 b4 b5 b&

45 040024 4 1 1 0 1 370 2

5 040024 4 1 2 11 2 230 3
46 040024 4 1 3 2 2170 1
39 040024 4 1 4 10 2 9.0 NaN
22 040024 4 1 5 2 1 90 NaN
44 040024 4 1 6 10 1 120 1

If we want a list of all duplicates, we can use keep=False which selects all duplicates:

mdgperson_noduprec[mdgperson_noduprec.duplicated(['hh', 'member'],
keep=False)].sort_values(['hh', 'member'])

56

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

This will list all the rows with common combinations of the columns hh and member:

hh state urbrur member b3 bd b5 b6

3 040024 4 1 1 0 2 200 3]
45 040024 4 1 1 0 1 370 2

4 040024 4 1 2 1 2 330 2

§ 040024 4 1 2 1 2 230 3
33 040024 4 1 3 11 2 7.0 NaN
46 040024 4 1 3 2 2170 1
15 040024 4 1 4 2 1 140 1
39 040024 4 1 4 10 2 90 NaN
21 040024 4 1 5 10 2 180 1
22 040024 4 1 5 2 1 90 NaN
40 040024 4 1 6 2 2 1.0 NaN
44 040024 4 1 6 10 1 120 1

We found out that the last of these duplicates should have the hh number 040034 instead of
040024. To change the hh for these duplicates we can first create a member count (memcount) for
each combination of hh and member. The count will be 0 for the first, 1 for the second and so on.
Then we can recode those with memcount = 1 using the loc method.

mdgperson_noduprec['memcount'] = mdgperson_noduprec.groupby(['hh',
"'member']) .cumcount()

mdgperson_noduprec.loc[(mdgperson_noduprec.memcount == 1) &
(mdgperson_noduprec.hh == '040024'), 'hh'] = '040034'
mdgperson_nodup = mdgperson_noduprec

mdgperson_nodup

Here we see in the memcount column that the first row within the group is 0 and the nextis 1. In
this way we can separate between the duplicates:

hh state urbrur member b3 b4 b5 b6 memcount

0 020074 2 1 5 2 1 100 NaN 0
1 020074 2 1 1T 0 1 390 3 0
2 060036 6 1 4 2 1 200 1 0
3 040024 4 1 1 0 2 200 3 0
4 040024 4 1 2 1 2 330 2

5 040024 4 1 2 11 2 230 3

6 050069 5 2 5 4 2 160 1 0

57

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

11. Labels for variables and data values

The variable names often do not describe the content of a variable very well. To add some more
information about the content we should use labels. Adding variable labels will make it easier to use
the dataset because it gives us a better documentation than just the variable names. Value labels
(called formats in Sas) are also very helpful. It is much easier for humans to relate to a text instead
of a code. Value labels are used to replace codes with texts.

11.1.Sas

We use the Label statement to add variable labels. This is normally done during a Data step. We
should add variable labels to all variables we want to keep. When we import an external file to Sas
we add variable labels. Each new variable we add later to datasets should also be labelled. Here is
the import program used earlier, now with labels added:

DATA mdgperson ;
INFILE 'H:\MDG\Data\mdgperson.txt' TRUNCOVER LRECL=15;

INPUT
@01 hh SCHARG.
@07 state 1
@08 urbrur 1
@09 member 1.
@10 b3 2.
@12 b4 1
@13 b5 2
@15 bo 1

LABEL
hh = 'Household identification'’
state = 'State'
urbrur = 'Urban/Rural location of household'
member = 'Member number within household’
b3 = 'Relationship to head of household'
b4 = 'Sex'
b5 = 'Age'
b6 = 'Civil status'

RUN;

Adding the value labels (formats) is done in a two-step process. First, we create the formats and
then we connect the formats to their variables. The first step, creating the formats, looks like this:

PROC FORMAT;

VALUE STATE (notsorted)
1 = '0l Central'’

= '02 Capital'

'03 North'

'04 East'

= '05 South'

'06 West'

OTHER = 'N/A'

VALUE URBRUR (notsorted)

Ul WN
I

1 = 'Urban'
2 = 'Rural'

OTHER = 'N/A'

’

VALUE HEAD REL (notsorted)
0 = 'Head'

58

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

WoJdoUlLbdWNE
Il

[
=
|

VALUE SEX

1 =
2 =
OTHER =

'Spouse'’

'Daughter/son'

'Spouse of son/daughter'
'Grandchild’
'Sister/brother'
'Sister/brother in-laws'
'Parent’

'Parent-in-law'
'Niece/nephew’

'Other relative'

'Non relative'

'N/A'

(notsorted)
'Male'
'Female'
'N/A'

VALUE CIVIL STATUS (notsorted)

1 =

o WN
Il

.U =
OTHER =

RUN;

'Never married’
'Married - monogamy
'Married - polygamy
'Widowed'
'Separated’
'Divorced’

'N/A'

'Missing'

There is a menu in Enterprise guide for creating formats, however it is much easier to type them in
directly as syntax in a program. It is also possible to create formats from Sas datasets.

The connection can be done in a Data step if we want a permanent connection or in listing
procedures like Proc freq, Proc means, Proc print and so on if we want a temporary connection. Of
course, the formats must be available before we connect them to variables. Here is the permanent
connection added to the import program:

DATA mdgperson ;
INFILE 'H:\MDG\Data\mdgperson.txt' TRUNCOVER LRECL=15;

INPUT
@01 hh SCHARG.
@07 state 1.
@08 urbrur 1.
@09 member 1.
@10 b3 2.
@12 b4 1.
@13 b5 2.
@15 b6 1.
LABEL
hh = 'Household identification'’
state = 'State'
urbrur = 'Urban/Rural location of household'
member = 'Member number within household'
b3 = 'Relationship to head of household'
b4 = 'Sex'
b5 'Age’
b6 = 'Civil status'
FORMAT

59

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

state STATE.
urbrur URBRUR.

b3 HEAD REL.

b4 SEX.

b6 CIVIL STATUS. ;
RUN;

When we connect the formats to variables we must add a dot at the end of their names, as seen
above. Format names for character variables must start with a $ sign. Numeric formats can only be
used for numeric variables and vice versa.

11.2.Spss

It is possible to add variable and value labels from the variable view window. This is not
recommended because we can't paste the syntax for these operations. If we then must re-create the
dataset (which is often the case) all our labels will be gone, and we have to type in the labels once
more. It is far better to use syntax to add the labels. The labels will be permanently added to the
active dataset when the commands are executed. Here is the syntax for variable labels:

VAR LABELS
hh 'Household identification'’
state 'State'
urbrur 'Urban/Rural location of household'
member 'Member number within household’

b3 'Relationship to head of household'
b4 'Sex!

b5 'Age'’

b6 'Civil status'

For value labels it is done in one step. When we create the labels, we also tell Spss which variables
they shall connect to:

VALUE LABELS
state

'01 Central'
'02 Capital'
'03 North'
'04 East'
'05 South'
'06 West'

o U W N

=

'Urban'
'Rural'’

N

'Head'
'Spouse'’
'Daughter/son'
'Spouse of son/daughter’
'Grandchild’
'Sister/brother’
'Sister/brother in-laws'
'Parent’

'Parent-in-law'
'Niece/nephew’

'Other relative'

'Non relative'

P OWoo Jo Ul whNkE—E O

= O

60

Documents 2023/1
b4
1
2
/
b6
1
2
3
4
5
6
9

Data processing in Sas, Spss, Stata, R and Python. A comparison

'Male'
'Female'

'Never married'
'Married - monogamy'
'Married - polygamy'
'Widowed'
'Separated’
'Divorced’

'N/A'

If the same value labels shall be used for more variables, we don't repeat the whole value labels
command. We just add more variable names to the same value labels.

11.3.Stata

The variable labels are permanently connected to the opened dataset, similar to Spss:

label variable hh "Household identification”

label variable state "State"

label variable urbrur "Urban/Rural location of household”
label variable member "Member number within household”
label variable b3 "Relationship to head of household”
label variable b4 "Sex"

label variable b5 "Age"

label variable b6 "Civil status”

Beware that only numeric variables may be given value labels. They are added in two steps, like it is
done in Sas. First, we define the value labels

define urbrur ///

/17

"Spouse of son/daughter" ///

"Sister/brother in-laws" ///

label define state ///
1 "01 Central” ///

2 "@2 Capital" ///

3 "@3 North" ///

4 "4 East" ///

5 "@5 South" ///

6 "06 West"

label

1 "Urban" ///

2 "Rural”

label define head_rel ///
@ "Head" ///

1 "Spouse" ///

2 "Daughter/son"

3

4 "Grandchild" ///

5 "Sister/brother” ///
6

7 "Parent" ///

8 "Parent-in-law" ///
9 "Niece/nephew"

/17

10 "Other relative" ///
11 "Non relative"
label define sex ///

1
2

"Male" ///
"Female"

61

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

label define civil_status ///
1 "Never married" ///

2 "Married - monogamy" ///

3 "Married - polygamy" ///

4 "Widowed" ///

5 "Separated" ///

6 "Divorced" ///

.u "N/A"

Next, we add the value labels permanently to their variables:

label values state state

label values urbrur urbrur

label values b3 head_rel
label values b4 sex

label values b6 civil_status
11.4.R

We add variable labels to a data frame by first creating a vector with the variable names and labels.
Then we add them to the data frame with the upData command in the Hmisc package. As the Hmisc
package is not attached as default we attach it first with the library command:

mdgperson.var.labels <- c(hh '"Household identification',

state = 'State',

urbrur = 'Urban/Rural location of household',
member = 'Member number within household',

b3 = 'Relationship to head of household',
b4 = 'Sex',

b5 = 'Age',

?6 = '"Civil status'

Tibrary(Hmisc)
mdgperson_nodup <- upbData(mdgperson_nodup, labels = mdgperson.var.labels)

In R we don't use value labels (formats) in the same way as in the other packages described in this
document. Instead, R has its own variable type called factor. When we define a variable as a factor it
converts the values to indexes which are called value levels. These indexes may be given texts, called
value labels.

We can see this with a simple example. First, we create a vector with values for sex:

SeX <_ C("m"’"k","k","m"’"k")
str(sex)

The structure looks like this:

Chr- [1:5] llmll llkll llkll llmll llkn

We can create a factor from the vector:

sexf <- factor(sex)
str(sexf)

The structure now looks like this:

Factor w/ 2 levels "k","m": 2 112 1

The factor has two levels (unique values), k and m. They are represented with index values, 1 for
females (k) and 2 for males (m).

62

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

To give texts to the values of sex we can convert to factor and at the same time define the levels
with its labels:

sexf1l <- factor(sex,levels=c("m","k"),labels=c("Male","Female"))
str(sexf1)

Males are given the index 1 and females 2 because we defined male before female:

Factor w/ 2 levels "Male","Female": 1 2 2 1 2

This is opposite of the first example where females got 1 and males 2. The index always starts with 1
and for each unique value it is added with 1. For values that goes from 1 and increase by one for
each value the index will have the same value as the original values. Otherwise, the index will be
different from the original value.

When a variable is defined as a factor and we want to subset on values for the variable, we should
use the variable labels, not the original values. We can use the index, but then we must know which
index value each unique value has. Some examples with their results, we see that the indexes are
different between the sexf and the sexfl variables:

> subset(sex,sex =="k")

[1] "k"™ "k" "k"

> subset(sexf,sexf =="k'")

[1] k k k

Levels: k m

> subset(sexf,as.numeric(sexf) =="1")
[1] k k k

Levels: k m

> subset(sexfl,sexf]l =="Female")

[1] Female Female Female

Levels: Male Female

> subset(sexfl,as.numeric(sexfl) =="2")
[1] Female Female Female

Levels: Male Female

Now we can change our categorical variables to factors. We start with defining the values (levels)
and labels for each variable and put them into separate vectors:

state.codes <- ¢(1,2,3,4,5,6)

state.tsxts <- ¢('01 central','02 capital','03 North','04 East','05 South','0
6 west'

urbrur.codes <- c(1,2)

urbrur.texts <- c('Urban', 'Rural")

head_rel.codes <- ¢(0,1,2,3,4,5,6,7,8,9,10,11)

head_rel.texts <- c("Head",'"Spouse","Daughter/son","Spouse of son/daughter","
Grandchild","sister/brother","Sister/brother in-laws","Parent","Parent-in-Taw
" "Niece/nephew","0Other relative","Non relative")

sex.codes <- c(1,2)

sex.texts <- c('Male', 'Female'")

63

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

civil_status.codes <- c(1,2,3,4,5,6)) _
civil_status.texts <- c('Never married', 'Married - monogamy', 'Married - polyg
amy', 'widowed', 'Separated', 'Divorced")

We can now use these vectors to define the values and labels for each factor variable we create:

mdgperson_nodup$state <- factor(mdgperson_nodup$state,levels = state.codes,la
bels=state.texts)

mdgperson_nodup$urbrur <- factor(mdgperson_nodup$urbrur,levels = urbrur.codes
, labels=urbrur.texts)

mdgperson_nodup$b3 <- factor(mdgperson_nodup$b3,levels
s=head_rel.texts)

mdgper;on_nodup$b4 <- factor(mdgperson_nodup$b4,levels
.texts

mdgperson_nodup$b6 <- factor(mdgperson_nodup$b6,levels
abels=civil_status.texts)

head_rel.codes, label

sex.codes, labels=sex

civil_status.codes,1

To see the different texts for a variable we can use the /levels command:
Tevels(mdgperson_nodup$b6)

The levels are as follows:

[1] "Never married" "Married - monogamy" "Married - polygamy"
[4] "widowed" "Separated" "Divorced"
11.5.Python

We can add variable labels as attributes to a data frame. However, they are not shown in any
outputs. What we can do, though, is to list these attributes. Here is an example:

varlabels = {'hh': "Household number',
'state': 'State',
'urbrur': 'Urban/rural',
"'member': 'Member number',
'b3': 'Relationshipp to head',
'b4': 'sex',
'b5': 'Age',
'b6': '"Civil status'

b

mdgperson_nodup.attrs = varlabels
mdgperson_nodup.attrs

This will give us a listing like this:

{"hh': 'Household number’,
‘state': 'state’,
‘urbrur': ‘Urban/rural’,
"member’: 'Member number',
"b3': 'Relationshipp to head’,
"ba': 'sex’,
"b5': 'Age',
'be': 'Civil status'}

We can also list just one variable label:

mdgperson_nodup.attrs['b5"']

64

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When it comes to value labels for variables, we can put the codes and texts in a nested dictionary
and then add them to our data frame with a replace command. Here is an example on how a nested
dictionary with value labels for several variables may look like:

Tabels = {'state':

{'1': '01 central"',
'2': '02 capital',
'3': '03 North',
'4': '04 East',
'5': '05 South',
'6': '06 west',
np.nan: 'missing'},

'urbrur':
{'1': "Urban',
'2': '"Rural'},
'b3':
{'0': "Head',
'1': 'Spouse',
'2': 'Daughter/son',

'3': 'Spouse of son/daughter’,
'4": 'Grandchild',

'5': 'Sister/brother',
'6': 'Sister/brother in-Taws',
'7': "Parent',
'8': '"Parent-in-law',
'9': 'Niece/nephew’,
'10': 'other relative',
'11': "Non relative'},
'b4':
{'1': '"male',
'2': '"Female'},
'b6':
{'1': "Never married',
'2': 'Married - monogamy',

'3': 'Married - polygamy',
'4": 'widowed',

'5': 'Separated',
'6': 'Divorced',
np.nan: 'missing'}

}

The variable names (state, urbrur etc.) are used as dictionary keys. For each key we have sets
consisting of codes and texts. That is what makes the directories nested. The codes must be of the
same types as they are in the data frame. If it is to be connected to an object variable, the codes
should be in quotes, otherwise no quotes are needed. Beware that you might have to add blanks if
codes are of different lengths (see the b3 variable it has codes with both 1 and 2 digits. For those
with one digit, a space has been added at the beginning).

Now that we have a dictionary with our code lists, we want to add them to our data frame. It can be
done separately for each variable, for instance with the map function:

mdgperson_nodup['state'] = mdgperson_nodup['state'].map(labels['state'])

When we have many code lists to add, it is better to add them all in one command. We do this with
the replace function:

mdgperson_nodup = mdgperson_nodup.replace(labels)

65

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

If the labels are in different nested directories, we can add them together with a concatenate
directories syntax: {**dict1, **dict2}. Here is an example:

states = {'state':

{'1': '01 central"',
'2': '02 capital',
'3': '03 North',
'4': '04 East',
'5': '05 South',
'6': '06 west',
np.nan: 'missing'}

ks
urbanity = {'urbrur':
{'1': '"Urban',
'2': 'Rural'}
b
Tabs = {**states, **urbanity}

Tabs

66

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

12. Storing datasets

When we have processed our data, we usually want to store them permanently. If we have not
stored our datasets, both Spss and Stata ask us if we want to store when we exit. R will also ask if we
want to store unsaved items. Nevertheless, we should store our data before we exit. In Sas we must
make sure to store our data permanently. The default is that all datasets are stored in a temporary
folder which is deleted when we exit Sas. To store datasets permanently we first make a Sas alias for
the folder in which we will store. This alias is called a libref and is defined with a Libname statement.
We don't have a specific command for storing datasets permanently, we decide if the data is to be
stored temporary or permanently when we name our output dataset in a Data step or in a Proc step.

In Spss we use the Save command and use the whole physical file name with the .sav extension.
There is an option to define the name of the working directory with the Cd command. If we use this,
we can later omit the path in the Save command, as it has already been defined. For Stata we use a
Save command as well. We can also use a Cd command similar to Spss to define the working
directory. For R we can use the save or saveRDS commands, they store the data in two different
formats where RDS is the latest. In Python we can save in various data formats. However, the
parquet format seems to be the preferred one.

12.1.Sas

We must define a folder name in Sas for the permanent storage of our data. This is done with the
libname statement, and the folder is given a local name in Sas, an alias. The folder h:\mdg\data is
called mdg in Sas. This is called a libref. After the libname statement is executed, Sas will now which
folder to search in every time we reference to the libref mdg:

libname mdg 'H:\MDG\Data';

proc sort data=mdgperson nodup out=mdg.mdgperson nodup;
by hh member;

run;

The input dataset in this sort, mdgperson_nodup is temporary while the output dataset mdg.
mdgperson_nodup will be permanent. When we omit the libref, Sas uses the dataset with the libref for
the temporary folder work. If we try to read or write datasets from a permanent directory and it is
not defined in the Sas session, we will get an error message like this:

ERROR: Libname MDG is not assigned.

This means that the Libname statement must be executed every time a Sas session is started for the
folder to be available for our use in Sas.

Formats may also be stored permanently. We must add a folder for the format file with another
Libname statement and then add the option Libname to the Proc format statement. The formats will
be stored in a file called formats.sas7bcat. The libref for the formats must be called library. It may
look like this:

libname library 'H:\MDG\Cat';
PROC FORMAT LIB=library;
VALUE SEX (notsorted)

1 = 'Male'

2 = 'Female'

OTHER = 'N/A'
RUN;

67

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

12.2.Spss

To store the active dataset, we simply use the Save command:

SAVE /OUTFILE 'h:\mdg\data\mdgperson nodup.sav'

As mentioned above we can extract the path into a Cd command and then use only the filename in
the Save command:

CD 'h:\mdg\data'.
SAVE /OUTFILE 'mdgperson nodup.sav'

12.3.Stata

Stata is similar to Spss, we use a save command. Replace is not the default here as it is in Spss, so we
add the replace option:

save "h:\mdg\data\mdgperson_nodup.dta", replace
If we use the cd command, it will be like this:

cd "h:\mdg\data\"
save "mdgperson_nodup.dta", replace

Using these relative paths makes it easier to move or copy our Spss and Stata systems. If we want to
move a system from a path called h:\mdg\data to c:\mdg\data we will need to change the path only
in the cd command. If we don't use relative paths, we will have to change all places where a path is
mentioned. However, it does not help much to add the cd command to every syntax file. We should
extract it to a file that could be invoked at start-up. The next chapter describes how we do this.

12.4.R

We can use either the save or the saveRDS commands to save data files in R format. With the save
command the data file will be saved as a Rdata file, hence we should add the extension .Rdata:

save (mdgperson_nodup,file="h:/MDG/Data/mdgperson_nodup.Rdata")
When we want to save the file as an RDS file, we use the .rds extension:
saveRDS (mdgperson_nodup,file="h:/MDG/Data/mdgperson_nodup.rds")

We can set the working directory and then use relative paths instead of the full path name. To check
what the current working directory is we use the the getwd command:

getwd()

To change the working directory, we use the setwd command:

setwd("h:/MDG")

Now we can save the file in the Data folder in H:/MDG without typing the full path:

save (mdgperson_nodup, file="Data/mdgperson_nodup.Rdata")
saveRDS (mdgperson_nodup, file="Data/mdgperson_nodup.rds")

68

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

12.5.Python

We can store data frames as python pickles, which have the extension .pkl. It is an easy operation:
mdgperson_nodup.to_pickle(datapath + 'mdgperson_nodup.pkl")

To open a pickle, we can do this:

mdg_from_pickle = pd.read_pickle(datapath + 'mdgperson_nodup.pkl')

The pickle format is not safe as it may include malicious code which can be executed while reading.

Another possibility is to save our file in json format:
mdgperson_nodup.to_json(datapath + 'mdgperson_nodup.json')

This may be opened again like this:

mdg_from_json = pd.read_json(datapath + 'mdgperson_nodup.json')

As parquet is the recommended data storage for Python, we should use it. However, it is not
included in the standard version of Python. Hence, we must install and import it. The installation can
be done with this code (when we are connected to internet):

!pip install pyarrow

This is a one-time operation. The ! at the beginning tells Python to run a system command, which in
this case is pip. pip is used to install additional modules in Python. Before we can save as a parquet
file, we must import the pyarrow module, like this:

import pyarrow
Now we can save our data frame as a parquet file:

mdgperson_nodup.to_parquet(datapath + 'mdgperson_nodup.parquet')

Now we can open the parquet file again:

mdg_from_parquet = pd.read_parquet(datapath + 'mdgperson_nodup.parquet')

69

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

13. Automatic invocation at start-up

We usually want to execute some commands every time we start a session. When we are ready to
work, all these commands should have been executed. This is possible in Sas and Stata. In Spss we
can open a syntax file on invocation, but there is no easy way to execute it automatically. The
commands we want to execute on start-up are typically definition of working directories and they
will differ from one task to another (i.e., working separately on two different surveys). Therefore, we
should have separate icons for each survey.

13.1.Sas

In Base Sas we put our start-up statements in a file called autoexec.sas. When this file is located in
the start-up directory, the statements will be executed upon start. As there will be separate
autoexec.sas files for each survey, they should have separate Sas icons. When a Sas icon is on our
desktop, we will change the start-up directory in its properties:

Egenskaper for SAS 9.2

Generelt | Snarvei | Kompatibilitet | Sikkerhet

Ig SA592

Maltype: Program
Plassering: 52
Mal: C:M\Programfiler. 5454545 Foundation 9. 24sas &x
Start i
Hurtigtast: Ingen
Ker: MNomalt vindu v
Kommentar:
[Ga til mal...] [Endre ikan...] [Avansert...

[ok || aby |

Here we have changed the start directory to h:\mdg\syntax. If we put an autoexec.sas file in this
folder the statements in that file will be executed upon start. The autoexec.sas may look like this:

libname mdg 'H:\MDG\Data';
libname library 'H:\MDG\Cat';

If we will use more permanent folders for our data, we simply add more Libname statements to the
autoexec.sas file. If we have these Libname statements in other programs, we should remove them
from the other programs when they are put in the autoexec.sas file. We can add other statements in
the autoexec.sas file as well.

70

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

If we use Enterprise Guide, we will create a process flow called Autoexec and put the start-up tasks
there. We add a new process flow with File > New > Process flow. We will rename this new process
flow by opening the process flow properties and change the name:

H Properties for Autoexec

Summary
Ll
Created: 742772012 10:53:44 AM

Last modfied: 7/27/2012 10:53:52 AM
Modffied by: Lena, Khistian {kd)

More (F1)

OK] [Cancel]

We create a new program with File > New > Program and type in the Libname statement. It will
appear like this in the process flow chart (shown side by side. Menu: View > Workspace layout > Side
by side):

& SAS Enterprise Guide - MDG.egp M=1E3
Fle Edit View Tasks Program Tools Hep |- ﬁ-- "% E ¥< By (@ X |5 o |[0- gQgAUtOE}(EC -
Libname - 71 *x Autoexec - x
E&E Program |E] Log = Run = Export ~ Schedule = | Zoom - Pru::-jeu:t Log
[Hsave ~ = Run - H ~
libname mdg "H:\MDG\Data'; E’
libname library 'H:\MDG\Cat'; .
Libname
I"."!
(Options
= v
D < | >
Ready . sasmeta

When we open this project the Autoexec process flow will be executed. As mentioned before
Libname statements should only be placed in the autoexec.sas process flow.

13.2.Spss

There is no easy way to automate execution of commands at start-up in Spss. A solution is to open a
syntax file when Spss starts and execute it ourselves. We move the Cd command to a file called
start.sps which is to be located in the syntax folder of the survey:

CD 'h:\mdg\data'.

71

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Then we will change the properties for the Spss icon for our survey on the desktop. At the invocation
of Spss we add our start.sps command file:

Egenskaper for SP5SS Mdg

Generelt | Snarvei | } niitet | Sikkathet
=
E& SPSS Mdg
Maltype: Program
Plassering: 20
== |Staﬁ5ti03"-2l}"‘8lats.exe "h:\mdg\syntax'\start sps” |
Start i | |
Hurtigtast: | Ingen |
Kar: | Normatt vindu 3 |

Kommentar: |IBM SPSS Statistios 20 |

[Ga til mal...][Endre ikon...][Avansert...]

[ok J[abyt || Bk |

The syntax file h:\mdg\syntax\start.sps will now be opened when we start Spss.

13.3.Stata

In Stata we can run a command file upon invocation. We add the command run and the name of the
start-up command file in the properties for the Stata Icon for our survey:

Egenskaper for StatalC 12

Generstt | Snarvei | ibilitet | Sikkerhet

ﬁ StatalC 12

Mattype: Program

Plassering: Microsoft Application Vitualization Cliert

Mal: |aIC 12 319.12.0.868" run h:\mdg'syntax'start .do |
Start i: |C"'-PROGRA‘1"-MIEFD2‘1 |
Hurtigtast: |Inger| |
Kier: | Mormalt vindu w |
Kommentar: | |

[Ga til mal...][Endre ikon...][Pvansert...]
[ok][mbey][Bk |

The command file h:\mdg\syntax\start.do will be executed when we start Stata. The start.do file
looks like this:

cd "h:\mdg\data"

72

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

1.2R

In RStudio we can save our workspace when we exit. When we start Rstudio we will be back were we
last ended. We just save the workspace when we exit:

Quit R Session

The following files have unsaved changes:

7 @ Warkspace image (RData)

WMDG/ . RData

~ @" CompareWithSasExamples.R
H:/R/Syntax/CompareWithSasExamples.R

Don't Save Save Selected Cancel

Libraries not attached in the basic R will have to attached with the /ibrary command, though.

13.4.Python

There are no built-in procedures for automatic execution of start-up code in Python. There are some
techniques for automatic execution of code at session invocation. However, these are not discussed

in this document.

73

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

14. Matching files

To match files together is a very important part of data processing. There are usually several ways to
match datasets together. We must choose the right way according to the results we want. We also
must know the algorithms of matching. The algorithm may be different from one software to
another. We should not match more than two datasets at a time. Another thing to avoid is to have
common variables in both datasets which are not part of the matching key. This usually causes
trouble. We have added a common variable, county, in our example datasets to show how it is
treated in the different matching.

When we match two datasets with a key variable it may appear:

e 1Ttimein each dataset (1:1)

e 1 timein dataset 1 and many times in dataset 2 (1:many)

e Many times in dataset 1 and 1 time in dataset 2 (many:1)

e Many times in dataset 1 and many times in dataset 2 (many:many)
e 1Ttimein dataset 1 and zero times in dataset 2 (1:zero)

e Many times in dataset 1 and zero times in dataset 2 (many:zero)

e Zerotimesin dataset 1 and 1 time in dataset 2 (zero:1)

e Zerotimes in dataset 1 and many times in dataset 2 (zero:many)

We will see how Sas, Spss, Stata, R and Python treat these situations by looking at match examples.
We start with two data files with a common key variable. In our datasets all the above situations will
appear when we match the datasets. Here are the two datasets:

Reg 1.

id mstat county

(@)
w

N OIS WSS NN W
U5 HQ Hh OO0 Q
o
o~

Reg 2.
id cstat county

19
20
18
06
17
15
12
14
11

Oy OB WD NN
B angocss 49X NK

74

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We should be very careful to match datasets with duplicates on both files. Usually, we get rid of
duplicates in at least one of the files before we match. However, sometimes we need to match
datasets with duplicates and therefore we should know the algorithms for this kind of matching too.

We will now look at some different matching we can do in each of the software packages.

14.1.Sas

We start with importing the data files to Sas. In this example we include the file in the import
program:

data regl;
input
@1 id S1.
@3 mstat S1.

@5 county $2.
ards;
c 03

02
05
04
06
07
09
08

c
3
1
2
4
3
4
4
7
5
7 10

-5 QOO0 O

run;

data reg2;
input
@1 id S1.
@3 cstat S1.
@5 county $2.

cards;

y 19

20

18

06

17

15

12

14

11

QO oY O B Wb DN PN
R ngocss 4 XN

’

run;

We can use Proc sql, Data step with Merge and Data step with Update to match datasets in Sas. We
start with looking at Proc sql. Proc sq/ has many ways to match datasets; inner join, right join, left join
and full join are the most commonly used. The difference between these is which observations are
written to the output dataset. The match algorithm is the same.

@ Inner join. Only observations with matching keys are written to output.

75

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

0 Left join. Observations with matching keys and observations only in the left (first
mentioned) dataset are written to output.

Right join. Observations with matching keys and observations only in the right (last
mentioned) dataset are written to output.

The algorithm of the match is that all observations with the same keys in both datasets match with
each other. The result of full join shows this:

Full join. All observations are written to output.

& SAS Enterprise Guide - MDG.egp Ml=1E3
File Edit Wiew Tasks Program Tools Help %' [a,,,_ % é ¥ B (B X | 5 o .
Full join coalesce - ®
@ Program™ %] Logl Eﬁ, Qutput Data |
Gﬁ %Fil_ter and Sort %guew Builder | Data = Describe = Graph = Analyze - | Export » SendTo -
{) id {} mstat k} county k} cstat k} countyl |
1 1 a z 20
2 |2 b 0z ® 18
[K b 02 y 19
4 |2 c 03 w 17
5 |2 4 04 w 17
L g 07 v 16
W4 g 07 u 15
B |4 e 05 v 16
9 |4 e 05 u 15
10 |4 f 06 v 16
11 |4 f 06 u 15
q2 s h 08
13 s t 14
147 i 09
15 |7 i 10
16 |8 r 11
78 s 12

The syntax of the Proc sql looks like this:

PROC SQL;
CREATE TABLE regs joined2 AS
SELECT coalesce(tl.id, t2.id) as id,
tl.mstat,
tl.county,
t2.cstat,
t2.county AS countyl
FROM WORK.REG1 tl FULL JOIN WORK.REG2 t2 ON (tl.id = t2.id)
ORDER BY id;
QUIT;

The coalesce function is used to unite the id variables from both datasets into one variable in the
output dataset. For inner, right and left joins we do not need to use the coalesce function.

76

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When we use the Data step to merge the two datasets they must be sorted on the key variable
before the match is done. The default match is similar to the full join. However, the algorithm is
different. Here is syntax for a merge:

proc sort data=regl OUT=regls;
by id;
run;

proc sort data=reg2 OUT=reg2s;
by id;
run;

data regs matched all ;
merge regls
reg2s
by id ;
run;

SAS Enterprise Guide - MDG.egp
Fle Edit View Tasks Program Tooks Help | 2+ =t "% S BE X | oo B

Program - X

@ Program™ E] Lc.g| Cutput Data (3) |

REGS_MATCHED -
&% | §j Filter and Sort By Query Builder | Data ~ Describe » Graph = Analyze = | Export = SendTo =
Ay id Ry mstat k} county k} cstat

1 |1 a 20 z

2 |2 b 19 ¥

B 2 b 18 x

4 (3 c 17 w

E d 04 w

B4 e 16 v

[B f 15 U

B |4 g 07 s

9 |5 h 08

10 |6 14 t

|7 i 09

12 |7] 10

138 12 s

14 |8 11 r
Ready W sasmeta

The algorithm difference between Proc sq/ and the Data step with Merge appears mainly when there
are duplicates on both datasets, which happen for id = 4 in our example. While Proc sq/ matched all
with the same keys in the first dataset with all with the same keys in the second, Merge will turn the
many:many matches into as many 1:1 matches as possible and the remaining will be changed into
either a 1:many or many:1 match. For 1:many and many:1 matches the one matches all in the other
dataset. However, the order of the datasets mentioned in the Merge statement will influence the
content of variables with common names which are not key variables in the datasets. This happens
for the county variable in our example. The variable is in both datasets but not as a key variable. The

77

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

variable will end up with data from the dataset that is read last and that differs when we swap the
order in the Merge statement:

data regs matched all opp ;
merge reg2s
regls
by id ;
run;

[SAS Enterprise Guide - MDG.egp
File Edit Wew Tasks Program Tools Help]%"ﬁ* '-% 5 o [m [b4 2 Mg | =

Program - X

@ Program™ |§| Lngl E_Ei Cutput Data (3) |

REGS_MATCHED -
&% |} Fiter and Sort By Query Builder | Data » Desaribe = Graph + Analyze - | Export ~ SendTo -
Ry id LAy cstat k} county k}. mstat

1 |1 z g

2?2 (2 ¥ 0z b

B2 x 18 b

k! w 03 c

5 |2 w 04 4

6 |4 v 05 e

B4 U 06 f

B |4 U 07 g

|5 08 b

10 |6 t 14

1|7 09 i

12 |7 10 i

138 s 12

14 |2 r 11
Ready W sasmeta

As an observation is only read once, the last read will come from the last-mentioned dataset for all
but the second and above observations in a many:1 match. For those the last read will come from
the first mentioned dataset. In a 1:many match the last read will always come from the last
mentioned dataset.

The default match with the Merge statement is similar to a full join in the way that all observations
that do not match will be added to the output dataset. If we want to have matches similar to other
joins we will have to add some options and statements to our program. For each of the datasets we
can create a temporary variable which is true (1) when the dataset contributes to the match and
false (0) when it doesn't. Then we can use these variables to decide what output we want to put on
the result dataset.

78

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Here is an example of a program where only the observations that match will be written to the
output dataset:

data regs matched ;
merge regls (in=dsl)
reg2s (in=ds2)
by id ;
if dsl and ds2 then
output;
run;

For a left match we change the condition:

if dsl then
output;

A right match can have this condition:

if ds2 then
output;

Another way to match files with Sas is to use the Update statement instead of the Merge statement.
The Update statement will use the first mentioned file as a master table and the second as a
transaction table. The algorithm for Update is different form Merge. With Update the first observation
in the master dataset with matching key will be updated with the observations from the transaction
dataset. If there are more than one observation with the same key in the transaction dataset, the
value from the last one will be the updated one. When it comes to missing values, the default is that
missing values will not override values in the master dataset. We can force missing values to
override by using the option updatemode=nomissingcheck in the Update statement:

data reg updated opp miss ;
update regls
regls updatemode=nomissingcheck
by id ;
run;

79

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

14.2.Spss

We create the two datasets with this syntax in Spss:

DATA LIST/
id 1-1
mstat 3-3 (A)
county 5-6

BEGIN DATA
c 03

02

05

04

06

07

09

08

10

END DATA.

SORT CASES BY id.

SAVE /OUTFILE='regl.sav'.

DATA LIST/
id 1-
cstat 3-
county 5-

SO W NP W
o HQ OO0 oo

.

(A)
(A)
(A)

oy W

BEGIN DATA

y 19

20

18

16

17

15

12

14

11

END DATA.

SORT CASES BY id.
SAVE /OUTFILE='reg2.sav'.

W Oy OB W NN
R naocss 4 XN

The datasets we shall match have to be sorted on the key variables before we match. We can match
files with two different commands: Match files and Update files. The Match files command is similar to
the Merge statement in Sas, however the algorithms are different. We have two different ways to use
the Match files command; one is to match two files where both provide observations to the new
dataset, the second is to use one of the datasets as a lookup table. Observations from the lookup
table with keys that is not found in the other dataset will not be added to the output dataset. A
lookup dataset is defined with the Table subcommand and may not have duplicates. Here is syntax
for matching the two files:

MATCH FILES FILE='regl.sav'
/IN=dsl
/FILE="'reg2.sav'
/IN=ds2
/BY id

EXECUTE.

80

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The File subcommands name the files to match. With the /n subcommand, we create a variable
which shows when the file contributes to the match. This is used in a similar way to the /n option in
Sas. The key variables are defined with the By subcommand.

In an ordinary match Spss will always match 1:1 even if there are duplicates in the datasets. If there
are duplicates a warning is written to the log:

Warning # 5132
Duplicate key in a file. The BY variables do not uniquely identify each case

on the indicated file. Please check the results carefully.

The output from the match is shown here:

& *Untitledé [] - IBM SPSS Statistics Data Editor

Fie Edit “iew Data Transform Analyze Direct Marketim Graphs Utiities Add-ons Window Help

-rdﬁﬁﬁﬂﬁ“@

J]P

= A= Ty
| Visible: 6 of € Variables
| id || mstat || county " cstat " ds1 " ds2 "
1 1 z 1 1 -
2 o b oy L
3 2 18 ® 0 1
4 3 C 03 w 1 1
4 e 05 W 1 1
6 |
7 4 f 06 u 1 1
s« 0w o
I I
10) 14 t 0 1
11 7 i 0a 1 0
I A R L
13 8 12 5] 1
8 11 r 0 1
[¥ |v
[——

|nmaumw|U®mmbth

[IBM SPSS Statistics Processor is ready| | | | |

As itis only 1:1 matches that is used, we see that when there are duplicates, they only match as long
as matches are found by matching 1:1. This is illustrated by looking at the values of the variables ds7
and ds2. These variables are not needed for the match, but they are useful when we want to select
observations based on the result of the match (as seen below). Uneven observations will not be
matched, but they will be added to the output data. We see that for observations with ids 2, 3 and 4.
Another difference from the Sas merge is that when there are common variables which are not key
variables, the value from the first dataset is kept when they match. If they don't match the value
from the contributing dataset will be kept.

81

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can use the In variables to choose which observations to keep on the output dataset. We use the
Select If command after the match to choose which observations to keep. The syntax for keeping the
observations which match:

SELECT IF(dsl AND ds2).
EXECUTE.

If we want all the observations from the first (left) dataset to the output, we use this instead:

SELECT IF (dsl).
EXECUTE.

The other way round, observations from the last (right) dataset kept:

SELECT IF (ds2).
EXECUTE.

The match with using a lookup table demands that the lookup table is without duplicates. We can
delete the duplicates in reg2s and then match the files by using the reg2s without duplicates as a
lookup table:

MATCH FILES FILE='reg2.sav'
/FIRST=first id
/BY id

SELECT IF (first id).
EXECUTE.

DELETE VARIABLES first id.

MATCH FILES FILE='regl.sav'
/IN=ds1l
/TABLE=*
/IN=ds2
/BY id

EXECUTE.

We use the Table subcommand and name the file with *. This means we will use the active dataset
as input. The active dataset is the reg2s without duplicates. Now there will be many:1 matches as
well as 1:1 matches. When the datasets don't match all observations from the first dataset will be
kept, but none from the lookup dataset:

82

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

. *Untitled11 [] - IBM SPSS Statistics Data Editor

File Edit Miew Data Transform Analyze DirectMarketing Graphs Utilities Add-ons Window Help

SHe M «~ ~ Bl B 5§ B

| |Visible: 6 of & Variables

|

| id || mstat || county || cstat || ds1 || ds2 || ||
1 1 a z 1 1 “

2 b 02 y 1 1

3 c 03 w 1 1

3 d 04 w 1 1

| 5 |4 8 05 v 1 1

| 6 |4 f 06 v 1 1

4 q 07 v 1 1

8 |5 h 08 1 0

9 |7 | 09 1 0

T 10 1 0

o | =
K — — [M]

| |IBM SPSS Statistics Processor is ready| | | | |

The order of the datasets is important here as well when there are non-key variables with same
names in both datasets, therefore it should be avoided.

When we want to have an update instead of a match, the master dataset is not allowed to have
duplicates. If there are duplicates on the transaction dataset the value from the last observation
within the group of observations with the same key will be picked. Here is a syntax where we first
delete duplicates on the master dataset and then use the Update command:

MATCH FILES FILE='reg2.sav'
/FIRST=first id
/BY id

SELECT IF (first id).
EXECUTE.

DELETE VARIABLES first_id.
UPDATE FILE=*
/IN=ds1l
/FILE='regl.sav'
/IN=ds2
/BY id

EXECUTE.

The output dataset will now be like this:

83

Documents 2023/1

U *Untitled21 [] - IBM SPSS

Data processing in Sas, Spss, Stata, R and Python. A comparison

Statistics Data Editor

EEX

File Edit Wiew Data Transform Analyze Direct Marketing Graphs Utities Add-ons Window Help

==

............

(===~

£

|Visible: & o7 & Variables

|
| id || cstat || county || mstat || ds1 || ds2 ||
1 1z 20 a 1 1 =
2 |2y 02 b 1 1 i
3 3 w 04 d 1 1
4 4 07 g 1 1
5 s 08 h 0 1 i
6 s t 14 1 0
7 10 j 0 1
| 8 s 5 12 1 0
=
! e —— [*]

Data View @ Wariable View

|IBM SPSS Statistics Processor is ready| |

If a variable value from the transaction dataset is missing it will not replace the value in the master

dataset.

14.3.Stata

We use the joinby or merge command to match datasets in Stata, but the datasets must be sorted on
the key variables before the matching. Here is the syntax for creating the two datasets:

clear
input strl id strl mstat str2 county

w

NUuUNRPP,WANR

C

. H0O -hQA MO W

J

end
sort id, stable
"regl.dta", replace

save

03

02
o5
04
06
o7
09
08
10

clear
input strl id strl cstat str2 county

2

O hrh,WARNER

+un c =< X NK

r

end
sort id, stable

19
20
18
16
17
15
12
14
11

84

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

save "reg2.dta", replace

We will now look at the joinby command, which joins datasets in a similar way to a sql join. The
syntax may look like this for an inner join:

clear
use "regl.dta"
joinby id using "reg2.dta"

The matching algorithm is the same as in Proc sg/ in Sas; all observations with a key in the first
dataset match all observations with the same key in the second dataset. The difference between
Proc sql in Sas and joinby is when there are common non-key variables. In Proc sq/ the common
variables will usually be separated in two variables in the output dataset. With the joinby command
we will have only one variable in the output dataset, but the content may be picked from both
datasets. When they match the values are taken from the first dataset mentioned unless we use the
update and replace options. If so, non-missing vales are taken from the second dataset, otherwise
values from the first dataset are used. If they don't match and we choose to add the observation to
the output, the values will be taken from the dataset mentioned in the use command

The default match with the joinby command is similar to an inner join. If we want a full join, we have
to add the unmatched option:

clear
use "regl.dta"

joinby id using "reg2.dta", unmatched(both)

The output data will be like this; an extra variable, _merge, is added:

B Data Editor (Edit) - [Untitled]

File Edit View Data Tools
=1 IEY -V El=IR A= f= o
id[1] 1
&.‘ id mstat county _merge cstat ~ Variables o
%j 1 a both in master and using data z
g_ 2 2 b 02 both in master and using data ¥ Variable Label
% 3 2 b 0z both in master and using data X K id
4 3 C 0% both in master and using data w M mstat
5 3 d 04 both in master and using data w R county
[4 e 05 both in master and using data u kK _merge
7 4 2 05 both in master and using data v B cstat
S 4 f 0& both in master and using data
9 4 f 06 both in master and using data u
10 4 g 07 both in master and using data Erireiies 7
11 4 g 07 both in master and using data u =] v
12 5 h 08 only in master data Mame id
13 [only in using data t Label
14 7 i 09 only in master data Type strl
15 7 | 10 only in master data Format s
16 2! only in using data s Notes
17 2! only in using data r =
e
b b4 | ahel b’
Ready Vars: 5 Order: Dataset Obs: 17 Filter: Off Mode: Edit NUM

If we change the order of the files, the commands will be like this:
clear

use "reg2.dta"
joinby id using "regl.dta", unmatched(both)

85

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We see that the content of the common variable county has changed and also the order of the
variables:

B Data Editor (Edit) - [Untitled]

File Edit View Data Tools
=1 I A E=IR 4=
id[1] 1
&;‘ id cstat county _merge mstat ~ Variables i
%’ 1 z 20 both in master and wsing data a
E_ 2 2 v 13 both in master and using data b Variahle Label
% 3 2 X 18 both in master and wsing data b W id
. 4 3 w 17 both in master and using data d M cstat
5 3 w 17 both in master and using data [« W county
[4 v 16 both in master and wsing data e ¥ _merge
7 4 16 both in master and using data a M mstat
8 4 16 both in master and using data T
9 4 u 15 both in master and wsing data a [|
10 4 u 15 both in master and using data e Frosiis n
11 4 u 15 both in master and using data T =] ~
1z 5 only in using data h MName id
13 & t 14 only in master data Label
14 7 only in using data i Type strl
15 7 only in using data bl Format s
16 : 5 12 only in master data Notes B
17 =1 r 11 only in master data =]
—
< | 2 Lahel)
Ready Vars: 5 Order: Dataset Obs: 17 Filter: Off Mode: Edit NUM

The content of the common variables changes for non-missing values when we add the update and
replace options:

use "reg2.dta", clear
joinby id using "regl.dta", unmatched(both) update replace

This is like the previous joinby example, except where id equals 1, 6 and 8 where values from the
first dataset are kept because they are missing in the second. The values of the _merge variable
have also changed when the datasets match:

B= Data Editor (Edit) - [Untitled]

File Edit View Data Tools
G5 e 3 @ |[f]c3 | W AR e
id[1] 1
&:‘ id cstat county _merge mstat LE!
E‘ﬂn 1 z 20 in both, master agrees with using data a E‘ §
?:Iﬂ_ 2 2 W oz in both, master agrees with using data b %
% 3 2 X o0z in both, master agrees with using data b l
[4 3 W 04 in both, master agrees with using data d 2
5 3 W 03 in both, master agrees with using data [L—?
[4 v o0& in both, master agrees with using data il cén
7 4 05 in both, master agrees with using data = = %
8 4 o7 in both, master agrees with using data g Label —
9 4 u o6 in both, master agrees with using data T & Notes
10 4 u o7 in both, master agrees with using data g
11 4 u 05 in both, master agrees with using data =
1z = 08 only in using data h
13 & t 14 only in master data
14 7 039 only in using data i
15 7 10 only in using data 3j
16 8 s 1z only in master data
17 5 r 11 only in master data
< |
Ready Vars: 5 Order: Dataset Obs: 17 Filter: Off Mode: Edit MM

86

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

If we want a left join, we can use these commands:

clear
use "regl.dta"
joinby id using "reg2.dta", unmatched(master)

Aright join is executed with this syntax:

clear
use "regl.dta"
joinby id using "reg2.dta", unmatched(using)

Another way to merge the files is by using the merge command. Stata strongly recommends not
matching files with duplicates on both files with the merge command. Nevertheless, it is interesting
to know the algorithm used. Here is syntax for a match with the merge command:

clear

use "regl.dta"

merge id using "reg2.dta"

sort id, stable

When we use the merge command without telling what kind of match we want, we get some notes in
the viewer:

(note: you are using old merge syntax; see [D] merge for new syntax)
variable id does not uniquely identify observations in the master data
variable id does not uniquely identify observations in reg2.dta

The result will be the same if we add the match type (see page 74) to the command, but the notes
disappear:

clear
use "regl.dta"
merge m:m id using "reg2.dta

Instead, we get other information:

Result # of obs.
not matched 6
from master 3 (_merge==1)
from using 3 (_merge==2)
matched 8 (_merge==3)

87

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The output dataset from the matching is this:

B Data Editor (Edit) - [reg1.dta]

File Edit WVew Data Tools
=1 I AET IR A= = e
id[1] 1
&.‘ id mstat county cstat _merge # | | Variables o
%j 1 a z matched (3]
2 2 2 b 02 ¥ matched (2] Variable Label
E’ 3 2 b o2 ® matched (3] M id
4 3 c 03 w matched (3] K mstat
[3 d 04 W matched (3] W county
[4 e 05 W matched (3] W cstat
7 4 f 06 u matched (33 W _merge
f: 4 g o7 u matched (3]
3 4 h 08 master only (1) Properties i
10 [14 T using only (2] = A
MName id
11 7 h 08 master only (1) Label
1z 7 i 10 master only (1) Type strl
13 S 1z s using only (2J Format %3S
14 5 11 r using only (2]
b Motes
< > =] L
Ready Vars: 5 Order: Dataset Chs: 14 Filter: Off Mode: Edit MUM

The algorithm is like the Merge in Sas, except for the common non-key variable county. Its values are
taken from the first dataset as long as they contribute to the match. This can be changed by using
the update and replace options:

use "regl.dta", clear
merge m:m id using "reg2.dta", update replace

A new variable, _merge, is also added to the output dataset. This variable tells which observations
that match and from what dataset the non-matching observations are taken. The order of the
datasets is important in Stata as well when it comes to these common non-key variables as their
values will be different if the order changes.

To keep only the observations which match, we use the keep option like this:

use "regl.dta", clear
merge m:m id using "reg2.dta", keep(matched)

For keeping all observations from the first dataset we use this command:

use "regl.dta", clear
merge m:m id using "reg2.dta", keep(matched master)

The other way around:

use "regl.dta", clear
merge m:m id using "reg2.dta", keep(matched using)

We can add an update option to the merge, then it will use the second dataset for updating the
common variables (here: county). The syntax is like this:

merge m:m id using "reg2.dta", update

88

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The result shows that only missing values from the first dataset will be updated. If the first dataset
already has a valid value for the variable, it will keep that value. The variable _merge tells us how the
merge went:

id mstat county cstat _merge
1 1 a 20 = missing updated (4)
2 2 b [ue ¥y mnonmissing conflict (5)
3 3 c 03 W nonmissing conflict (5)
4 3 d 04 W nonmissing conflict (&)
5 4 e o5 RTd nonmissing conflict (&)
[4 £ a3 u nonmissing conflict (5)
7 4 g a7 u nonmissing conflict (5)
a 5 h o2 master only (1)
9 7 i o5 master only (1)
10 7 3j 10 master only (1)
11 2 b [ue x nonmissing conflict (5)
12 [14 t using only (2)
1.3 2 12 = using only (2)
14 =] 11 r using only (2)

The difference from the merge without the update option is that missing values in the first dataset
will be updated from the second, which is the case for the first observation in the result. We see that
in the _merge variable. When the first dataset already has a value, the _merge will contain a message
of a nonmissing conflict.

14.4.R

In R the matching algorithm follows the join as in Sas proc sq/ and Stata joinby. We can create the
same datasets in R:

d < C(ll3ll lllll ll2ll II " ll3ll II II’ll4ll’ll7ll’115ll’ll7ll)
mstat < C(" " llall Ilbll llell Ildll II_FII llgll II_III " 1] man
c0unty <_ C(ll03ll IIII IIOZII ll05II IIO4II ll06ll IIO7II ll09ll 1108" "10")
regl <- data. frame(1d mstat county)
print(regl)
1d< C(llzll lllll ll2ll II " ll3ll II mn II8II ll6ll 118")
Cstat< C(ll " IIZII IIXII IIVII IIWII Ilull IISII "t" llrll)

County< C(Illgll ll20ll ll18ll ll06ll II17II "]’_5”,"'12","14”,”11")
reg2 <- data. frame(1d cstat county)
print(reg2)

Now we can match with a full join. We use the dplyr package with its joins for this and use the
arrange command to sort the output data:

fulljoin <- full_join(x=regl,y=reg2,by="1d") %>% arrange(id)
print(fulljoin)

The result:

id mstat county.x cstat county.y

1 1 a z 20
2 2 b 02 y 19
3 2 b 02 X 18
4 3 C 03 w 17
5 3 d 04 w 17
6 4 e 05 \% 06
7 4 e 05 u 15
8 4 f 06 \% 06

89

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

9 4 f 06 u 15
10 4 g 07 Y 06
11 4 g 07 u 15
12 5 h 08 <NA> <NA>
13 6 <NA> <NA> t 14
14 7 i 09 <NA> <NA>
15 7 j 10 <NA> <NA>
16 8 <NA> <NA> s 12
17 8 <NA> <NA> r 11

All combinations of rows with the same value of id have been added to the output. The common
variable county which was not part of the match key has been added separately from each data
frame. The names have a suffix, .x for the variable from the data frame mentioned in the x
argument and .y for the data frame mentioned in y argument.

To do an inner join we replace full_join with inner_join:

innerjoin <- inner_join(x=regl,y=reg2,by="1id") %>% arrange(id)
print(innerjoin)

Now only those who match are added to the output data frame:

id mstat county.x cstat county.y

1 1 a z 20
2 2 b 02 y 19
3 2 b 02 X 18
4 3 C 03 w 17
5 3 d 04 w 17
6 4 e 05 \% 06
7 4 e 05 u 15
8 4 f 06 Y 06
9 4 f 06 u 15
10 4 g 07 \% 06
11 4 g 07 u 15

For left join and right join we change the name of joins:

Teftjoin <- left_join(x=regl,y=reg2,by="1id") %>% arrange(id)
print(lTeftjoin)

rightjoin <- right_join(regl,reg2,by="1d") %>% arrange(id)
print(rightjoin)

We may also find rows in the first data frame that has one or more matches in the second data
frame with a semi_join. This will not join the files, only output those from the first data frame that
has a match in the second:

semijoin <- semi_join(regl,reg2,by="1d") %>% arrange(id)
print(semijoin)

These rows have a match:

id mstat county

1 1 a

2 2 b 02
3 3 C 03
4 3 d 04
5 4 e 05
6 4 f 06
7 4 g 07

To do the opposite, find those who don’t match, we can use anti_join:

90

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

antijoinl <- anti_join(regl,reg2,by="1id") %>% arrange(id)
print(antijoinl)

Now we see those who don't match:

id mstat county

1 5 h 08
2 7 i 09
37 j 10

Instead of using joins in dplyr we may use the merge command. It will match the files as the joins,
but the syntax is different. Here we have examples on full, inner, left and right joins:

regland2fj<-merge(x = regl, y = reg2, by = "id", all = TRUE)
print(regland2fj)

regland2ij<-merge(x = regl, y = reg2, by = "id", all = FALSE)
print(regland2ij)

regland21j<-merge(x = regl, y = reg2, by = "id", all.x = TRUE)
print(regland21j)

regland2rj<-merge(x = regl, y = reg2, by = "id", all.y = TRUE)
print(regland2rj)

We define the type of join arguments all, all.x and all.y

e Fulljoin all=TRUE or all.x=TRUE and all.y=TRUE
e Inner join all=FALSE
e Leftjoin all.x=TRUE

e Rightjoin all.y=TRUE

There is a possibility to update values from one data frame with values from another data frame.
However, there are some restrictions with this update: key variables must be unique, so we must
delete duplicates on both files. Furthermore, key values in the second data frame must exist in the
first data frame. That means we must delete rows in the second data frame that does not have the
same key in the first data frame before we update. Finally, it is not allowed to have variables in the
second data frame that is not present in the first. Here is some code that prepares the data frames
for update:

reglu <- regl[!dupTlicated(regl[c(1)]1),]

reg2x <- subset(reg2, select = -cstat)

reg2u <- reg2x[!duplicated(reg2x[c(1)]),]

reg2u <- semi_join(reg2u,regl,by="1id") %>% arrange(id)

Now we can update the first dataset with values from the second with rows_update in dplyr:

reglu %>%
rows_update(reg2u, by = "id")

The result shows that rows where the keys are found in the first dataset are updated with data from
second data frame:

id mstat county

1 3 C 17
2 1 a 20
3 2 b 19
4 4 e 06
8 7 i 09
9 5 h 08

91

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

14.5.Python

The matching in Python is done with the merge command. The syntax is similar to the merge
command in R and the match algorithm is identical to join as in Sas proc sq|, Stata joinby and merge
inR.

We start with creating two files that contains all the possible match situations:
eglfile="""
c 03

02
05
04
06
07
09
08

r
3
1
2
4
3
4
4
7
5
7 10

.S -Q Hhao dm T W

regl = pd.read_csv(
StringIo(reglfile),
names=['id', 'mstat', 'county'],
dtype=object,
header=None,
Sepzl)

)

eg2file=
19
20
18
06
17
15
12
14

r
2
1
2
4
3
4
8
6
8 r 11

I A0nES<XNK

reg2 = pd.read_csv(
StringIo(reg2file),
names=['id', 'cstat', 'county'],
dtype=object,
header=None,
Sep=' '
)
display(regl, reg2)

92

Documents 2023/1

The data frames are here:

id mstat county

0 3

—
—

W w N @ o B W R
e I 2 E Y IR - - % N O LS]

=
da

b

03
NaM
02
05
04
06
07
09
08
10

Data processing in Sas, Spss, Stata, R and Python. A comparison

id ecstat county

W~ ® W B W M

2

L= & N = L I - L

19
20
18
06
17
15
12
14
1

We start with the easiest merge where all with the same ids will match and only those who match
will be included in the output. This is called an inner join:

pd.merge(regl,

reg2, on="'id")

We see that the variable county, which is not a key, but are in both datasets, will be included from
both data frames (with new names):

id mstat county_x cstat county_y

0 3
1 3

W O =~ ®» ¢ A W M
=

- T

-
o

C

d

03
04

NaN

02
02
05
05
08
08
07
07

W

W

17
17
20
19
18
06
15
06
15
06
15

If we want to sort the result by the id, we can add the sort_values function:

pd.merge(regl,

reg2, on="id').sort_values('id')

93

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Now the result is sorted:

id mstat county_x cstat county_y

2 1 a NaN z 20
3 2 b 02 ¥ 19
4 2 b 02 X 18
0 3 C 03 w 17
1 3 d 04 w 17
5 4 e 05 v 08
6 4 e 05 u 15
7 4 f 06 v 08
B 4 f 06 u 15
9 4 g a7 v 08
10 4 g o7 u 15

We can specify the key for each data frame. This is useful when the keys have different names:
pd.merge(regl, reg2, left_on="id', right_on="id').sort_values('id")

We can also define the suffixes for common variables. This example will change the suffixes from _x
and _yto _1and _2:

pd.merge(regl, reg2, on="id', suffixes=('_1", '_2')).sort_values('id")

Now we can merge with a full join, all with the same id matches and all id’s that don’t match will be
included in the output. We add an indicator as well to show how the match went:

pd.merge(regl, reg2, on='id', how='outer', indicator=True).sort_values('id")

94

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Now we see how the data frames matched:

id mstat county_x cstat county_y _merge

2 1 a MaM z 20 both
3 2 b 02 ¥ 19 both
4 2 b 02 X 18 both
0 3 C 03 w 17 both
1 3 d 04 w 17 both
10 4 g 07 u 15 both
9 4 g 07 v 08 both
B 4 f 06 u 15 both
6 4 e 05 u 15 both
5 4 e 05 v 06 both
7 4 f 06 v 08 both
13 & h 08 NaN NaMN left_only
16 6 NaN NaMN t 14 right_only
" 7 [09 NaN NaMN left_only
12 7 [10 NaN NaN left_only
15 & NaN NaM r 11 right_only
14 &8 NaN MNaM 5 12 right_only

Here we have examples on left and right joins:
pd.merge(regl, reg2, on='id', how="'left', indicator=True).sort_values('id")

pd.merge(regl, reg2, on="'id', how='right', indicator=True).sort_values('id")

95

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We see that in addition to the rows that match, the rows that are only in the left dataset will be
added to the output in the left merge. Opposite, when we use the right merge rows that are only in
the right dataset will be added to the output:

id mstat county_1 cstat county_2 _merge id mstat county_x cstat county_y _merge

1 1 a NaN z 20 both 1 1 a NaN z 20 both
2 2 b 02 ¥ 19 both 0 2 b 02 ¥ 19 both
3 2 b 02 X 18 both 2 2 b 02 X 18 both
0 3 c 03 W 17 both 6 3 C 03 W 17 both
6 3 d 04 W 17 both 7 3 d 04 W 17 both
4 4 e 05 W 06 both 3 4 e 05 v 06 both
5 4 e 05 u 15 both 4 4 f 06 v 06 both
7 4 f 06 W 06 both 5 4 g a7 v 06 both
8 4 f 06 u 15 both 8 4 e 05 u 15 both
g 4 o] o7 v 06 both 9 4 f 06 u 15 both
10 4 o} a7 u 15 both 10 4 g 07 u 15 both
12 5 h 08 NaN NaM left_only 12 6 NaN NalN t 14 nght_only
"M 7 i 09 NaN NaM left_only 11 8 NaN NaN s 12 rnght_only
13 7] 10 NaN NaM left_only 13 8 NaN NaN T 11 right_only

All id values from both data frames match when there are duplicates. That is the same in all these
merges.

If we just want to see which id's in reg1 that is also in reg2 without actually match the two data
frames, we can do a lookup (or a semi-join) using the isin method and check when it is true:

regl.loc[regl['id'].isin(reg2['id"']) == True]
These rows from reg1 are also found with the same id in reg2:

id mstat county

0 3 C 03
1 1 a Nal
2 2 b 02
3 4 e 05
4 3 d 04
5 4 f 06
6 4 g o7

We can find those in reg1 who are not found in reg2 the same way, except that we select those who
have isin false. This will be a so-called anti-join:

regl.loc[regl['id'].isin(reg2['id']) == False]

96

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

These rows from reg1 does not match any id's in reg2:

id mstat county

7 7 i 09
g8 5 h 08
9 7 j 10

When we have more than one key, we can use conditions like these:

regl.loc[(regl['id'].isin(reg2['id']) == True) &
(regl['county'].isin(reg2['county']) == True)]

It gives us the single row that are in both data frames:

id mstat county

5 4 f 06

Another way to merge files is to use one file to update another. We can do that with the update
method. This method uses the row index as matching key; hence we have to set our identification
variables to an index. It does not allow duplicate indexes, so we must delete duplicates on both files
before we do the update. Here is a syntax to drop duplicates and make the id column an index for
both files. Then we update regli with reg2i. Finally, we reset the index so that the id column will be
an ordinary column again

reglu = regl[~regl.duplicated(['id'], keep='first')].sort_values(['id"'])
regli = reglu.set_index('id")

reg2u = reg2[~reg2.duplicated(['id'], keep="first')].sort_values(['id'])
reg2i = reg2u.set_index('id")

regli.update(reg2i)

regli = regli.reset_index()

regli

Rows with id values that is not in the first data frame will not be added to the result data frame, nor
will columns that are only in the second file, as we can see from the result:

id mstat county

0 a 20
1 2 b 19
2 3 C 17
3 4 e 06
4 5 h 08
5 7 [09

97

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

14.6.A matching comparison

Here is a summation of matching in Sas, Spss, Stata, R and Python:

Mat Sas Spss Stata R Python

ch

typ

e
Proc sql Merge Match Match joinby merge dplyr merge pd.merge
join files with | files with join

File Table

1:1 1:1 match 11 1:1 match | 1:1 match | 1:1 match 1:1 1:1 1:1 match 1:1 match

match match match

T:m 1 matches | 1 Divided Not 1 matches | 1 1 1 matches | 1 matches
all matches | into allowed all matches | matches | all all

all 1:1 and all all
0:m

m:1 | All All Divided All All All All All All

matches 1 | matches | into matches 1 | matches 1 | matches | matches | matches 1 matches 1
1 1:1 and 1 1
m:0

m:m | All Divided Divided Not All Divided All All All
matches into into allowed matches into matches | matches matches
all 1:1,1:1 1:1,1:1 all 11,11 | all all all

etc. then | etc. then etc. then
1:mor 1:0, m:0, 1:m or
m:1 0:1 or O:m m:1

0:1 Added to Omitted May be Not added | Added to Omitted | Added Added to Added to
output from omitted to output output from to output output
with Right | output from with output output (when (when
joinor Full | byusing | output by umatched | withthe | (right_jo | argument argument
join In option | using In (master) option inand all or all.y how is

and If subcomm or keep(ma | full_join) | is TRUE) right or
condition | and and umatched | tched outer)
Select If (both) master)
command option

0:m | Added to Omitted Omitted Not added | Added to Omitted | Added Added to Added to
output from from to output output from to output output
with Right | output output by with output output (when (when
joinor Full | when using In umatched | withthe | (right_jo | argument | argument
join using In subcomm (master) option inand all or all.y how is

option and and or keep(ma | full_join) | is TRUE) right or
and If Select If umatched | tched outer)
condition | command (both) master)

option

1:0 Added to Omitted Omitted Added to Added to Omitted | Added Added to Added to
output from from output output from to output output
with Left output output by with output output (when (when
joinor Full | when using In umatched | withthe | (left_join | argument | argument
join using In subcomm (using) or | option and all or all.x how is left

option and and umatched | keep(ma | full_join) | is TRUE) or outer)
and If Select If (both)opti | tched
condition | command on using)

m:0 | Added to Omitted Omitted Added to Added to Omitted | Added Added to Added to
output from from output output from to output output
with Left output output by with output output (when (when
joinor Full | when using In umatched | withthe | (left_join | argument | argument
join using In subcomm (using) or | option and all or all.x how is left

option and and umatched | keep(ma | full_join) | is TRUE) or outer)
and If Select If (both) tched
condition | command option using)

98

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

15. Aggregation

To aggregate a dataset means to group observations with common values for some variables
together into one single observation. When we have a dataset with one observation for each
member of a household, we can aggregate this dataset to contain one observation for each
household instead. All observations with the same household identification will be added together.
Here is an example where we want to aggregate to a household dataset and count the number of
persons in each household.

Before aggregation (only the first 17 observations are shown):

=, mdgperson_nodup.sav [] - IBM SPSS Statistics Data Editor

Direct Marketing Graphs Utiities Add-ons Window Help
H Pt b
& B
| | |Visible: 8 of 8 Variables
| hh || state || urbrur || member || b3 || b4 || b5 || b& ||
1 020074 2 1 1 0 1 39 3 -
2 020074 2 1 2 1 2 21 2
3 020074 2 1 3 2 1 16 1
4 020074 2 1 4 2 2 13 1
5 020074 2 1 5 2 1 10
6 020074 2 1 6 2 2 8
7 020100 2 1 1 0 1 45 3
g 020100 2 1 2 1 2 41 2
9 020100 2 1 3 2 2 21 1]
10 020100 2 1 4 2 1 19 2
1 020100 2 1 5 2 2 16 1
12 020100 2 1 6 2 1 10
13 020118 2 1 1 0 1 27 2
14 020118 2 1 2 1 2 22 2
15 020118 2 1 3 2 2 8
16 020118 2 1 4 2 2 5
17 020118 2 1 5 2 2 3 L
- =
[et i [¥]
———
Data View | Variable View
[[BM PSS Statistics Processoris ready | | | [|

For each household we want to count the number of household members (hh_members), number
of males (males), number of females (females), number of children (children), average age of the
persons in the household (mean_age) and we want the age of the household head (head_age):

#3 household sav [] - IBM SPSS Statistics Data Editor - O *

File Edit View Data Transform Analyze Graphs Utilities Extensions Window Help

SEHE - w Bl.HlE A EE 96

e

| ‘Vlsmle‘ 7 of 7 Variables

@a hh & hh_members | & mean_age | & males & females & children & head_age

1 020074 6 17,83 3 3 4 3%.00 |<
2 020100 6 25,33 3 3 4 45,00

3 020118 5 13,00 1 4 3 27,00

4 040024 6 17,83 3 3 2 37.00

5 040034 6 17,17 1 5 2 20,00 |
6 050069 6 3433 2 4 2 67.00

7 060036 6 26,67 4 2 4 42,00

8 | 060041 6 15,40 4 2 4 31,00

= ~

|IBM SPSS Statistics Processoris ready| | |Unicode:0N [

99

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Quite often we want the aggregated variables added to the original data, like this:

= *mdgperson_nodup.sav [] - IBM SPSS Statistics Data Editor

Fie Edt View Data form Analyze DirectMarketing Graphs Utiies Add-ons Window Help

S|HE e~ B R S5 BLE 199 %

[| [Visile: 14 of 14 Variables

| hh || state H urbrur || member H b3 H h4 H ba H b6 H hh_members || mean_age || males H females || children H head_age ”
1 020074 2 1 1 0 1 39 3 6 17.83 3 3 4 39.00 |<
2 020074 2 1 2 1 2 pal 2 6 17,83 3 3 4 39.00
3 020074 2 1 3 2 1 16 1 6 17.83 3 3 4 39.00
4 020074 2 1 4 2 2 13 1 6 17.83 3 3 4 33.00
5 020074 2 1 [2 1 10 [17.83 3 3 4 39.00
6 020074 2 1 6 2 2 8 . 6 17.83 3 3 4 39.00
7 020100 2 1 1 0 1 45 3 6 2533 3 3 4 45,00
3 020100 2 1 2 1 2 41 2 [2533 3 3 4 45,00
9 020100 2 1 3 2 2 pal 1 6 2533 3 3 4 45.00 1
10 020100 2 1 4 2 1 19 2 6 2533 3 3 4 45,00
1 020100 2 1 5 2 2 16 1 [25,33 3 3 4 45,00
12 020100 2 1 6 2 1 10 6 2533 3 3 4 45.00
13 020118 2 1 1 0 1 27 2 3 13,00 1 4 3 27.00
14 020118 2 1 2 1 2 22 2 5 13.00 1 4 3 27.00
15 020118 2 1 3 2 2 8 a 13.00 1 4 3 27.00
16 020118 2 1 4 2 2 5 [13,00 1 4 3 27.00
17 020118 2 1 5 2 2 3 5 13.00 1 4 3 27.00 =
1 [
—
Data View | Wariable View
[IBM SPSS Statistics Processorisready | | | | |

We see that each person in the household has got the aggregated household variables. The values
of the household variables are duplicated.

15.1.Sas

We can use Proc sql or Proc means to make the aggregated dataset. First, we look at aggregation of
number of members and average age with proc sql:

proc sql ;
create table household as
select hh, count(hh) as hh members, mean(b5) as mean age
from mdg.mdgperson nodup
group by hh
order by hh;
quit;

The same aggregation done with proc means:

proc means data=mdg.mdgperson nodup noprint nway missing;

class hh;

var b5;

output out=household (rename=(_ freq =hh members) drop=_ type)
mean (b5) =mean age ;
run;

The _freq_ counts the number of observations and is renamed to hh_members. There is also
created a variable called _type_. It contains a level indicator for the different combinations of class
variables and is not needed in this example because we have excluded all levels except the most
detailed with the nway option in the proc means statement.

For the next types of aggregation, proc sql is the best one to use. Then we can do some calculations
within the aggregation:

proc sql ;
create table household as
select hh, count(hh) as hh members, mean(b5) as mean age,
N (CASE WHEN b4 = 1 THEN 1 END) as males,

100

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

N (CASE WHEN b4 = 2 THEN 1 END) as females,
N(CASE WHEN b3 = 2 THEN 1 END) as children,
Sum (CASE WHEN b3 = 0 THEN b5 END) as head age
from mdg.mdgperson nodup
group by hh
order by hh;
quit;

To add the household information to each person we change the syntax a little bit. We select all
variables from the original dataset with select * instead of just selecting the group by variable:

proc sql ;
create table person hh as
select *, count (hh) as hh members, mean(b5) as mean_ age,
N (CASE WHEN b4 = THEN 1 END) as males,
N (CASE WHEN b4 = THEN 1 END) as females,
N (CASE WHEN b3 = THEN 1 END) as children,
Sum (CASE WHEN b3 = 0 THEN b5 END) as head age
from mdg.mdgperson nodup
group by hh
order by hh;
quit;

NN R —|

15.2.Spss

Here we will open the dataset with the Get command. Then we do the aggregation with the
Aggregate command, it is found under the Data > Aggregate menu. Then we open the aggregated
dataset with the Get command:

GET FILE='mdgperson nodup.sav'.

AGGREGATE
/OUTFILE='household.sav'
/BREAK=hh
/hh members=N (member)
/mean_age=MEAN (b5)

GET FILE='household.sav'.

All variables we need must be added before the aggregation. We create new variables with the If
command. Then we use the Aggregate command for the aggregation. Finally, we open the
aggregated dataset with the Get command:

GET FILE 'mdgperson nodup.sav'

IF (b4 = 1) males = 1.

IF (b4 = 2) females = 1.

IF (b3 = 2) children = 1.

IF (b3 = 0) head age = b5.

EXECUTE.

AGGREGATE
/OUTFILE='household.sav'
/BREAK=hh

/hh members=N (member)
/mean_age=MEAN (b5)
/males=N (males)
/females=N (females)
/children=N (children)
/head age=MEAN (head age) .
GET FILE='household.sav'.

101

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When we want to add the household information to the active dataset, we include the
Mode=addvariables sub-command to the Aggregate command and add a Save command (after re-run
of the Get, If and Execute commands above):

AGGREGATE
/OUTFILE=* MODE=ADDVARIABLES OVERWRITE=YES
/BREAK=hh
/hh members=N (member)
/mean_age=MEAN (b5)
/males=N (males)
/females=N (females)
/children=N(children)
/head age=MEAN (head age) .
SAVE /OUTFILE='person hh.sav'.

15.3.Stata

We can use the egen command with by to add grouped average values to the dataset. We can do it
like this:

use "mdgperson_nodup"”, clear
by hh, sort : egen mean_age = mean(b5)

However, when we want to add the count, we should switch to the collapse command. The collapse
command is found under the menu Data > Create or change data > Other variable-transformation
commands > Make dataset of means, medians, etc., however it is faster to write the syntax:

use "mdgperson_nodup"”, clear
collapse (count) hh_members=member (mean) mean_age=b5 , by(hh)

Now we want to add the number of males, females, and the age of head to each observation in the
dataset. This is similar to Spss, we create the variables first with the generate command and

aggregate with the collapse command:
use "mdgperson_nodup", clear
generate males = 1 if b4 == 1
generate females = 1 if b4 == 2

generate children = 1 if b3 == 2

generate head_age = b5 if b3 ==

collapse (count) hh_members=member males females children (mean) mean_age=b5
head_age, by(hh)

The collapse command does not have the possibility to add the aggregated variables to the original
dataset. To add these variables, we can use the merge command and sort the data again:

merge 1:m hh using "mdgperson_nodup.dta"
sort hh member

15.4.R

We can use the dplyr package to aggregate data frames in R. We group by hh and summarise the
count and average age.

household <- mdgperson_nodup %>%
group_by(hh) %>%
summarise(hh_members=n() ,mean_age = mean(b5))

The result shows that there is a problem with the last household, it has got NA as average age:

102

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

hh hh_members mean_age

<chr> <int> <db 1>
1 020074 6 17.8
2 020100 6 25.3
3 020118 5 13
4 040024 6 17.8
5 040034 6 17.2
6 050069 6 34.3
7 060036 6 26.7
8 060041 6 NA

This is because when one value is NA, the result will by default be NA. To avoid this and calculate the
average for those who have valid values, we can add the na.rm=TRUE argument:

household <- mdgperson_nodup %>%
group_by(hh) %>%
summarise(hh_members=n() ,mean_age = mean(b5, na.rm = TRUE))

Now we will have average age for the last household as well:

hh hh_members mean_age

<chr> <int> <db 1>
1 020074 6 17.8
2 020100 6 25.3
3 020118 5 13
4 040024 6 17.8
5 040034 6 17.2
6 050069 6 34.3
7 060036 6 26.7
8 060041 6 15.4

In the next example, we create variables for each category with the mutate command and then we
do the actual aggregation with summarise:

household <- mdgperson_nodup %>%
mutate(male=if_else(b4=="Male',1,0),female=if_else(b4=="Female',1,0),child=if
7e}se(b3=='Daughter/son',1,0),head_age=if_e1se(b3=='Head',as.numeric(bS),O))
%>%

group_by(hh) %>%

summarise(Chh_members=n() ,mean_age = mean(b5, na.rm = TRUE),males=sum(male), fe
males=sum(female),children=sum(child),head_age=sum(Chead_age))

Each variable with possible NA's should include the na.rm = TRUE option to avoid NA in the
aggregated variables:

hh hh_members mean_age males females children head_age

<labelled> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 020074 6 17.8 3 3 4 39
2 020100 6 25.3 3 3 4 45
3 020118 5 13 1 4 3 27
4 040024 6 17.8 3 3 2 37
5 040034 6 17.2 1 5 2 20
6 050069 6 34.3 2 4 2 67
7 060036 6 26.7 4 2 4 42
8 060041 6 15.4 4 2 4 31

103

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can add aggregated data to each row instead of aggregating the data frame. Still, we use dplyr.
However, we don't use the summarise command. Finally, we erase the variables we don’t need to
store with the subset command.

person_hh <- mdgperson_nodup %>%
mutate(male=if_else(b4=="Male',1,0),female=if_else(b4=="Female',1,0),child=if
_else(b3=="Daughter/son',1,0),head_a=if_else(b3=="Head',as.numeric(b5),0)) %>

group_by(hh) %>%

mutate Chh_members=n() ,mean_age = mean(b5, na.rm = TRUE),males=sum(male),femal
es=sum(female),children=sum(child),head_age=sum(Chead_a)) %>%
subset(select=-c(male,female,child,head_a))

15.5.Python

To aggregate a data frame, we can use the groupby function combined with the variables to group
by and the variables to aggregate. For the variables we want to aggregate, we also specify what kind
of aggregation we want. That can be count, mean, sum and others.

Here we aggregate from persons to households and find the average age of persons and the count
of members in the households:

mdgperson_nodup.groupby('hh').agg(

mean_age=('b5', 'mean'),
hh_member=("member', 'count')
)

The aggregated data:

mean_age hh_member

hh

20074 17.833333
20100 25.333333
20118 13.000000
40024 17.166667
40034 17.833333
50069 34.333333
60036 26.666667

5> T = > B & I & < N & T + & IR > I 5

60041 15.400000

We see above that the column(s) we group by (hh) have switched to a row index. Sometimes this is
wanted, other times we want to keep the column as it is. To avoid the the column(s) to be a row
index, we can add the option as_index with the False parameter:

mdgperson_nodup.groupby('hh', as_index=False).agg(
mean_age=("'b5', 'mean'),
hh_member=("member', 'count')

104

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Now we see that the group column (hh) did not become an index:

hh mean_age hh_member

0 20074 17.833333 6
1 20100 25.333333 6
2 20118 13.000000 5

3 40024 17.1665667

o

4 40034 17.833335 6

o

5 50069 34333333

6 60036 26.6665667

o

7 60041 15400000

o

Sometimes we need to create new columns before we aggregate. Here is an example where we
want to count the number of males, females, and children and also the age of the head within each
household. The columns for males, females and children are set to 1 when b4 are true and 0 when
they are false. The age of the head is set only for persons who are heads, other persons will be given
0 for this variable:

mdgperson_nodup['male'] = np.where(mdgperson_nodup['b4'] == "male", 1, 0)
mdgperson_nodup['female'] = np.where(mdgperson_nodup['b4'] == "Female", 1, 0)
mdgperson_nodup['child'] = np.where(mdgperson_nodup['b3'] == 'Daughter/son',
1, 0O

mdgperson_nodup['head_age'] = np.where(mdgperson_nodup['b3'] == 'Head',

mdgperson_nodup['b5'], 0)
mdgperson_nodup

A part of the data frame with the new columns:

hh state urbrur member b3 b4 b5 b6 male female child head_age
0 20074 02 Capital Urban 5 Daughter/son Male 100 missing 1 0 1 0.0
1 20074 02 Capital Urban 1 Head Male 39.0 Married - polygamy 1 0 0 39.0
2 60036 06 West Urban 4 Daughter/son Male 200 MNever married 1 0 1 0.0
3 40024 04 East Urban 1 Head Female 200 Married - polygamy 0 1 0 20.0
4 40024 04 East Urban 2 Spouse Female 33.0 Married - monogamy 0 1 0 0.0
5 40034 04 East Urban 2 Nonrelative Female 230 Married - polygamy 0 1 0 0.0
6 50069 05South Rural 5 Grandchild Female 16.0 Never married 0 1 0 0.0
7 60036 06 West Urban 3 Daughter/son Female 240 Never married 0 1 1 0.0
8 20074 02 Capital Urban 3 Daughter/son Male 16.0 Never married 1 0 1 0.0
9 50069 05South Rural 2 Spouse Female 60.0 Married - monogamy 0 1 0 0.0

105

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Now we can aggregate to households:

mdgperson_nodup.groupby('hh', as_index=False).agg(

mean_age=('b5', 'mean'),
hh_members=('member', 'count'),
males=("'male', 'sum'),
females=('female', 'sum'),
children=("'child', 'sum'),
head_age=("'head_age', 'sum')

)

The aggregated household data frame:

hh mean_age hh_members males females children head_age

0 20074 17.833333 6 3 3 4 39.0
1 20100 25.333333 4] 3 3 4 45.0
2 20118 13.000000 5 1 4 3 27.0
3 40024 17.166667 4] 1 5 2 20.0
4 40034 17.833333 4] 3 3 2 37.0
5 50069 34.333333 4] 2 4 2 67.0
6 60036 26.666667 4] 4 2 4 42.0
7 80041 15400000 4] 4 2 4 31.0

When we want to add the aggregated variables to each row in the original data frame, we can add
them one at a time. We use the groupby function combined with the transform function to add
aggregated values to each row. Finally, we drop the columns we do not need anymore:

mdgperson_nodup['mean_age'] =
mdgperson_nodup.groupby(['hh'])['b5'].transform('mean")
mdgperson_nodup["hh_members'] =
mdgperson_nodup.groupby(['hh']) ["member'].transform('count')
mdgperson_nodup['males'] =
mdgperson_nodup.groupby(['hh'])['male'].transform('sum')
mdgperson_nodup['females'] =
mdgperson_nodup.groupby(['hh'])['female'].transform('sum')
mdgperson_nodup['children'] =
mdgperson_nodup.groupby(['hh']) ['child'].transform('sum')
mdgperson_nodup['head_age'] =
mdgperson_nodup.groupby(['hh']) ["head_age'].transform('sum')
mdgperson_nodup = mdgperson_nodup.drop(columns=['male', 'female', 'child'])
mdgperson_nodup

106

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We see that the aggregated variables have the same values within the same hh numbers:

hh state urbrur member b3 b4 b5 b6 head_age mean_age hh_members males females children
0 20074 02 Capital Urban 5 Daughter/son Male 10.0 missing 39.0 17.833333 6 3 3 4
1 20074 02 Capital Urban 1 Head Male 39.0 Married - polygamy 39.0 17.833333 6 3 3 4
2 B0036 06 West Urban 4 Daughter/son Male 200 Never married 420 26666667 1 4 2 4
3 40024 04 East Urban 1 Head Female 200 Married - polygamy 200 17.166B867 51 1 5 2
4 40024 04 East Urban 2 Spouse Female 33.0 WMarried - monogamy 200 17.166667 6 1 5 2
5 40034 04 East Urban 2 Nonrelative Female 23.0 Married - polygamy 370 17.833333 6 3 3 2
6 50069 05South Rural 5 Grandchild Female 16.0 Never married 67.0 34.333333 6 2 4 2
7 80036 06 West Urban 3 Daughter/son Female 240 Never married 420 26666667 51 4 2 4
8 20074 02 Capital Urban 3 Daughter/son Male 16.0 Never married 39.0 17.833333 6 3 3 4
9 50069 05South Rural 2 Spouse Female 60.0 Married - monogamy 67.0 34333333 6 2 4 2

107

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

16. Restructuring files

There are many ways to restructure data files. The most common are transposing observations to
variables and transposing variables to observations. In our original dataset there is one observation
for each person. If we want, we can restructure this dataset to have one set of variables for each
person. This will be to transpose from observations to variables. As we see in our data the b3
variable contains the relation to the head of the household. When we transpose this to one variable
for each person it is common to name the new variables b3_1-b3_n, where n is the maximum
number of persons in a household. We want to transpose the variables with person information.
The household variables are not to be transposed; they will be kept as they are in the new dataset.

Here is how the dataset looks like before the restructure:

[Data Editor (Edit) - [mdgperson_nodup.dta]
File Edit Vew Data Tool
=A% IEY | s A A = = O
hh[1] 020074
&" hh state urbrur member b3 b4 b5 b& | | Variables i
%‘ 1 02 capital uUrban 1 Head Male 39 Married - polygamy
§ 2 020074 02 capital urban 2 Spouse Female 21 mMarried - monogamy Variable Label
% 3 020074 02 Capital Urban 3 Daughter/son Male 16 Never married ¥ hh Household identific...
. 4 020074 02 Capital uUrban 4 Daughter/son Female 13 Never married M state State
5 020074 02 capital urban 5 Daughter /son male 10 - M urbrur Urban/Rural locatio...
& 020074 02 Capital Urban [Daughter /son Female 8 . I member Member number wit. ..
7 nzo100 02 capital Urban 1 Head Male 45 Married - polygamy M b3 Relationship to hea...
8 020100 02 capital urban 2 spouse Female 21 married — monogamy | B b4 Sex
3 020100 02 Capital Urban Ed Daughter/son Female z1 Newver married M bs Age
10 020100 02 Capital uUrban 4 Daughter/son Male 19 Married - monogamy M b Civil status
11 020100 02 Capital urban 5 Daughter/son Female 16 Never married
1z 020100 02 Capital Urban & Daughter/son Male 10
13 020118 02 Capital uUrban 1 Head Male 27 Married - monogamy —— n
14 020118 02 Capital urban 2 spouse Female 22 married - monogamy = A
15 020118 02 Capital Urban 3 Daughter/son Female 8 . Name hh
16 020118 02 capital urban 4 paughter /son Female 3 . Label Household identific:
17 020118 02 Capital Urban 5 Daughter /son Female 3 B Type stré
18 040024 04 East Urban 1 Head Female 20 Married - polygamy Format g5
19 040024 04 East urban 2 Non relative Female 22 wmarried - polygamy Notes
20 040024 04 East Urban 3 Non relative Female 7 - =
21 040024 04 East urban 4 other relative Female 9 .
22 040024 04 East urban H Other relative Female 18 Never married Label =
23 040024 04 East Urban 5 Other relative Male 1z Never married = Motes
< ' ' ’ o I v
Ready Wars: 8 Order: Dataset Obs: 47 Filter: Off Mode: Edit NUM

After the restructure we want it to be like this:

I8 Data Editor (Edit) - [Untitled] (=13
Bl Edt Yew Data Iools
25 b |G i [| T BE R
hhl1] 020074
e hh b3_1 b4_1 b5_1 bé_1 b3_2 b4_2 b5_2 # | Variables ks
2l 2 Head Male 39 Married — polygamy Spouse Female 21 Marri
B 2 020100 Head Male 45 Married - polygamy Spouse Female 41 marrd variable Label .
% 3 020118 Head Mmale 27 married — monogamy Spouse Female 22 marri ¥ hh Household identific...
4 040024 Head Female 20 Married - polygamy Non relative Female 23 mMarri M b3_1 1b3_]
5 040034 Head Male 37 Married - monogamy Spouse Female 33 Mmarri TS A -
- . |Properties 7
& 0500639 Head Hmale &7 married — monogamy Spouse Female &0 Marri =] A
7 060036 Head Male 42 Married - monogamy Spouse Female 40 mMarri: Name hh _
8 060041 Head Female 31 married — monogamy Daughter /son male 20 I Label Household identific:
= | Type s
< | 2 armat oz i
Ready Vars: 27 Order: Dataset Obs:8 Fiter: OFf Mode: Edit NUM

Above, the new variables are shown for the first two persons within each household. Usually this is
how our data is structured after data entry. We would like to restructure the data from variables to
cases before further data processing.

108

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

16.1.Sas

In Sas we have a transpose procedure which can be used. To restructure the data as shown above
we restructure each of the b-variables separately and then merge the data together.

PROC TRANSPOSE DATA=MDG.MDGPERSON NODUP OUT=hh_b3 PREFIX=b3_ ;
BY hh state urbrur;
ID member;
VAR b3 ;
RUN;
PROC TRANSPOSE DATA=MDG.MDGPERSON NODUP OUT=hh_b4 PREFIX=b4_ ;
BY hh state urbrur;
ID member;
VAR b4 ;
RUN;
PROC TRANSPOSE DATA=MDG.MDGPERSON NODUP OUT=hh_b5 PREFIX=b5_ ;
BY hh state urbrur;
ID member;
VAR b5 ;
RUN;
PROC TRANSPOSE DATA=MDG.MDGPERSON_ NODUP OUT=hh_b6 PREFIX=b6_ ;
BY hh state urbrur;
ID member;
VAR Db6;
RUN;
data households;
merge hh b3 hh b4 hh b5 hh bé6;
by hh state urbrur;
drop name ;
run;

Each transposed variable is put into a separate dataset together with the identification variables.
The prefix option in the Proc transpose statement gives the prefix of the new variable names. The /d
statement is used for the suffixes of the new variable names. The By statement defines the
identification variables and the Var statement tells which variable to transpose. Finally, we merge
the datasets together within a Data step. Usually, we should not merge more than two datasets at a
time, but as long as we have no duplicates on our person dataset it is safe to merge all five together
with one merge.

When we know how to use macros in Sas we can reduce the code to this:

$macro ObsToVar (varname) ;
proc transpose data=mdg.mdgperson nodup out=hh &varname. prefix=&varname. ;

by hh state urbrur;

id member;

var &varname. ;

run;

$mend;

$ObsToVar (b3) ;

%$0ObsToVar (b4) ;

%ObsToVar (b5)
$ObsToVar (bo) ;
data households;

merge hh b3 hh b4 hh b5 hh b6;
by hh state urbrur;

drop name ;
run;

’

The Proc transpose procedure is not useful when we change back to the original structure. Instead,
we do it with a Data step:

109

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

data persons (keep=hh state urbrur b3 b4 b5 b6 member);
set households;

by hh state urbrur ;

if first.urbrur then
member = 0

array b3a (*) b3 1-b3 6;
array bda (*) b4 1-b4d 6;
array b5a (*) b5 1-b5 6;
array bo6a (*) b6 1-b6 6;

do i =1 to dim(b3a);
member +1;

b3 = b3a(i);
b4 = bda(i);
b5 = bb5a(i);
b6 = boa(i);
if sum(b3,b4,b5,b6) ne . then
output;
end;
label
b3 = 'Relationship to head of household'
bd = 'Sex'
b5 = 'Age'
b6 = 'Civil status'
member = 'Member number within household'

format b3 head rel. b4 sex. b6 civil status.;
run;

In the Data statement we name the new dataset and choose which variables to keep. Then we read
the dataset households with the Set statement and use the By statement to define a grouped
treatment of the data. We define each group of variables which have the same type of content in
separate arrays with Array statements. Then we will loop through the arrays. The loop is done within
the Do - End block. If there is data in any of the b-variables we will output a new observation. Finally,
we label the variables and variable values.

16.2.Spss

First, we open the file we will restructure with the Get command. Then we use the Casetovars
command in Spss for our restructure and we can restructure all variables with just one command.
The Casetovars command is found as a wizard under the Data > Restructure menu and the
generated syntax will look like this:

GET FILE= 'mdgperson nodup.sav'
SORT CASES BY hh state urbrur member.
CASESTOVARS

/ID=hh state urbrur

/ INDEX=member

/SEPARATOR="_"

/GROUPBY=VARIABLE.

The /d subcommand defines the variables to group by, the Index subcommand defines the index
where the suffixes for the restructured variable names are found. The rest of the variables will be
copied to the new dataset. The subcommand Groupby defines how the new variables are to be
grouped in the output dataset, either by the original variables (option variable: b3_1 b3_2 .. b3_6, ..,
b6_1 b6_2 .. b6_6) or by the index variable (option index: b3_1, b4_1, b5_1, b6_1, .. b3_6, b4_6, b5_6,
b6_6).

110

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

To go back to the original data structure, we use the Vartocases command which is also found under
the Data > Restructure menu. The generated syntax is this:

VARSTOCASES
/MAKE b3 FROM b3 1 b3 2 b3 3 b3 4 b3 5 b3 6
/MAKE b4 FROM b4 1 b4 2 b4 3 b4 4 bd 5 b4 6
/MAKE b5 FROM b5 1 b5 2 b5 3 b5 4 b5 5 b5 6
/MAKE b6 FROM b6 1 b6 2 b6 3 b6 4 b6 5 b6 6
/ INDEX=member (6)
/KEEP=hh state urbrur
/NULL=DROP.

If the variables were stored after each other in the dataset, we could use a syntax that choose all the
variables from the first one to the last one within the group:

b3 1 TO b3 _6

The syntax above will choose all variables from b3_1 to b3_6 in the order they appear in the dataset.
As the variables b3_1 to b3_6 are not stored after each other in our dataset, we must stick to listing
all the variables as shown in the varstocases example above.

16.3.Stata

The reshape command is found under Data > Create or change data > Other variable-transformation
commands > Convert data between wide and long. We have a very compact code for doing this in
Stata, we just open the dataset to restructure with the use command, rename the variables with the
rename command (to add the underscores) and restructure with the reshape command:

use "mdgperson_nodup.dta", clear
rename b* b*_
reshape wide b*_, i(hh) j(member)

With the wide option the structure is changed from observations (long) to variables (wide). The b*_
are the variables to be restructured (= b3_b4_b5_b6_). The hh is the by-variable for the restructure;
member is used to give suffixes to the restructured variable names. The rest of the variables will be
copied to the new dataset.

The restructure back to the original form uses the long option. After the reshape we rename the b-
variables:

reshape long b3_ b4_ b5_ b6_ , i(hh) j(member)
rename b*_ b*

16.4.R

We can use the reshape command to go from a long to a wide data frame. The idvar argument
defines the group variables, the timevar argument identifies the variable that will be used to
differentiate multiple records from the same group, direction tells it will be made a wide data frame
and sep gives the separator between the original variable name and the timevar counter.

householdsr <- reshape(data.frame(mdgperson_nodup),idvar=c("hh","state","urbr
ur'"),timevar="member",direction="wide",sep="_")

The new data frame householdsr will have one variable for each member in the household for each
of the b3, b4, b5 and b6 variables where the member number is an index in the variable names. All
variables ending with _1 will contain information about member 1, all ending with 2 contain

111

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

information about member 2 and so on. There is one row for each combination of the variables hh,
state, urbrur which were the group variables. Here we see some of the variables:

nh b5_1 b5_2 b53

ousehei et hestion state urbrur b3_1 ba_1 o b6_1 b3_2 b4 2 o b6_2 b33 b4 3 o b6_3 b3 4

02 Capital | Urban Hezd Male 39 Married - use Female 21 Warried - monogamy Daughter/son | Male 16 Never married Daughter/san

02 Capital | Urban Head Male a5 Married - use Female 41 Married - monogamy Femaie 21 Never married Daughter/sen

02 Capital | Urban Head Male 27 Married - monegamy | Spouse Female 22 Married - monogamy Female Daughter/sen

O Esst | Urban Head Male 37 Married - moncgamy | Mon relative | Female | 23 Married - p / Daughter/son Female 17 Never maried Cther relative

04 East | Urban Head Female 20 Married - polygamy Spouse Female 33 Married - monogamy | Non relative Female 7 Daughter/sen

05 South | Rural Head Male &7 Married - monegamy Spouse Female | 60 Married - monogamy | Daughter/son | Female | 30 Married - monogamy | Daughtar/sen

06 West | Urban Head Male a2 Married - monogamy | Spouse Female 40 Married - monogamy | Daughter/son | Female | 24 Never marriea Daughtar/san

42 060021 0 West | Urban Head Female 31 Married - monagamy | Daughter/son | Male 20 Never married Other relative Male Never marred Daughter/san

When we have our data organised in the wide way, as seen above, we can use reshape to transpose
to the long data frame. Then all the variables with the same prefix, like b3_7-b3_6, will be
transformed to the same variable in separate rows. We use the reshape command again, now with
the long direction:

persons <- reshapeChouseholdsr,idvar=c("hh","state","urbrur"),timevar="member

",direction="1long",sep="_"

There are some issues with the new, long data frame. The first is that the new variable names end
with _1. The second is that there are added some rows where all transposed values are missing (for
households which have fewer than the maximum number of household members). The third is that
the data frame is not sorted by the hh and member variables. The fourth is that the row
identification is a combination of the group variables and not row numbers:

hh b5_1

T . state urbrur member b3_1 b4 1 Age b6_1
060041.06 West.Urban.4 050041 06 West Urban 4 Daughter/sen | Female 17 Mever married
020074.02 Capital.Urban.5 020074 02 Capital = Urban 5 Daughter/son | Male 10
020100.02 Capital.Urban.5 020100 02 Capital | Urban 5 Daughter/son | Female 18 Mever married
020118.02 Capital.Urban.5 020118 02 Capital | Urban 5 Daughter/son | Female 3
040024.04 East.Urban.5 040024 (04 East Urban 5 Daughter/son | Male g
040034.04 East.Urban.5 (20034 04 East Urban 5 Crther relative | Female 18 Mever married
050069.05 South.Rural.5 (030068 05 South | Rural 5 Grandchild Femazle 1€ Mever married
060036.06 West.Urban.5 080036 06 West Urban 5 Daughter/son | Male 18 Mever married
060041.06 West.Urban.5 080041 06 West Urban 5 Daughter/son | Male a8
020074.02 Capital.Urban.6 020074 02 Capital Urban B Daughter/son | Female 8
020100.02 Capital.Urban.6 220102 02 Capital | Urban E Daughter/son | Male 10
020118.02 Capital.Urban.6 020118 02 Capital | Urban i
040024.04 East.Urban.6 040024 04 East Urban 6 Cther relative | Male 12 Never married
040034.04 East.Urban.6 (20034 04 East Urban g Daughter/son | Female 11
050069.05 South.Rural.6 030062 05 South | Rural g Grandchild Male 13 Mever married
060036.06 West.Urban.6 0£0036 06 West Urban g Daughter/son | Male 1€ Mever married
060041.06 West.Urban.6 080041 06 West Urban g Daughter/son | Male 1

We see that the new variables are called b3_17, b4_1, b5_1 and b6_1. We want to delete the suffix _1 in
the names. We use the sub command with a regular expression and say that the suffix _1 in the
column names should be replaced with an empty string:

colnames(persons) <- sub("_1$%$", , colnames(persons))

112

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Next, we will delete the row that has NA's for all the new variables (marked yellow in the list above).
We count the NA's for variable 5:8 and keep only those were the count is not 4 (as it is four new
variables). The ,5:8 means all rows and columns 5:8. The last comma tell us to use all columns in the
data frame in the output.:

persons <- persons[rowSums(is.na(persons[,5:8]1))!=4,]

Now we will sort the data frame by the hh and member variables:

persons <- persons %>% arrange(hh,member)

Finally, we want to change the row names to row numbers:

rownames (persons)<-1:nrow(persons)

The data frame is now as we want it to be:

::usehcld identification state urbrur member b3 b4 ::e be

1 | 020074 02 Capital | Urizan 1 Head Male 39 Married - polygamy

2 | 020074 02 Capital | Urban 2 Spouse Female 21 Married - moncgamy

3 | 020074 02 Capital | Urban 3 Daughterfson | Male 16 Mever married

4 020074 02 Capital | Urban 4 Daughter/son | Female 13 Mever married

5 020074 02 Capital | Urban 3 Daughter/sen Male 10

6 | 020074 02 Capital | Urban & Daughter/son | Female g

7 | 020100 02 Capital | Urban 1 Head Male 45 Married - polygamy

8 020100 02 Capital | Urban 2 Spouse Female 41 Married - moncgamy

9 020100 02 Capital | Urban 3 Daughter/son | Female 21 Mever married

10 020100 02 Capital | Urban 4 Daughter/sen Male 19 Married - moncgamy

11 | 020100 02 Capital | Urban 5 Daughter/son | Female 16 Mever married

12 | 020100 02 Capital | Urban & Daughter/sen Male 10

13 020118 02 Capital | Urban 1 Head Male 27 Married - moncgamy

14 020118 02 Capital | Uripan 2 Spouse Female | 22 Married - monoganmy

15 020118 02 Capital | Urban 3 Daughter/scn Female]

16 020118 02 Capital | Urizan 4 Daughter/son | Female 5

17 020118 02 Capital | Urban 5 Daughter/scn Female 3

18 040024 24 East Urban 1 Head Male 37 Married - moncgamy
16.5.Python

Our survey, before aggregation, is in the long format. Here that means every person within a
household has a separate row in the data frame. If we instead want one row for each household
and repeated columns for the persons in the household, we can use the pivot function.

We define the variables to keep once for each household in the index parameter. Then we use the
columns parameter to specify the person number. Finally, we use the values parameter to specify
the columns to pivot:

householdsr = mdgperson_nodup.pivot(index=['hh', 'state', 'urbrur'],

columns="member', values= ['b3', 'b4', 'b5', 'b6'])
householdsr

113

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The data frame is now in the wide format:

b3 bd . b5
member 1 2 3 4 5 6 1 2 3 4 - 3 4 5 6
hh state urbrur
20078 Capi?azl LiETw Head Spouse Daughter/son Daughter/son Daughter/son Daughter/son Male Female Male Female .. 16.0 13.0 100 8.0
20100 Capi?azl Urban Head Spouse Daughter/son Daughter/son Daughter/son Daughter/son Male Female Female Male ... 21.0 19.0 160 100
201UE Capi?azl Siban Head Spouse Daughter/son Daughter/son Daughter/son NaN Male Female Female Female .. 80 50 30 NaN
40024 EaDs‘:: Urban Head Spouse Nonrelative Daughter/son Other relative Daughter/son Female Female Female Male .. 7.0 140 180 1.0
auocs EaDs‘:: Siban Head Nonrelative Daughter/son Otherrelative Daughter/son Other relative Male Female Female Female .. 170 90 90 120
50089 Sou?: Rural Head Spouse Daughter/son Daughter/son Grandchild Grandchild Male Female Female Female .. 30.0 20.0 180 130
TS Wensi Biban Head Spouse Daughter/son Daughter/son Daughter/son Daughter/son Male Female Female Male ... 240 200 180 16.0
60041 Weosi Urban Head Daughter/son Other relative Daughter/son Daughter/son Daughter/son Female Male Male Female ... NaN 17.0 80 10

8 rows x 24 columns

Each of the variables b3, b4, b5 and b6 has now 6 columns (the maximum number of persons in a
household. For households with less than 6 members, the values are set to NaN for numbers higher
than the number of persons in the household (see row 3, member 6).

There are some issues with this data frame. First the pivoted columns have multi-index names
which should be changed to normal column names. Second, the household variables are defined as
an index, they should be ordinary columns. We rename the column names with a for loop through
the column names:

householdsr.columns = [f'{x}_{y}' for x, y in householdsr.columns]

Another way to rename the column names is to use the get level values function:

|l 1

householdsr.columns = householdsr.columns.get_level_values(0) + '_' +
householdsr.columns.get_level_values(l).astype('str')

Then we use the reset index method to change our household variables back to normal columns:

householdsr = householdsr.reset_index()
householdsr

The result:
hh state urbrur b3_1 b3_2 b3_3 b3_4 b3_5 b3_6 b4 _1 .. b5_3 b5_4 b5_5 b5_6 b6_1 b6_2
0 20074 15 Urban Head Spouse Daughter/son Daughter/son Daughter/son Daughter/son Male .. 16.0 130 100 8.0 Mo e plamedy
Capital polygamy monogamy
1 20100 02 Urban Head Spouse Daughter/son Daughter/son Daughter/son Daughter/son Male ... 210 190 186.0 10.0 Married - Married -
Capital polygamy monogamy
2 20118 02 Urban Head Spouse Daughter/son Daughter/son Daughter/son NaN Male ... 8.0 5.0 3.0 NaN Married - Married -
Capital monogamy monogamy
3 40024 04 Urban Head Spouse Non relative Daughter/son Other relative Daughter/son Female 70 140 180 MO0 Married - Married -
East polygamy monogamy
4 40034 o5 Urban Head Nonrelative Daughter/son Otherrelative Daughter/son Other relative Male . 170 9.0 9.0 120 LS Mamedy
East monogamy polygamy
5 50069 05 Riral Head Spouse Daughterson Daughterson Grandchild Grandchid Male .. 300 200 160 1ag Mamed- Maried-
outh monogamy monogamy
6 60036 T3 Urban Head Spouse Daughter/son Daughter/son Daughter/son Daughter/son Male ... 240 200 180 16.0 L) - parmedy
West monogamy monogamy
7 60041 05 Urban Head Daughter/son Otherrelative Daughter/son Daughter/son Daughter/son Female . NaN 17.0 8.0 10 Married - Ne_fer
West monogamy married

8 rows x 27 columns

114

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When we have a data frame in wide format like the one above, we can use the wide_to_long function
to transpose to the long format. First, we specify the name of the data frame to transpose. Then the
variables we want to transpose (b3, b4, b5, b6). They are called stub variables. We specify the
separator for these stub variables (here: _ because the original variables are named b3_1, b3 2 and
so on). Then we specify the variables to copy with the i parameter. Finally, we number the new rows
within each household with the j parameter:

persons = pd.wide_to_longChouseholdsr, ['b3', 'b4', 'b5', 'b6'], sep='_",

i=['hh', 'state', 'urbrur'], j='member')
persons

The new, long format data frame:

b3 b4 b5 b6
hh state urbrur member
20074 02 Capital Urban 1 Head IMale 39.0 Married - polygamy
2 Spouse Female 21.0 WMarried - monogamy
3 Daughter/son Male 16.0 Never married
4 Daughter/son Female 13.0 Never married
§ Daughter/son IMale 10.0 missing
6 Daughter/son Female 8.0 missing

-

20100 02 Capital Urban Head Male 450 Married - polygamy

2 Spouse Female 41.0 WMarried - monogamy
3 Daughter/son Female 21.0 MNever married
4 Daughter/son Male 19.0 Married - monogamy
5 Daughter/son Female 16.0 Never married
6 Daughter/son IMale 10.0 missing
20118 02 Capital Urban 1 Head Male 27.0 Married - monogamy
2 Spouse Female 22.0 Married - monogamy
3 Daughter/son Female 8.0 missing
4 Daughter/son Female 5.0 missing
§ Daughter/son Female 3.0 missing
6 NaN NaN NaN NaN
40024 04 East Urban 1 Head Female 200 Married - polygamy
2 Spouse Female 33.0 WMarried - monogamy

We should delete the lines were all the transposed variables are NaN. Furthermore, we can change
the household variables from index to normal columns. We use the dropna function to drop all rows
with NaN for member characteristics. It is important to drop the NaN rows before we reset the
index. Otherwise, the household variables will be included in the dropna test. They are not Nan, and
no rows would then be deleted.

persons = persons.dropnaChow="'all")
persons = persons.reset_index()
persons

115

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Here are the first rows our data frame after deletion and index reset:

hh state urbrur member b3 b4 bb bé

0 020074 02 Capital Urban 1 Head Male 39.0 Married - polygamy
1 020074 02 Capital Urban 2 Spouse Female 21.0 WMarried - monogamy
2 020074 02 Capital Urban 3 Daughter/son Male 16.0 MNever married
3 020074 02 Capital Urban 4 Daughter/son Female 130 MNever married
4 020074 02 Capital Urban 5 Daughter/son Male 10.0 missing
§ 020074 02 Capital Urban & Daughter'son Female 8.0 missing
6 020100 02 Capital Urban 1 Head Male 450 Married - polygamy
7 020100 02 Capital Urban 2 Spouse Female 410 WMarried - monogamy
8 020100 02 Capital Urban 3 Daughter/son Female 210 MNever married
9 020100 02 Capital Urban 4 Daughter/son Male 19.0 MWMarried - monogamy
10 020100 02 Capital Urban 5 Daughter/son Female 16.0 Never married
11 020100 02 Capital Urban & Daughter/son Male 10.0 missing
12 020118 02 Capital Urban 1 Head Male 270 Married - monogamy
13 020118 02 Capital Urban 2 Spouse Female 220 WMarried - monogamy
14 020118 02 Capital Urban 3 Daughter/son Female 80 missing
15 020118 02 Capital Urban 4 Daughter/son Female 5.0 missing
16 020118 02 Capital Urban 5 Daughter/son Female 3.0 missing
17 040024 04 East Urban 1 Head Female 20.0 Married - polygamy
18 040024 04 East Urban 2 Spouse Female 330 Married - monogamy

If there are many stub variables the list could be long. Instead of typing them all in, we can put them
in a list based on the column names. In our dataset we want to find all variables that ends in an
underscore and one or more numbers and extract the name without the underscore and the
number. Then we select the rows where the same extracted name appears more than once. Finally,
we drop the help variable idx and convert to a single list. We can do it like this:

stubvars = pd.bataFrame(householdsr.columns)

stubvars = stubvars.replace('_[0-9*]$', '', regex=True)
stubvars['idx'] = stubvars.groupby(0).cumcount()
stubvars = stubvars.loc[stubvars['idx'] == 1]

stubvars = stubvars.drop(columns="1idx")

stubvars = stubvars.stack().values.tolist()

stubvars

The first line converts the variable names into a data frame called stubvars. The second replace the
variable names without the extension of underscore and number(s) by using a regular expression
that says: find an underscore and one or more numbers from 0-9 at the end of the string and
replace it with an empty string. The third line add a column called idx which number each row with
the same name within the data frame. This means that variables names where the extension is
deleted will appear more than once, with different idx numbers. The fourth line delete all rows
except the once where idx equals 1 to get rid of duplicates and names that should not be stub

116

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

variables. In the fifth line we delete the idx column. Finally, in the sixth line we convert the data
frame to a single list. To make it single we use the stack method. Without using the stack method, the
list will contain one list for each variable and not fit into the stubnames parameter. The list will look
like this and fit:

['b3', 'b4', 'D5', 'b6']

Now we can use the stubvars list in the stubnames parameter:

persons = pd.wide_to_long(Chouseholdsr, stubnames=stubvars, sep='_"', i=["hh',
'state', 'urbrur'], j="member")

persons = persons.dropnaChow="'all")

persons = persons.reset_index()

persons

117

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

17. Recoding

The usual recoding is when we want to group values of one variable, for instance create age groups
from age. In Spss and Stata we have a separate command for this called recode. In Sas we can use
the Select construction to do the recode if we want to have a new variable on the dataset. In R we
can use the case_when command in dplyr. In Sas, if we just need the recode for tabulation or other
listings, we can use a format instead of the recode. When we recode, we must decide what to do
with invalid and missing values (more about missing values on page 139).

17.1.Sas

Here are two examples on how to recode age into age groups. The first method creates a new
variable; the second just uses a format to group values and then uses it in a frequency table. The
Select construction consists of a number of When statements and an Otherwise statement. The order
of the When statements is often important because Sas leaves the Select construction after the first
true When condition is executed.

When we create a new variable, we should also make a format for it. This is done with Proc format.
We also make the format that group codes together as is shown in the second Value statement in
Proc format. The formats are then loosely connected in the Freq procedure:

data mdgperson2;
set mdg.mdgperson nodup;

select;
when (0<= b5 < 5) agegroup = 1;
when (5<= b5 < 10) agegroup = 2;
when (10<= b5 < 20) agegroup = 3;
when (20<= b5 < 40) agegroup = 4;
when (40<= b5 < 60) agegroup = 5;
when (b5 >= 60) agegroup = 6;
otherwise agegroup = 9;
end;
label agegroup = 'Age groups';
run;

proc format;
value agegroup
= '0-4 years'
= '5-9 years'
= '10-19 years'
'20-39 years'
= '40-59 years'
= '60 years and above'
IN/AI

oo WNR
|

’

value agegrouped (notsorted)

0- < 5 = '0-4 years'
5- < 10 = '5-9 years'
10- < 20 = '"10-19 years'
20- < 40 = '20-39 years'
40- < 60 = '40-59 years'
60- high = '60 years and above'
other = 'N/A"
run;

proc freq data=mdgperson2;
table agegroup b5 /missing;
format b5 agegrouped. agegroup agegroup.;

118

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

title 'Age grouped, two methods';
run;

The result of the two ways of recoding:

Age grouped, ftwo methods
The FREQ Procedure

Age groups
Cumulative| Cumulative
agegroup| Frequency Percent| Frequency Percent
0-4 years 2 426 2 426
5-9 years 7 1489 9 19.13
10-19 years 16/ 34.04 25 53.19
20-39 years 15 31.91 40 83.11
40-39 years 4 8.51 44 93.62
60 years and above 2 426 46 9787
NIA 1 213 47 100.00

Age

Cumulative, Cumulative
b5| Frequency Percent| Frequency Percent

NIA 1 213 1 213

0-4 years 2 426 3 6.38

5-9 years 7 14.89 10 21.28

10-19 years 160 34.04 26 55.32

20-39 years 13 313 41 87.23

40-39 years 4 8.51 45 95.74

60 years and above 2 426 47 100.00

The notsorted option in the Value statement in Proc format is used to tell Sas not to sort the values.
The original order is kept. In some of the Sas procedures, like Proc means and Proc tabulate, we can
use this order in the table. Proc freq does not have this functionality.

17.2.Spss

In Spss we use the Recode command to group the ages, then create the variable and value labels
and the frequency table:

GET FILE='mdgperson nodup.sav'.
RECODE b5

(0 thru 4=1)

(5 thru 9=2)

(10 thru 19=3)

(20 thru 39=4)

(40 thru 59=5)

(60 thru Highest=6)

(SYSMIS=9)

INTO agegroup.
VARIABLE LABELS agegroup 'Age grouped'.

EXECUTE.
VALUE LABELS agegroup
1 '0-4 years'
'5-9 years'
'10-19 years'
'20-39 years'
'40-59 years'
'60 years and above'

o U W N

119

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

9 'N/A
FREQUENCIES agegroup.

The output gives us the same distribution as in Sas:

Statistics
Age grouped
M Walid 47
Missing 0
Age grouped
Cumulative
Frequency Percent | Walid Percent Percent
Yalid 0-4 years 2 43 43 43
A-9vyears 7 149 149 19,1
10-19 years 16 34,0 34,0 53,2
20-39 years 15 e e 851
40-58 years 4 85 8.5 936
G0 years and above 2 43 43 87,9
TIA 1 21 21 100,0
Total 47 100,0 100,0
17.3.Stata

The recode in Stata is similar to Spss, except the syntax is even shorter:

use "mdgperson_nodup.dta", clear

recode b5 (1/4 = 1) (5/9 = 2) (10/19 = 3) (20/39 = 4) (40/59 = 5) (60/max = 6) ///
(else = 9), gen(agegroup)
label define agegroup ///

1 "0-4 years" ///

2 "5-9 years" ///

3 "10-19 years" ///

4 "20-39 years" ///

5 "40-59 years" ///

6 "60 years and above" ///

9 "N/A"

label values agegroup agegroup

tabl agegroup

The table looks like this:

120

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

. tabkl agegroup
-> tabulation of agegroup
RECODE of bS5 (Ruge) Freq. Dercent Cum.
0-4 years 2 4. 26 4. 26
5-% years 7 14.8% 13,15
10-1% years 16 34.04 53.1%9
20-35% years 15 31.91 B5.11
40-5% years 4 8.51 23 .82
&0 years snd sbove 2 4. 26 27 .87
H/R 1 2.13 io00.00
Total 47 i100.00

We can use the case_when command in dplyr to recode a variable into a new one. First is an example
for integer values. We use %in for the intervals for the different age groups. 0:4 is recoded to age
group 1 and so on. The last condition, TRUE ~ 7 is to recode values that are not already grouped into
the other groups to 7. After the recode, we create levels and labels and add them to the age group
variable when we convert it to a factor variable. Finally, we make a frequency table as a data frame.
When the table is converted to a data frame the table is transposed as we see in the result. We also
name the column in the table command:

mdgperson2 <- mdgperson_nodup %>%
mutate(agegroup=
case_when(

b5 %in% 0:4 ~

b5 %in% 5:9 ~

b5 %in% 10:19 ~ 3,

b5 %in% 20:39 ~ 4,

b5 %in% 40:59 ~ 5,

b5 >=60 ~ 6,

TRUE ~ 7))
agegroup.codes <- c(1,2,3,4,5,6,7)
agegroup.texts <- c('0-4 years','5-9 years','10-19 years', '20-39 years', '40-5
9 years','60 years and above', 'N/A")
mdgperson2$agegroup <- factor(mdgperson2$agegroup,levels = agegroup.codes,lab
els=agegroup.texts)
as.data.frame(addmargins(table(agegroup=mdgperson2$agegroup)))

The result:

agegroup Freq
1 0-4 years 2
2 5-9 years 7
3 10-19 years 16
4 20-39 years 15
5 40-59 years 4
6 60 years and above 2
7 N/A 1
8 sum 47

121

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

In the previous example we recoded the NA's to agegroup 7. If we want to leave it as NA, we can
drop the TRUE ~7 condition. Then we also must remove the NA from the levels and labels when we
convert to factor variable. Finally, in the next example the conditions allow decimals:

mdgperson2 <- mdgperson_nodup %>%
mutate(agegroup=
case_when(

b5 >= 0 & b5 <5 ~ 1,
b5 >= 5 & b5 < 10 ~ 2,
b5 >= 10 & b5 < 20 ~ 3,
b5 >= 20 & b5 < 40 ~ 4,
b5 >= 40 & b5 < 60 ~ 5,
b5 >=60 ~ 6))

agegroup.codes <- ¢(1,2,3,4,5,6)

agegroup.texts <- c('0-4 years','5-9 years','10-19 years','20-39 years', '40-5
9 years','60 years and above')

mdgperson2$agegroup <- factor(mdgperson2$agegroup,levels = agegroup.codes,lab
els=agegroup.texts)
as.data.frame(addmargins(table(agegroup=mdgperson2$agegroup,exclude = NULL)))

The first condition, b5 >= 0 & b5 <5, tells us that all values up to 5 (but not 5) should be recoded to 1.
The second condition, b5 >=5 & b5 < 10, include 5. That means there are no values between the end
of the interval in the first condition and the start of the interval in the second condition. We can say
that the intervals are closed. That is not the case in the first recode example. The first condition,
%in% 0-4, ends with the value 4 and the second condition, %in% 5:9, starts with 5. Between 4 and 5
there are room for values like 4.1, 4.5 and 4.9. In the first example these would have been recoded
to 7, in the second they will be recoded to 1.

The output table is now like this:

agegroup Freq

1 0-4 years 2
2 5-9 years 7
3 10-19 years 16
4 20-39 years 15
5 40-59 years 4
6 60 years and above 2
7 <NA> 1
8 sum 47
17.5.Python

We can use several ways to recode a column into a new one. One way is to write a recode function
and then use it with an apply method to add the recoded column to the data frame:

def age_groups(recodevar):
if 0 <= recodevar < 5:

return '1'

elif 5 <= recodevar < 10:
return '2'

elif 10 <= recodevar < 20:
return '3'

elif 20 <= recodevar < 40:

122

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

return '4'

elif 40 <= recodevar < 60:
return '5'

elif recodevar >= 60:
return '6'

else:
return '9'

persons['AgeGroup'] = persons['b5'].apply(age_groups)

persons

With this recode all rows will get a value for the new AgeGroup column, even the NaN values will be
recoded as they are included in the else clause.

Another way is to use the cut method. However, to be sure the recode is done correctly the column
to recode should be a float or integer (integers don't allow NaN'’s), not object. We define the edge
values in one list and the recode values in another list. We can choose to include the rightmost edge
values or not in our recode (the right parameter). We can also choose whether the first interval
should be left-inclusive or not (the include_lowest parameter). NaN values will not be recoded with
this method.

ages = [0, 5, 10, 20, 40, 60, 120]

agegroups=[1, 2, 3, 4, 5, 6]

persons['b5'] = persons['b5'].astype('float64')

persons['age_grp'] = pd.cut(persons['b5'], bins=ages, Tlabels=agegroups,
right=False)
pd.crosstab(persons['age_grp'].astype('object').fillna('Missing'),
columns="Frequency', margins=True)

This recode will not include the right edges in the current interval. For instance, the age 20 will be
recoded to 4, not 3. The number of agegroups must be one less than the number of age edges. The
agegroup 1 will include the age values 0 to 4, the second from 5 to 9 and so on. Values from 120 and
up from -1 and down will be Nan. A NaN value for age will result in a NaN value for age_grp.

The crosstab of the recoded age_grp:

col_0 Frequency All

age_grp
1 2 2
2 7T
3 16 18
4 15 15
5 4 4
6 2 2
Missing 1 1
All 47 47

We can fill the missing values with a value after the recode, but then we must change type to object
first:

persons['age_grp'] = pd.cut(persons['b5'], bins=ages, Tabels=agegroups,

right=False).astype('object').fillna('9")
pd.crosstab(persons['age_grp'], columns='Frequency', margins=True)

123

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

Now we have the value 9 for the missing value, just like for the first recode:

col 0 Frequency All

age_grp
1

2

All

16

15

47

16

15

47

124

Documents 2023/1

18. Functions

Functions help doing our work easier. A function is a set of rules which take one or more arguments
and returns an answer. There are lots of functions like arithmetic, character (string), date and time,
mathematical, logical, random number, and truncation functions. The functions may differ in how
they work between Sas, Spss, Stata, R and Python so we have to be sure how they work before we
use them. This is a list of commonly used functions:

Data processing in Sas, Spss, Stata, R and Python. A comparison

Function Function type Sas Spss Stata R Python

Extract a Character Substr Substr substr substr or str[start:end]

substring substring (beware that
first position is
Oandendis
not included)

Concatenate Character Cat, cats, Concat concat paste, paste0 +

string catt or catx

Replace Character Translate or | Replace subinstr or sub (first) or str.replace

string values tranwrd subinword gsub (all)

Change string | Character Lowcase Lower lower tolower str.lower

to lowercase

letters

Change string | Character Upcase Upcase upper toupper str.upper

to uppercase

letters

Reverse a Character Reverse N/A reverse stri_reverse (in strl::-1]

string package stringi)

Count Character Count N/A N/A str_count (in str.count

appearances package stringr)

of a string

Position of Character Find, findc, Char.index strpos str_locate and str.find

first findw, str_locate_all (in

occurrence of index, package stringi)

astring indexc or

indexw

Position of Character Findc, Char.rindex strrpos str_locate and str.rfind

last indexc or str_locate_all (in

occurrence of indexw package stringi)

a string

Length of a Character Length, Char.length or length nchar str.len

string lengthc or length

lengthn

Remove Character Strip N/A N/A trimws str.strip

leading and

trailing

blanks

Remove Character Left Ltrim Ltrim trimws str.Istrip

leading (argument

characters which="left")

125

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison
Remove Character Trim Rtrim Rtrim trimws str.rstrip
trailing (argument
blanks which="right")

Fill string with | Character Right Char.lpad N/A str_pad (in str.pad (with
blanks at the package stringr, | side='left')
left argument
side="right")
Fill string with | Character Subpad Char.rpad N/A str_pad (in str.pad (with
blanks at the package stringr, | side='right')
right argument
side="left")
Splittext into | Character N/A N/A split (into strsplit str.split
separate separate
words as a variables)
list
Join text from | Character N/A N/A N/A paste (when str.join
words in a list the list is not in
a data frame
column)
Addition Mathematical Sum Sum rowtotal rowSums or +
sum (dplyr)
Exponentiatio | Mathematical Exp Exp exp exp ** or np.power
n
Absolute Arithmetic Abs Abs abs abs abs
value
The modulus | Arithmetic Mod Mod mod %% %
of a fraction
Square root Arithmetic Sqrt Sqrt sqrt sqrt np.sqrt
Check for Logical N/A Any strmatch str_match in str.contains
values stringr package
Check for Logical Missing Missing or missing is.na isna
missing value sysmis
Coefficient of | Statistical Cv Cfvar N/A oY N/A (but we can
variation use
np.std(x)/np.me
an(x))
Maximum Statistical Max Max rowmax max (with np.max
value rowwise in
dplyr package)
Average Statistical Mean Mean rowmean rowmeans np.mean
value
Median value | Statistical Median Median rowmedian median (in np.median
dplyr package)

126

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison
Minimum Statistical Min Min rowmin min (with np.min
value rowwise in
dplyr package)

Number of Statistical Nmiss Nmiss rowmiss rowSums(is.na() | isnullin
missing) combination
values with sum
Number with | Statistical N Nvalid rownonmiss rowSums(lis.na(| count
valid, non-)
missing
values
Standard Statistical Std Sd rowsd sd (in dplyr np.std
deviation package)
Variance Statistical Var Variance N/A rowVars np.var
Round a Truncation Round Rnd round round round
number
The integer Truncation Int Trunc int integer og astype(int)
of a number as.integer
Random Random Normal Normal normal rnorm np.random.nor
normal number mal
distribution
Random Random Uniform Uniform runiform runif np.random.unif
uniform number orm
distribution
Difference Date and time Datdif Datedif tin or twithin difftime N/A (but can
between use arithmetic
dates difference

between 2 date

variables)
Convert to Date and time Mdy Date.dmy or date as.Date pd.to_datetime
date variable Date.mdy
Convert to Date and time Dhms Time.hms clock POSIXct pd.to_datetime
time variable
Return date Date and time Datepart Xdate.date dofc or dofC strftime dt.date
from a
date/time
variable
Return hour Date and time Hour Xdate.hour hh or hhC strftime dt.hour
from a
date/time
variable
Return Julian | Date and time Juldate Xdate.jday doy strftime dt.strftime('%j')

date from a
date/time
variable

127

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

Return day of
month from a
date/time
variable

Date and time

Day

Xdate.mday

day

strftime

dt.day

Return
minute from
a date/time
variable

Date and time

Minute

Xdate.minute

mm or mmC

strftime

dt.minute

Return
month from a
date/time
variable

Date and time

Month

Xdate.month

month

strftime

dt.month

Return
quarter from
a date/time
variable

Date and time

Qtr

Xdate.quarter

quarter

quarters

dt.quarter

Return
second from
a date/time
variable

Date and time

Second

Xdate.second

ss or ssC

strftime

dt.second

Return time
of day from a
date/time
variable

Date and time

Timepart

Xdate.time

N/A

strftime

dt.time

Return week
froma
date/time
variable

Date and time

Week

Xdate.week

week

strftime

dt.isocalendar().
week

Return day of
week from a
date/time
variable

Date and time

Weekday

Xdate.wkday

dow

strftime

dt.weekday

Return year
from a
date/time
variable

Date and time

Year

Xdate.year

year

strftime

dt.year

Fetch a value
froma
previous
observation

Special

Lag

Lag

Use
varname[_n -
x] instead of a
function

lag (in dplyr
package)

shift or ffill

Convert
string to
number

Special

N/A

Number

real

as.numeric

astype(int)

Convert
number to
string

Special

N/A

String

string

as.character

astype(str)

Convert
string/numbe
r to factor

N/A

N/A

N/A

N/A

as.factor

astype('categor
y)

128

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Functions are used as part of the programming and may be used in many places.

Below are examples on some of the string functions and how they can be used in each of the
softwares. There is also an example of the use of the addition (Sum in Sas and SPSS, rowtotal in Stata,
rowSums in R and + in Python) function. We also show the difference between adding variables
together with sum functions and adding them together the ordinary way (with +).

18.1.Sas

Functions may be used both in data and proc steps. As seen above there are lots of functions to
choose from. We will now look at examples of a of these functions. We start with importing an
inserted dataset which have full texts in the variables. the texts are not connected as formats
because we can't use functions directly on formatted values, only the actual values. Here is a subset
of our survey data:

data mdgperson_ txt;

infile cards truncover dlm=';"';
input hh $6.
state $10.
urbrur $5.
member S1.
b3 $17.
b4 S6.
b5 2.
b6 $18.
cards4;
020074;02 Capital;Urban;1l;Head;Male;39;Married - polygamy

020074;02
020074;02

Capital;Urban; 2; Spouse;Female;21;Married - monogamy
Capital;Urban; 3;Daughter/son;Male; 16;Never married

040024;04 East;Urban;1l;Head;Male;37;Married - monogamy

040024;04 East;Urban;2;Non relative;Female;23;Married - polygamy
040024;04 East;Urban;3;Daughter/son;Female;17;Never married
040024;04 East;Urban;4;0ther relative;Female;9;Missing

050069;05 South;Rural;1l;Head;Male;67;Married - monogamy
050069;05 South;Rural;2;Spouse;Female;60;Married - monogamy
050069;05 South;Rural;3;Grandchild;Female;16;Never married
060036;06 West;Urban;1l;Head;Male;42;Married - monogamy

060036;06 West;Urban;2;Spouse;Female;40;Married - monogamy

rrorr

run;

Now we can use some functions on some of these variables. Note that for the substr function we
don't need to specify the length of the substring when we want the rest of the string from the start
value. We can also nest functions. They are evaluated from inner to outer:

data mdgperson f;
set mdgperson txt;
state no substr (state,1,2);
state txt substr (state, 4);
urbrur low lowcase (urbrur) ;
urbrur_ up upcase (urbrur) ;

b3 repl = tranwrd(b3,'/',' or ');
state urbrur = catx(' ', substr(state,4),urbrur);
b3 find = find(b3,'e");

b3 rfind = findc(b3,'e','b");

b6 _count = count (b6, 'e'");
b3 repl count = count (b3 repl,'r ');
run;

129

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

The new variables are added as shown here:

& bh & state & urbrur & member & b3

020074 | 02 Capital Urban

020074 02 Capital Urban
020074 02 Capital Urban
040024 04 East Urban
040024 04 East Urban
040024 04 East Urban

P R B SR TR

040024 04 East Urban
8 050068 05 South Rural
9 050069 05South Rural
10 050068 05South Rural
11 060036 06West Urban
12 060036 06West Urban

There is a distinction between the SUM function and addition with + which is important to know. To
illustrate this, we first use the Data step to create a dataset with some income data. Then, in the
same step we calculate total income and age in two different ways. Then we list the dataset with

Proc print:

data test;

1

L N N e A *)

Head

Spouse
Daughter/son
Head

Non relative
Daughter/son
Other relative
Head

Spouse
Grandchild
Head

Spouse

& b @5 L b6

Male
Female
Male
Male
Female
Female
Female
Male
Female
Female
Male

Female

39 Married - polygamy
21 Married - monogamy
16 Never married

37 Married - monogamy
23 Married - polygamy
17 Never married

9 Missing

67 Married - monogamy
60 Married - monogamy
16 Never married

42 Married - monogamy

40 Married - monogamy

input yearbirth income overtime;

income totall

income+overtime;

& state_no A state_tdd & ubrur_low & urbrur_up & b3_repl

7]
02
7]
o4
™M
o4
04
15
05
15
06
06

Capital
Capital
Capital
East
East
East
East
South
South
South
West

West

income total2 = SUM(income,overtime) ;
agel = 2012-yearbirth;
age2 = SUM(2012,-yearbirth);

cards;

1974 234000 002320

1965 256000
1967 235350

0

. 432330 033203

’

run;

proc print data=test;
title 'Differences?'

run;

’

The listing of the dataset looks like this:

Differences?

Obs | yearbirth

1 1974
2 1965
3 1967
4
5

We see that Sas calculates different results when one or more of the variables we add together are
missing. With the sum function all non-missing variables are added together. The assumption made

income | overtime

234000
256000
235350
432330

2320
0

33203

income_total1
236320
256000

465533

urban
urban
urban
urban
urban
urban
urban
rural

rural

rural

urban

urban

income_total2

236320
256000
235350
465533

URBAN
URBAN
URBAN
URBAN
URBAN
URBAN
URBAN
RURAL
RURAL
RURAL
URBAN
URBAN

agel
38
47
45

Head

Spouse
Daughter or son
Head

Non relative
Daughter or son
Other relative
Head

Spouse
Grandchild
Head

Spouse

age?
38
47
45
2012
2012

& state_urbrur @ b3_find @ b3_rfind @ b6_count

Capital Urban
Capital Urban
Capital Urban
East Urban
East Urban
East Urban
East Urban
South Rural
South Rural
South Rural
West Urban

West Urban

~ @ M

- o N

= =T S RN

-~ @ M

NEE~EEN

®» Moo ;N

in this calculation is that missing values have the value of 0 (except if all variables have missing

values, see observation 5). If that is not what we want, we can use ordinary addition instead. Then
Sas will not calculate a sum unless all added variables have valid values. The assumption now is that
because we don't have enough information, we can't calculate a sum. This last assumption is correct

130

1
1
3
1
1
3
0
1
1
3
1
1

@ b3_repl_count

o o o o 8 4 N o o N oo o

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

when it comes to calculating the age. However, when we calculate the total income, which method
to use is not given.

18.2.Spss

The functions in Spss work similar to Sas. We use them in the Compute command. The functions
work on the values, not the value labels. Here is a program that import variables where the text is
the values so that we can use functions on them:

DATA LIST LIST (";")/
hh (a6)
state (al0)
urbrur (ab)
member (f1)

b3 (al7)
b4 (ab6)
b5 (£2)
b6 (al8)
BEGIN DATA

020074;02 Capital;Urban;1l;Head;Male;39;Married - polygamy
020074;02 Capital;Urban;2;Spouse;Female;21;Married - monogamy
020074;02 Capital;Urban;3;Daughter/son;Male;16;Never married
040024;04 East;Urban;1l;Head;Male;37;Married - monogamy
040024;04 East;Urban;2;Non relative;Female;23;Married - polygamy
040024;04 East;Urban;3;Daughter/son;Female;17;Never married
040024;04 East;Urban;4;0ther relative;Female; 9;Missing
050069;05 South;Rural;1l;Head;Male;67;Married - monogamy
050069;05 South;Rural;2;Spouse;Female;60;Married - monogamy
050069;05 South;Rural;3;Grandchild;Female;16;Never married
060036;06 West;Urban;1l;Head;Male;42;Married - monogamy
060036;06 West;Urban;?2;Spouse;Female;40;Married - monogamy
END DATA.

Now we use the same functions as in the Sas example above. Beware that there is no function in
Spss the counts the number of occurrences of a string in a text. Instead, we can use the length and
replace functions to count. It is done by first finding the total length of the variable. Then we
subtract the length of the variable where all occurrences of our string are replaced with nothing.
This will work when we count only one character. If we count more than one character, we must
divide the result by the number of characters we search for, see example below:

STRING state no (a2) state txt (a7) urbrur low (a5) urbrur up (a5) b3 repl
(al7) state urbrur (al4).

COMPUTE state no = substr(state,1,2).

COMPUTE state txt = substr(state,4).

COMPUTE urbrur low = lower (urbrur).

COMPUTE urbrur up = upcase (urbrur).

COMPUTE state urbrur = concat (substr(state,4),' ',urbrur).

COMPUTE b3 find = char.index (b3, 'e").

COMPUTE b3 rfind = char.rindex (b3, 'e").

COMPUTE b3 repl = replace(b3,'/',' or ").

COMPUTE b6 count = length (b6)-length(replace(b6,'e',"'"')).

COMPUTE b3 repl count = (length (b3 repl)-length(replace (b3 repl,'r ','")))/2.
EXECUTE.

The new variables as they are added to the dataset:

131

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

dahh Jhstate & ubrur o mem &a b3 dabd S b5 a b6 o state o state o urbrur o urbrur & b3_repl & state_urbrur & b3_find & b3_riind & b6_count & b3_repl_count
& per o Rl Nl - E K X z _ropl_

020074 02 Capital Urban 1 Head Male 39 Married - polygamy 02 Capital urban URBAN Head Capital Urban 2 2 1 0
020074 02 Capital Urban 2 Spouse Female 21 Married - monogamy 02 Capital urban URBAN Spouse Capital Urban 6 6 1 0
020074 02 Capital Urban 3 Daughter/son Male 16 Never married 02 Capital urban URBAN Daughter or son Capital Urban 7 7 3 2
040024 04 East Urban 1 Head Male 37 Married - monogamy 04 East urban URBAN Head East Urban 2 2 1 0
040024 04 East Urban 2 Non relative Female 23 Married - polygamy 04 East urban URBAN Non relative East Urban 6 12 1 0
040024 04 East Urban 3 Daughter/son Female 17 Never married 04 East urban URBAN Daughter or son East Urban 7 7 3 2
040024 04 East Urban 4 Other relative Female 9 Missing 04 East urban URBAN Other relative East Urban 4 14 0 1
050069 05 South Rural 1 Head Male 67 Married - monogamy 05 South rural RURAL Head South Rural 2 2 1 0
050069 05 South Rural 2 Spouse Female 60 Married - monogamy 05 South rural RURAL Spouse South Rural 6 6 1 0
050069 05 South Rural 3 Grandchild Female 16 Never married 05 South rural RURAL Grandchild South Rural 0 0 3 0
060036 06 West Urban 1 Head Male 42 Married - monogamy 06 West urban URBAN Head West Urban 2 2 1 0
060036 06 West Urban 2 Spouse Female 40 Married - monogamy 06 West urban URBAN Spouse West Urban 6 6 1 0

The sum function and addition in Spss work similar to Sas. Here is the syntax in Spss to illustrate the
differences:

DATA LIST FREE/
yearbirth income overtime .

BEGIN DATA
1974 234000 002320
1965 256000 0

1967 235350 .
. 432330 033203
END DATA.
COMPUTE income totall = income+overtime.
COMPUTE income total2 = SUM(income,overtime) .

COMPUTE agel = 2012-yearbirth.
COMPUTE age2 = SUM(2012,-yearbirth).
EXECUTE.

We create the Spss dataset with the Data list command, do the calculations with Compute commands
and finally execute them with the Execute command.

Spss also have the same distinction between the normal addition and using the sum function, as this
output shows:

\E, *Untitled4 [] - IBM SPSS Statistics Data Editor
File Edt View Data Transform Analyze Direct Marketing Graphs Utiities Add-ons Window Help

SHAMe ~ BHE H BE BSH 400

| | |Visible: 7 of 7 Variables

| yearhirth || income || overtime || income_totall || income_total2 || agel || age2 ||
1 1974,00 234000,00 2320,00 236320,00 236320,00 38,00 38,00
2 1965,00 256000,00 .00 256000,00 256000,00 47,00 47.00
3 1967,00 235350,00 E . 235350,00 45,00 45,00
4 432330.00 33203.00 465533.00 465533.00 E 2012.00
5 2012,00

4

——

Data View Variable View

| [BM SPSS Statistics Processor is ready | | | | |

18.3.Stata

The different functions in Stata work either horizontally or vertically. Some functions are used with
the generate (gen) command and some work with the egen command. There is no function to count
the number of occurrences of a string in a text, but we can do it by combining the /ength and subinstr
functions similar to Spss. As in Sas and Spss, Stata operates on the actual values for the variables,
not the value labels. Hence, in our example we import a test dataset with the value labels as values
and then calculate the new variables by using different functions:

clear
input stré hh strl1@ state str5 urbrur member strl7 b3 stré6 b4 b5 stri8 b6

132

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

020074 "02 Capital" Urban 1 "Head" Male 39 "Married - polygamy"
020074 "@2 Capital" Urban 2 "Spouse" Female 21 "Married - monogamy"
020074 "02 Capital” Urban 3 "Daughter/son"™ Male 16 "Never married"
040024 "04 East"” Urban 1 "Head" Male 37 "Married - monogamy"
040024 "04 East" Urban 2 "Non relative" Female 23 "Married - polygamy"
040024 "04 East" Urban 3 "Daughter/son" Female 17 "Never married"
040024 "04 East" Urban 4 "Other relative" Female 9 "Missing"

050069 "05 South” Rural 1 "Head" Male 67 "Married - monogamy"
050069 "05 South” Rural 2 "Spouse" Female 60 "Married - monogamy"
050069 "05 South" Rural 3 "Grandchild" Female 16 "Never married"
060036 "06 West" Urban 1 "Head" Male 42 "Married - monogamy"

060036 "06 West" Urban 2 "Spouse" Female 40 "Married - monogamy"
end

gen state_no = substr(state,1,2)

gen state_txt = substr(state,4,.)

gen urbrur_low = lower(urbrur)

gen urbrur_up = upper(urbrur)

gen b3_repl = subinstr(b3,"/"," or ",.)

egen state_urbrur = concat(state_txt urbrur), punct(" ")

gen b3_find = strpos(b3,"e")

gen b3_rfind = strrpos(b3,"e")

gen b6_count = length(b6) - length(subinstr(b6, "e", "", .))

gen b3_repl_count = (length(b3_repl) - length(subinstr(b3_repl, "r ", "", .)))/2

The new variables are added to our dataset:

There are differences between using functions and normal addition in Stata as well. We start with
clearing the data editor with the clear command and creating the dataset with the input command.
Then we generate the new variables with generate, egen and replace commands. Here is a syntax that
creates the variables as above and some vertically calculated variables too:

clear
input yearbirth income overtime
1974 234000 002320
1965 256000 0
1967 235350
. 432330 033203

end

generate income_totall = income+overtime

egen income_total2 = rowtotal(income overtime)
generate agel = 2012-yearbirth

generate year = -2012

egen age2 = rowtotal(year yearbirth)
replace age2 = abs(age2)
drop year

generate cumulative_income_total = sum(income_total2)
egen income_total = total(income_total2)

133

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The output looks like this:

YEearoiIrmi Lj 1909
wyearbirth income gvertime income_tot~1 income_tot~2 agel agez cumulative~1 income_total
1 224000 2320 2236220 226220 28 28 226220 1192202
2 1965 256000 0 256000 256000 47 47 432320 1193203
3 1967 235350 . . 235350 45 45 727670 1193203
4 432330 33203 465533 465533 . 2012 1193203 1193203
5 0 . 2012 1193203 1193203
<
e Wares @ Mirde

As in Stata, many functions may work both horizontal and vertical. The way they work depend on
the arguments to the functions. There are two libraries with useful string functions we can use,
string and stringi. We first activate them with the library command. Then we import our file into an R
data frame as an inserted file. Finally, we use the different string functions to calculate new
variables:

Tibrary(stringr)

Tibrary(stringi)

mdgperson_txt <- read.csv(sep=";",header=FALSE,

6" col.names=c("hh","state","urbrur", "member","b3","b4","b5","b

colClasses=c("character","character","character"”,"numeric","character", "chara
cter","numeric","character"),

text="
020074;02 capital;Urban;l;Head;Male;39;Married - polygamy
020074;02 capital;Urban;2;Spouse;Female;21;Married - monogamy
020074;02 capital;uUrban;3;Daughter/son;Male;16;Never married
040024;04 East;Urban;l;Head;Male;37;Married - monogamy
040024;04 East;Urban;2;Non relative;Female;23;Married - polygamy
040024;04 East;Urban;3;Daughter/son;Female;17;Never married
040024;04 East;Urban;4;other relative;Female;9;Missing
050069;05 south;Rural;l;Head;Male;67;Married - monogamy
050069;05 south;Rural;2;Spouse;Female;60;Married - monogamy
050069;05 south;Rural;3;Grandchild;Female;16;Never married
060036;06 west;Urban;1l;Head;Male;42;Married - monogamy
060036;06 west;Urban;2;Spouse;Female;40;Married - monogamy')

mdgperson_txt$state_no = substr(mdgperson_txt$state,1,2)
mdgperson_txt$state_txt = substring(mdgperson_txt$state,4)
mdgperson_txt$urbrur_low = tolower(mdgperson_txt$urbrur)
mdgperson_txt$urbrur_up = toupper(mdgperson_txt$urbrur)
mdgperson_txt$b3_repl = gsub("/"," or ",mdgperson_txt$bh3)
mdgperson_txt$state_urbrur = paste(mdgperson_txt$state_txt,mdgperson_txt$urbr
ur

mdgperson_txt$b3_find = str_locate(mdgperson_txt$b3,"e")
mdgperson_txt$b3_rfind = stri_locate_last(mdgperson_txt$b3,fixed="e")
mdgperson_txt$b6_count = str_count(mdgperson_txt$b6,"e")
mdgperson_txt$b3_repl_count = str_count(mdgperson_txt$b3_repl,"r ")
mdgperson_txt$b6_split = strsplit(mdgperson_txt$b6,split=" ")
View(mdgperson_txt)

134

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The new data frame as shown with the View command. We see that when a string is not found with
the str_locate and stri_locate functions, N/A is returned (not 0):

rur stateno statetst urbrur_low
1 020074 02 Capital Urban ea ale -polygamy 02 Capital urban URBAN
Capital urban URBAN

9 050069
10 050069
11 060036

12 060036 spause West Urban 6 6 1

When it comes to missing values, NA's, they are treated the same way as usual in R. This means that
if an NA is part of our expression, the result will be NA. To avoid an NA as result we can use the
na.rm = TRUE argument. Here is the same example as above, with R syntax:

test <- read.table(header=TRUE, text="
yearbirth income overtime
1974 234000 2320
1965 256000 0
1967 235350 NA
NA 432330 33203
NA NA NA

Differences between sum and addition

test$income_totall <- test$income+testfovertime

test$income_total2 <- rowSums(test[, c("income","overtime")],na.rm=TRUE)
test$agel <- 2012-test$yearbirth

test$age2 <- 2012-rowSums(test['yearbirth'],na.rm=TRUE)

test

The rowSums function add sums for each selected row in our data frame. By using an empty string
and a comma first, we select all rows. After the comma we name the variables to add together and
also make sure to leave out NA's with the na.rm = TRUE argument. We are not allowed to subtract
values with the rowSums function. Instead, we calculate the second age variable with the rowSums
function even though it is only one variable, because then we can remove the NA’s. The result is like
this:

yearbirth income overtime income_totall income_total2 agel age2

1 1974 234000 2320 236320 236320 38 38
2 1965 256000 0 256000 256000 47 47
3 1967 235350 NA NA 235350 45 45
4 NA 432330 33203 465533 465533 NA 2012
5 NA NA NA NA 0 NA 2012

If we don't want to repeat the data frame name every time we mention a variable, we can use the
with function. First, we tell which data frame to use and then we do our calculation:

test$income_totall <- with(test,income+overtime)

We can use the dplyr package to do the same calculations. Here we may use the sum function, which
also take arguments with minus signs. First, we use the rowwise function to make sure the
calculations are made for each row. Then we use the mutate function and create our new variables.
Here we can also calculate the age2 variable:

test <- test %%
rowwise() %>%
mutate(
income_totall
income_total2

income+overtime,
sum(income,overtime, na.rm = TRUE),

135

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

agel = 2012-yearbirth,

§ge2 = sum(2012, -yearbirth, na.rm = TRUE)
test
The result:

A tibble: 5 x 7

yearbirth income overtime income_totall income_total2 agel age2

<int> <int> <int> <int> <int> <dbl> <dbl>
1 1974 234000 2320 236320 236320 38 38
2 1965 256000 0 256000 256000 47 47
3 1967 235350 NA NA 235350 45 45
4 NA 432330 33203 465533 465533 NA 2012
5 NA NA NA NA 0 NA 2012
18.5.Python

In python we have several functions and also many methods. The functions are not associated with
any objects and can be invoked by its name. Methods are always associated with an object and
cannot be invoked just by its name. For practical usage of functions and methods it is often just that
we use different syntax to call functions compared to methods. Here is a small example where we
define a function that adds to numbers together. The function is then called by its name:

def add(x, y):
return x+y
add(1,4)

We can do the same with a method. Methods are always defined within an object which are defined
by a class. Here we define a class object called arithmetic and within that class object we define two
methods, addition and subtraction. The method is called both by the class object name and the
method:

class arithmetic:
def _init__(self, x,
self.x
self.y
def addition(self):
return self.x + self.y
def subtraction(self):
return self.x - self.y
arithmetic(l,4).addition()

y):
X
y

Here are some examples on how we can use built-in functions for columns in data frames. We start
with importing a data file with some string variables. Then we use different string functions to create
new columns. Beware that for string functions, we add the str argument. For the substring there is
no actual function, we just select the string with start and end positions (where 0 is the first position
and the last position is not included in the string). When it comes to concatenation, we don't use a
function, we just use the + sign. However, the columns must be of object (str) type, not category or
numeric:

136

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

data="""
020074;02 capital;uUrban;1l;Head;Male;39;Married - polygamy
020074;02 capital;Urban;2;Spouse;Female;21;Married - monogamy
020074;02 capital;uUrban;3;baughter/son;Male;16;Never married
040024;04 East;Urban;1l;Head;Male;37;Married - monogamy
040024;04 East;Urban;2;Non relative;Female;23;Married - polygamy
040024;04 East;Urban;3;Daughter/son;Female;17;Never married
040024;04 East;Urban;4;0ther relative;Female;9;Missing
050069;05 south;Rural;l;Head;Male;67;Married - monogamy
050069;05 south;Rural;2;Spouse;Female;60;Married - monogamy
050069;05 south;Rural;3;Grandchild;Female;16;Never married
060036;06 west;Urban;l;Head;Male;42;Married - monogamy
060036;06 west;Urban;2;Spouse;Female;40;Married - monogamy
mdgperson_txt = pd.read_csv(

StringIo(data),

names=["hh', 'state', 'urbrur', 'member', 'b3', 'b4', 'b5',
'b6'],

dtype={'hh': 'object', 'state': 'object', 'urbrur':
'category', 'b3': 'object', 'b4': 'object', 'b6': 'object'},

header=None,

Sep=|;|

)
mdgperson_txt['state_no'] = mdgperson_txt['state'].str[0:2]
mdgperson_txt['state_text'] = mdgperson_txt['state'].str[3:]
mdgperson_txt['urbrur_low'] = mdgperson_txt['urbrur'].str.Tower()
mdgperson_txt['urbrur_up'] = mdgperson_txt['urbrur'].str.upper()
mdgperson_txt['b3_repl'] = mdgperson_txt['b3'].str.replace('/',"' or ")
mdgperson_txt['state_urbrur'] = mdgperson_txt['state'].str[3:] + " ' +
mdgperson_txt['urbrur'].astype(str)
mdgperson_txt['b3_find'] = mdgperson_txt['b3'].str.find('a')
mdgperson_txt['b3_rfind'] = mdgperson_txt['b3'].str.rfind('e")
mdgperson_txt['b6_count'] = mdgperson_txt['b6'].str.count('e")
mdgperson_txt['b3_repl_count'] = mdgperson_txt['b3_repl'].str.count('r ")
mdgperson_txt['b6_split'] = mdgperson_txt['b6'].str.split(" ")
mdgperson_txt['b6_join'] = mdgperson_txt['b6_split'].str.join('/")
mdgperson_txt['b6_third_word'] = mdgperson_txt['b6_split'].str[2]
mdgperson_txt

For most of these string functions, we must insert str. before the actual function to make it work on
data frames. We see that when a string is not found, the find and rfind functions return -1. For
substrings, we use the slice technique where we define the slices (substring) within brackets ([]).
When the column contains a list, the slice will be the elements in the list, not the positions within the
whole text (compare the first and last of the examples above). Beware that the positions within the
string starts with 0, not 1:

b3 b4 bS b6 stateno statetext .. urbrurup b3.repl stateurbrur b3_find b3_rfind bb_count b3_repl count b6_join b6_third_word

ead Male 39 Maried - polygamy 02 Capital . URBAN Head

Capital

1 o N Married/-/polygamy polygamy
pol

3 040024 O4East Urban 1

4 040024 04 East Urban

5 040024 O4East Urban

6 040024

7 050069 05South Rural 1

8 050069 05 Soutt

9 050068 05

10 050036 06 Wes

11 060036 06West Urban 2 06 West URBAN Spouse West Urban -1 5 1 0 hnlbedy -/monogamy monogamy

137

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When it comes to addition with NaN values, we can only use addition or subtraction. To deal with
NaN'’s we can use the fillna function. With the fillna function we can treat the NaN values as zeros.
Here is an example:

data="""

1974,234000,2320

1965,256000,0

1967,235350,.

.,432330,33203

test = pd.read_csv(
StringIo(data),
names=["'yearbirth', 'income', 'overtime'],
dtype=float,
na_values={'."', ' .'},
header=None

)

Differences between sum and addition

test['income_totall'] = test['income'] + test['overtime']
test['income_total2'] = test['income'].fillna(0) + test['overtime'].fillna(0)
test['agel'] = 2012 - test['yearbirth']

test['age2'] = 2012 - test['yearbirth'].fil1lna(0)

test

This is the output:

yearbirth income overtime income_totall income_total2 age1 age2

0 1974.0 234000.0 2320.0 236320.0 236320.0 38.0 38.0
1 1965.0 256000.0 0.0 256000.0 256000.0 47.0 47.0
2 1967.0 235350.0 NaM MaN 2353500 450 450
3 NaN 432330.0 33203.0 465533.0 465533.0 NaN 20120
4 NaN MNaN NaM MaN 0.0 NaN 20120

138

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

19. Missing values

As seen in the previous chapter missing values should be treated with care. Missing values are
usually not included in calculations. They are also treated a little different in some situations across
Sas, Spss, Stata, R and Python. We will show some of the differences in this chapter.

A string variable in Stata is missing when the value is an empty string. A blank (= one space) string is
a valid value. In Sas both a space and an empty string are defined as missing values. Spss differs
between system missing and user missing values. Only numeric variables have system missing
values. User missing may be defined as any character for string variables and any number for
numeric variables. However, we should be careful with what values we define as user missing and
when we assign these values. If a numeric value is set as user missing in the data, we also have to
define them as missing with the Missing values command. For string variables, it is usual to set
missing to an empty string or a space. In Sas and Spss there is no difference between a space and
an empty string when it comes to handling of missing values. If we set the user missing value to an
empty string in Spss, a string of spaces will also be defined as user missing.

For numeric variables both Sas and Stata operates with several special missing values. The valid
missing values are defined from .a to .z in Stata and .A to .Z in Sas. Otherwise, the default value of
missing for numeric values in Sas and Stata is a dot (.). This makes it possible for us to define the dot
as system missing and choose other values for user missing. Sas and Stata do not differ between
system missing and user missing values when it comes to frequencies and tabulation the same way
as Spss does.

In R there is only one missing value, and it is called NA (not available). However, there is also a value
for impossible values (e.g., dividing by zero), NaN (not a number). The NA is the same for both
character and numeric values.

For Python, we have some different values for missing. The usual one is for numbers and is called
NaN (not a number). We also have NaT (not a time, for time variables) and None which symbols and
empty string value.

19.1.Sas

Here is a Data step where we set the Civil status (b6) to the special missing value .U when it miss a
value where there should be one. We start with the Data statement and name the output dataset.
Then we read the existing dataset with the Set statement. The If statement is used to conditionally
set the value of b6 to .U. Then we do the tabulation with Proc tabulate.

data mdgperson3;
set mdg.mdgperson nodup;
if b5 >= 11 and b6 = . then b6 = .U;
run;
proc tabulate data=mdgperson3 missing f=11.;
class urbrur b4 ;
class b6 /preloadfmt order=data;
table all='Total' urbrur='Urban/rural location of household' b6='Civil
Status'
4
all="Total' b4='Sex';
format urbrur urbrur. b6 civil status. b4 sex.;
title 'Urban/rural and civil status by sex';
run;

139

Documents 2023/1

The output shows that both missing values are incorporated in the table:

Urban/rural and civil status by sex

Total
N

Total 47
Urban/Rural location of household
Urban 41
Rural 6
Civil status
Never married 18
Married — monogamy 13
Married — polygamy 4
N/A 1
Missing 11

For Civil status the row with missing values should be excluded. There is no easy way to exclude
them in Sas without excluding the observations from the whole table as well.

When we want to deal with missing values in an If construction, we must know that missing values
are included in any condition which checks for values less than a number. For instance, the
condition b6 < 7 will be true for all values less than 7, including all missing values. Hence the first If
construction below will not give the expected result. Instead, we use the second If construction:

data mdgperson4;
set mdgperson3;
if (b6 <= 6) then
valid b6 w = 1;

else if b6 = .U then
valid b6 w = 3;
else if b6 = . then
valid b6 w = 2;
else

valid b6 w = 9;

if (1<= b6 <= 6) then
valid b6 = 1;

else if b6 = .U then
valid b6 = 3;
else if b6 = . then
valid b6 = 2;
else
valid b6 = 9;

run;

proc freq data=mdgpersond;

tables valid b6 w valid b6/missing;

title 'After if';
run;

Male
N
21

19
2

wn

Data processing in Sas, Spss, Stata, R and Python. A comparison

Sex
Female
N
26

22
4

o0 —=| b 00 D

140

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

With the frequencies made with the Proc freq above, we see the differences between the two /f
constructions:

After if
The FREQ Procedure

Cumulative, Cumulative
valid_b6 w/| Frequency Percent Frequency Percent
1 47 100.00 47 100.00

Cumulative, Cumulative
valid_b6| Frequency Percent| Frequency Percent

1 35 7447 35 7447
2 11 2340 46 9787
3 1 213 47 100.00
19.2.Spss

For numeric variables in Spss we have to choose a number as user missing value. For categorical
variables we usually set user missing to a higher number than any of the valid values. When the
value is set, we must remember to use the Missing values command to define the value as user
missing. For scale variables we usually do not differ between system and user missing values. A
normal approach for categorical variables is to set them to system missing when they are not
supposed to have a value. This is typical for questions in a survey which have been skipped due to
answers to a previous question. Those who are not to answer the question will be given system
missing for these variables. User missing is set when there should be a value, but none is entered or
imputed. The categorical user missing values should be included in tabulations, but not the system
missing values.

We want to create a table with urban/rural and civil status in the rows and sex in the columns. For
the question of civil status, it is only asked persons 11 years and above. Hence, we want to set
missing values for people with age 11 and above to user missing and include them in the table.
People below 11 should not be included in this category. First, we use an Ilf command to set values
to user missing. Then we use the Missing values command to define user missing values. Finally, we
use the Ctables command to create the table:

GET FILE='mdgperson nodup.sav'.
IF (b5 >= 11 and missing(b6) = 1) b6 = 9.
MISSING VALUES b6 (9).

CTABLES

/VLABELS VARIABLES=b6 b4 DISPLAY=LABEL

/TABLE urbrur + b6 BY b4 [COUNT F40.0]

/CATEGORIES VARIABLES=urbrur ORDER=A KEY=VALUE EMPTY=INCLUDE TOTAL=YES
POSITION=BEFORE

/CATEGORIES VARIABLES=b6 ORDER=A KEY=VALUE EMPTY=INCLUDE TOTAL=YES
POSITION=BEFORE MISSING=INCLUDE

/CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=INCLUDE TOTAL=YES
POSITION=BEFORE.

141

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We see that the table includes user missing (N/A), but not system missing for the Civil status
category:

h:\mdg\data‘\mdgperson nodup.sav

Sex

Total Male Female

Count Count Count

Urban/Rural location of Total a7 21 2@
househald Urhan #1 19 22
Fural G 2 q

Civil status Total 36 16 20
Mever married 18] g

Married - monogamy 13 5 g

Married - polyagamy 4 2 2

Widowed] 0 0

Separated 1] 0 0

Divarced] 0 0

MIA, 1 0 1

We have to be aware how Spss deals with missing when it comes to conditions. If we want to check
against a missing value with a Do if command, we must use the functions Missing or Sysmis,
otherwise our condition will never be true for missing values. In addition, we must start with our
check for missing values.

This is a syntax example which shows two different Do if constructions, only the last one will give the
intended result:

DO IF (b6 <= 6).
COMPUTE valid b6 w = 1.
ELSE IF (b6 = 9).
COMPUTE valid b6 w = 3.
ELSE.
COMPUTE valid b6 w = 2.
END IF.

DO IF (sysmis(b6) =1
COMPUTE valid b6 =
ELSE IF (missing (b6
COMPUTE Valid7b6 =
ELSE IF (b6 <6).
COMPUTE Valid7b6
ELSE.
COMPUTE valid b6
END IF.

w I N~

Il
—
.

FREQUENCIES valid b6 w valid b6.

142

Documents 2023/1

As our frequency table shows, the variable valid_b6_w is not given a value when b6 is missing:

Data processing in Sas, Spss, Stata, R and Python. A comparison

Statistics
valid_h&_w | valid_bé
N Walid 35 a7
Missing 12 0
Frequency Table
valid_b6_w
Cumulative
Frequency | Percent | “Walid Percent Percent
Valid 1,00 35 745 100,0 100,0
Missing System 12 265
Total 47 100,0
wvalid_h6
Cumulative
Frequency | Percent | Valid Percent Percent
Valid 1,00 35 745 745 745
2,00 11 234 234 979
3,00 1 21 21 1000
Total a7 100,0 100,0
19.3.Stata

As Sas, Stata uses numbers as missing values. Where missing values are lower than the lowest legal
number in Sas it is higher than the highest legal in Stata. This means that missing values will be
included in all conditions where we use > or >=. When we use conditions like these and don't want to
include the missing values, we have to add another condition to exclude them.

When we want to set a special missing value for the civil status when it is missing, and age is above
10 we can do like this:

use "mdgperson_nodup.dta", clear
replace b6 = .u if b5 >= 11 & b6 == .

In the tabulation the missing value . is omitted, but the user defined missing .u is included. Here is
syntax to create two tables:

table urbrur b4, scol col row
table b6 b4, scol col row

143

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The tabulation omits the observations with system user missing values. That is why the total is
different in the tables. User missing is as we see included in the table:

table urbrur b4, ascol col row
Urkan/Bur
=zl
location
of Sex
household Male Female Total
Urkan 15 22 41
Fural 2 4 [
Total 21 26 47

tabkle hé b4, ascocl col row

Sex
Ciwvil status Mele Femzle Total
Hewver married 3 1&
Married - monogamy 5 g 13
Married - polygamy 2 2 4
MiR 1 1
Total 16 20 36

It does not seem to be an easy way to concatenate the row variables into one table in Stata, hence
we create two separate tables.

Stata does not have the same If construction as Sas and Spss for normal use. Instead, we use either
a combination of generate and replace commands or a recode command. We may do it in the wrong
way when it comes to the missing values:

generate valid b6 _ w = 3 if b6 == .u
replace valid b6 w = 2 if b6 == .

replace valid b6 w = 9 if b6 > 6 & b6 < .
replace valid b6 w = 1 if b6 >= 1

tabl valid_b6_w

144

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

The order of the commands above is wrong as the condition in the last replace includes the missing

values:

tabl valid b& w

-» tabulation of wvalid bé w

valid be w Fredqg. Percent Cum .
1 47 100.00 100.00
Totel 47 loo.00

Instead, we change the order of the commands:

use "mdgperson_nodup.dta", clear

replace b6 = .u if b5

generate valid_bé6
replace valid_b6
replace valid_b6
replace valid_b6
tabl valid_b6

O NWER

>=

if
if
if
if

11 & b6 == .
b6 >=

b6 == .u

b6 ==

b6 > 6 & b6 < .

Now the recode is as intended:

tabl wvalid bé

-> tabulation of walid bé

valid be Freq. Eercent Cuamn -
1 35 T4 .47 T4.47
2 11 23.40 a7.87
3 1 2.13 i0o. 00
Total 47 i0o.00

For a recode like the one above it is usually better to use the recode command:

recode b6 (1/6 = 1) (.u

2) (else = 9), gen(valid_be6)

More about the recode command is found in the chapter Recoding, page 118.

19.4.R

When we deal with missing values in R, it is useful to know about some functions.

e is.na
e na.rm
e complete.cases

Check if a value is NA or not
Remove (TRUE) or keep (FALSE) NA’s
Check if a row has NA’s

145

Documents 2023/1

Some examples:
> mdgperson$b5

[1] 10 39 20 20 33 23
10

[26] 31 67 17 NA 22 21
> is.na(mdgperson$b5)

[1] FALSE FALSE FALSE
[13] FALSE FALSE FALSE
[25] FALSE FALSE FALSE
[37] FALSE FALSE FALSE
> mean(mdgperson$b5)

[1] NA

> mean(mdgperson$b5,na.

[1] 21.14894

Data processing in Sas, Spss, Stata, R and Python. A comparison

16 24 16 60

16 8 7 19

FALSE FALSE

FALSE FALSE

FALSE TRUE

FALSE FALSE

rm = TRUE)

> complete.cases(mdgperson)

[1] FALSE TRUE TRUE
[13] FALSE FALSE TRUE
[25] FALSE TRUE TRUE

[37] TRUE TRUE TRUE

TRUE TRUE

TRUE TRUE

TRUE FALSE

FALSE FALSE

27 8

42 45

FALSE
FALSE
FALSE

FALSE

TRUE
TRUE
TRUE

TRUE

3 8

20 20

FALSE
FALSE
FALSE

FALSE

TRUE
TRUE
TRUE

TRUE

18 14

9 11

FALSE
FALSE
FALSE

FALSE

TRUE
FALSE
TRUE

TRUE

16 13

30 40

FALSE
FALSE
FALSE

FALSE

TRUE
TRUE
FALSE

FALSE

21 513 18 9 41

17 1 12 37 17

FALSE FALSE FALSE
FALSE FALSE FALSE
FALSE FALSE FALSE

FALSE FALSE FALSE

TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE

TRUE TRUE TRUE

We see that numeric operations like mean are not calculated if one or more values are NA unless we
add the na.rm = TRUE argument.

We can create a variable valid_b6 that is 1 when b6 has a value and NA if it is missing and make a
frequency table for the new variable:

mdgperson_nodup$valid_b6 <- ifelse(is.na(mdgperson_nodup$b6),NA,1)
as.data.frame(addmargins(table(valid_b6=mdgperson_nodup$valid_b6,exclude = NU

LL)))

Here is the frequency table:

valid_b6 Freq

1 1 35
2 <NA> 12
3 Sum 47

146

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

19.5.Python

We should always be aware of missing values and how we can deal with them. Python operates with
both NaN and None as missing values. There are some differences between NaN and None. A
comparison with NaN is never true, but a comparison with None can be true. This small program
shows that:

print('None == None is', None == None)
print('np.nan == np.nan is', np.nan == np.nan)

The printed output:

Mone == None is True
np.nan == np.nan is False

To deal with missing values we have some functions:

e isna Check if value is NaN (can also use the alias isnull). Returns True or False.

e notna Check if value is not NaN (can also use the alias notnull). Returns True or False.
e dropnaDrop row if NaN appears in at least one element specified

o fillna Replace NaN with specified value

Here is an example where we create a data frame, p, with the b5 column and add new columns with
the isna, notna and fillna functions:

p = pd.DataFrame(persons['b5'])

p['b5_isna'] = persons['b5'].isna()
p['b5_notna'] = persons['b5'].notna()
p['b5_fillna'] = persons['b5'].fillna('Missing')
p.tail(8)

The list of the last 8 rows:

b5 bS_isna b5_notna b5_fillna

39 18.0 False True 18.0
40 16.0 False True 16.0
41 310 False True 310
42 200 False True 200
43 NaN True False Missing
44 17.0 False True 17.0
45 &80 False True 80
46 1.0 False True 1.0

We can drop rows with the dropna function. Either we can drop rows where at least one of the
columns are missing or we can drop rows based on a subset of columns. Here are examples on
both:

persons.dropna()
persons.dropna(subset=["'b5"])

147

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

By default, calculations are based on non-missing values. We can calculate the count, mean, and
sum for a data frame and list them:

persons['b5'].count(), persons['b5'].sum(), persons['b5"'].mean()

The list:

(46, 977.9, 21.23913043478261)

148

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

20. Date and time formats

We operate with three different variable types for date and time:

e Date A date, e.g., March 9, 1954
e Time Atime, e.g., 14:13:22.00
e Datetime A time within a date, e.g., March 9, 1954 14:13:22.00

There are some issues to be aware of when we are working with time and date variables. A time
variable consists of both a date and a time. A date variable is limited to contain the value of a
specific date. If we define times and dates as time and date variables, we are able to use lots of built-
in facilities in the software. A date variable is stored as a number in a row. Sas and Stata have set
January 1, 1960 as date 0O, R starts at January 1, 1970 for R. All previous dates have negative values
and newer dates are positive. Spss starts with the number 86400 at the beginning of October 14,
1582 and adds 1 for each second since then. It does not differ between time and date variables
when it comes to how they are stored. To extract a date from a time variable we use the Xdate.date
function (see page 127).

Sas, Stata and R differ between datetime, date and time variables. A datetime variable in Sas counts
the seconds as a number starting at the beginning of January 1, 1960 as second 0. Milliseconds are
stored as decimals to these numbers. A time variable has a value from 0 to 86400, which is the
number of seconds in a day. Stata just count milliseconds from the beginning of January 1, 1960, as
being millisecond 0. When we convert data between these softwares, we may have to recalculate
time and date values to make sure they are correct. Invalid dates are set to missing values when the
data is imported. R use January 1, 1970 as their date 0. However, in R we can define the 0 date when
we convert date and datetime from other formats.

There are different formats we use to show the time and date variables. Once a variable is stored as
date or time, we can use these formats. We can also use functions to extract parts of a time or date,
for instance to extract the year. Other functions are used to calculate time spans between two
points in time.

See more about time and date variables in the next chapter.

20.1.Sas

We want to read a data file with date and time variables to a Sas dataset. To make sure the variables
are stored as times or dates, we use Sas informats when we read the data. To show the variables in
a readable way we use the Format statement to format the variables. Here we also make
unformatted copies of the variables (with suffix _nf) to show which values are actually stored for
times and dates on the dataset:

data times;
infile cards dlm=',' dsd truncover;

input id time : datetimel9. time2 : datetimel9. date : yymmddlO. date2
yymmddl0. ;
time nf = time;

time2 nf = time2;

date nf = date;

date2 nf = date2;

format time time2 datetimel9. date date2 yymmddlO.;
cards;

01,01-MAR-1999 11:42:00,24-APR-1962 18:25:31,1962-12-15,2005-04-16
02,25-DEC-2002 02:40:12,09-MAR-1954 15:35:26,1961-09-03,1990-09-24

149

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

03,02-AUG-1973 03:27:
04,08-APR-1984 17:06:
05,04-FEB-2003 19:42:

41,30-NOV-1962 08:56:
49,04-APR-1935 15:34:
52,18-FEB-1963 06:53:
06,02-SEP-1966 09:37:17,02-NOV-1935 16:23:
07,26-SEP-1969 22:23:10,19-SEP-1964 22:15:
08,10-FEB-1995 20:17:57,08-FEB-1963 06:009:
09,01-SEP-1970 17:19:39,01-SEP-1970 13:58:
10,20-DEC-1979 04:57:52,22-JUN-1963 05:37:
11,19-JUL-2002 18:23:49,29-FEB-1961 15:41:
12,04-SEP-2001 03:25:32,28-SEP-1961 03:25:

run;

23,1962-04-25,1966-10-01
40,1962-11-16,1979-04-14
54,1962-12-04,2013-03-17
38,1962-01-10,2000-07-13
04,1960-06-28,1986-09-18
53,1964-03-01,1984-05-10
32,1960-12-20,2018-01-05
12,1963-01-21,1985-04-07
51,1960-10-02,1960-08-21
32,1963-09-19,1963-09-19

When the data is imported to Sas, and new variables and formats added, the dataset looks like this:

EEX

SAS Enterprise Guide - MDG.egp

File Edit View Tasks Program Tools Help g - qu \% (% ai B [> ey o il B gqg Import og eksport ~
Import tider - x
[£] Program® | 2] Log Output Data (2) |
TIMES -
Gj a Filter and Sort % Query Builder | Data ~ Describe = Graph = Analyze = | Export » SendTo -
@ id = time | time2 |E date |G date2 timenf |3 time2of |@ datenf | date2nof
1 1§ 01MAR1999:11:42:00: 24APR1962:18:25:31 1962-12-15 2005-04-16 1236507720 72987531 1079 16542
2 2: 25DEC2002:02:40:12: 0SMAR1954:15:35:26 1961-08-03 1950-09-24 1356403212 -183457474 611 11224
3 3 028UG1573:03:27:41 30NOV1962:08:56:23 1962-04-25 1966-10-01 4287729261 91561783 845 2465
4 4. (0BAPR1S84:17:06:45: 04APR15935:15:34:40 1962-11-16 15975-04-14 765511205 -780827120 1050 7043
5 5. (04FEB2003:13:42.52 18FEBE1363:06:53.54 1962-12-04 2013-03-17 1360006972 98866434 1068 19434
[6 02SEP1966:03:37:17: 02NOW1935:16:23:38 1962-01-10 2000-07-13 210506037 -762507382 740 14804
7 7. 26SEP1969:22:23:10 19SEP1364:22:15:04 1960-06-28 1986-09-18 307318930 148547304 179 9757
8 8. 10FEB1985:20:17:57 . (08FEB1363:06:09.53 1964-03-01 1984-05-10 1108066677 97953793 1521 8896
9 9. O01SEP1970:17:19:39 01SEP1370:13:58:32 1960-12-20 2018-01-05 33667677 336664712 354 21189
10 10 20DEC1979:04:57:52 22JUN1363:05:37:12 1963-01-21 1985-04-07 630133072 108575432 1116 9228
11 11 19JUL2002:18:23:49 . 1960-10-02 1960-08-21 1342722229 . 275 233
12 12 045EP2001:03:25:32 28SEP1361:03:25:32 1963-03-13 1963-09-13 1315193132 54862732 1357 1357
Ready W, sasmeta I
20.2.Spss

In Spss we can also use formatting when we import the data file. Here we use the datetime format
for the time variables and the sdate format for the date variables. When the data is imported, we
add new variables with the Compute commands. Finally, we add formats with the Formats command
and save the dataset with the Save command.

DATA LIST /

id 1-2 (f

time 4-23 (datetlme)
time2 25-44 (datetime)
date 46-55 (sdate)
date2 57-66 (sdate)

BEGIN DATA

01,01-MAR-1999 11:42:00,24-APR-1962 18:25:
02,25-DEC-2002 02:40:12,09-MAR-1954 15:35:
03,02-AUG-1973 03:27:41,30-NOV-1962 08:56:
04,08-APR-1984 17:06:49,04-APR-1935 15:34:
05,04-FEB-2003 19:42:52,18-FEB-1963 06:53:
06,02-SEP-1966 09:37:17,02-NOV-1935 16:23:
07,26-SEP-1969 22:23:10,19-SEP-1964 22:15:
08,10-FEB-1995 20:17:57,08-FEB-1963 06:009:
09,01-SEP-1970 17:19:39,01-SEP-1970 13:58:
10,20-DEC-1979 04:57:52,22-JUN-1963 05:37:
11,19-JUL-2002 18:23:49,29-FEB-1961 15:41:
12,04-SEP-2001 03:25:32,28-SEP-1961 03:25:

31,1962-12-15,2005-04-16
26,1961-09-03,1990-09-24
23,1962-04-25,1966-10-01
40,1962-11-16,1979-04-14
54,1962-12-04,2013-03-17
38,1962-01-10,2000-07-13
04,1960-06-28,1986-09-18
53,1964-03-01,1984-05-10
32,1960-12-20,2018-01-05
12,1963-01-21,1985-04-07
51,1960-10-02,1960-08-21
32,1963-09-19,1963-09-19

150

Documents 2023/1

END DATA.

COMPUTE time nf = time.

COMPUTE time2 nf = time2.

COMPUTE date nf = date.

COMPUTE date2 nf = date2.

FORMATS time nf time2 nf date nf date2 nf

EXECUTE.
SAVE OUTFILE='times.sav'.

(fl6) .

Data processing in Sas, Spss, Stata, R and Python. A comparison

We see in the imported dataset that both the time and date values are stored as time variables. For

the date variables the time will be set to 00:00:00:

@.';, *Untitled20 [] - IBM SPSS Statistics Data Editor

File Edit Wiew

Data Transform Analyze Direct Marketing Graphs

Utiitiee Add-ons Window

Help

SHe I - » B4

AL,

hEEBLE 00 %

19 : time2_nf Vigible: 9 of 9 Variables

id time time2 date date2 time_nf time2_nf date_nf date2_nf

1 1 1-Mar-1999 11:42:00 24-Apr-1962 18:25:31 1962/12/15 2005/04/16 13139667720 11976747931 11996985600 13332988800 |

2 2 25-Dec-2002 02:40:12 9-Mar-1954 15:35:26 1961/09/03 1990/09/24 13260163212 11720302526 11956550400 12873513600

3 3 2-Aug-1973 03:27:41 30-Mov-1962 08:56:23 1962/04/25 1966/10/01 12332459261 11995721783 11976768000 12116736000

4 4 8-Apr-1984 17:06:49 4-Apr-1935 15:34:40 1962/11/16 1979/04/14 12669671209 11122932380 11994480000 12512275200

5 5 4-Feb-2003 19:42:52 18-Feb-1963 06:53:54 1962/12/04 2013/03M17 13263766972 12002626434 11996035200 13582857600

6 6 2-Sep-1966 09:37:17 2-Mov-1935 16:23:38 1962/01/10 2000/07/13 12114265037 11141252618 11967696000 13182825600

i 7 26-Sep-1969 22:23:10 19-Sep-1964 22:15:04 1960/06/28 1986/09/18 12211073990 12052707304 11919225600 12746764800 1

8 8 10-Feb-1995 20:17:57 8-Feb-1963 06:09:53 1964/03/01 1984/05/10 13011826677 12001759793 12035174400 12672374400

9 9 1-Sep-1970 17:19:39 1-Sep-1970 13:58:32 1960/12/20 2018/01/05 12240436779 12240424712 11934345600 13734489600

10 100 20-Dec-1979 04:57:52 22-Jun-1963 05:37:12 1963/01/21 1985/04/07 12533893072 12013335432 12000182400 12701059200

ik il 19-Jul-2002 18:23:49 . 1960/10/02 1960/08/21 13246452229 . 11927520000 11923891200

12 12 4-Sep-2001 03:25:32 28-Sep-1961 03:25:32 1963/09/19 1963/09/19 13216953132 11958722732 12021004800 12021004800
. [|

Data View @ Variable View

IBM SPSS Statistics Processor is ready

20.3.Stata

In Stata embedded files have limited functionality when it comes to date and time formats. We start
with importing the variables as strings. The time variables should be defined as numeric double for
the precision of the times. For the time variables we then concatenate the day with the time and
convert to a time variable with the clock function. Finally, we format the variables and delete the
temporary variables. For the date variables we convert them with the date function and add formats.

clear

input id stril
01 01-MAR-1999
02 25-DEC-2002
03 02-AUG-1973
04 08-APR-1984
05 04-FEB-2003
06 02-SEP-1966
07 26-SEP-1969
08 10-FEB-1995
09 01-SEP-1970
10 20-DEC-1979
11 19-JUL-2002
12 04-SEP-2001
end

day str8
11-42-00
02-40-12
03-27-41
17-06-49
19-42-52
09-37-17
22-23-10
20-17-57
17-19-39
04-57-52
18-23-49
03-25-32

hour strll day2 str8
24-APR-1962 18-25-31
09-MAR-1954 15-35-26
30-NOV-1962 08-56-23
04-APR-1935 15-34-40
18-FEB-1963 06-53-54
02-NOV-1935 16-23-38
19-SEP-1964 22-15-04
08-FEB-1963 06-09-53
01-SEP-1970 13-58-32
22-JUN-1963 05-37-12
29-FEB-1961 15-41-51
28-SEP-1961 ©3-25-32

egen timec = concat(day hour) ,punct(” ")
gen double time = clock(timec,"DMYhms")
egen time2c = concat(day2 hour2) ,punct(" ")

151

hour2 strle datec strio date2c

1962-12-15
1961-09-03
1962-04-25
1962-11-16
1962-12-04
1962-01-10
1960-06-28
1964-03-01
1960-12-20
1963-01-21
1960-10-02
1963-09-19

2005-04-16
1990-09-24
1966-10-01
1979-04-14
2013-03-17
2000-07-13
1986-09-18
1984-05-10
2018-01-05
1985-04-07
1960-08-21
1963-09-19

Documents 2023/1

gen
gen
gen
gen
gen
gen
gen

double time2 =
date = date(datec,"YMD")
date2 =
double time_nf = time

double time2_nf = time2
date_nf = date

date2_nf = date2

date(date2c,"YMD")

format time time2 %tc
format date date2 %td
format time_nf time2_nf %17.0f
drop day day2 hour hour2 timec time2c datec date2c
save "times.dta"

Data processing in Sas, Spss, Stata, R and Python. A comparison

clock(time2c, "DMYhms")

The time variables are defined in milliseconds starting at the beginning of January 1, 1960:

I Data Editor (Edit) - [Untitled]
File Edit Vew Data Tools
=1 IEE =00 A= = dcrie
time2[25] DMYhms -
el id Time timez date datez time_nt timez_nf date_nf datez_nf] +4
%’ 1 1 01mar1999 11:42:00 24apri®62 18:25:31 15decld®62 16apr2005 1235907720000 72987931000 1079 16542 §
E 2 2 25decz002 02:40:12 09mari954 15:35:26 03s5epl961 245ep1930 1356403212000 -183457 474000 611 11224 %
& 3 3 02augl973 03:27:41 30nov1962 08:56:23 25aprise? 01octid66 428729261000 91961783000 845 2465 e
4 4 08apri9e4 17:06:49 04apri9ss 15:34:40 16NOVI9E2 14aprisvs 765911209000 -780827120000 1050 7043 5
5 5 04Tebz003 19:42:52 15Teb1963 06:53:54 04decld®62 17marz2013 1360006972000 9BBE6434000 1068 19434 -
6 6 02sepl966 09:37:17 02novi935 16:23:38 10jan1d6z 13julz2000 210505037000 -762507 382000 740 14804 %
=
7 7 2658p1969 22:23:10 1958p1964 22:15:04 28junl960 1858p1986 307318990000 148947304000 179 9757 o
8 8 10feb1995 20:17:57 08Teb1963 06:09:53 0Imar1l964 10mayl9s4 1108066677000 97999793000 1521 8896
£ 9 01sepi970 17:19:35 04s5epl970 13:58:32 20dec1960 05janz2018 336676779000 336664712000 354 21189
10 10 20dec1979 04:57:52 22juni963 05:37:12 21jan1963 07aprisss 630133072000 109575432000 1116 9228
11 11 193jul2002 18:23:49 . 020€T1960 21augl9s0 1342722229000 275 233
1z 12 04sepz001 03:25:32 28s5epl961 03:25:32 19sepld63 19sepl9s3 1315193132000 54962732000 1357 1357
"
< >
Ready Vars: 9 Order: Dataset Obs: 12 Filter: Off Mode: Edit NUM
20.4.R

Ris good at date and time processing. We can import most different date and time formats and
store them as date, datetime or time variables. Here is the same data as used previously, now
imported to a R data frame:

times <- read.csv(sep=",",header=FALSE,
col.names=c("id","time","time2","date", "date2"),
colClasses=c("character","character","character", "Date","Date"),
18:25:31,1962-12-15,2005-04-16
15:35:26,1961-09-03,1990-09-24
08:56:23,1962-04-25,1966-10-01
15:34:40,1962-11-16,1979-04-14
06:53:54,1962-12-04,2013-03-17
16:23:38,1962-01-10,2000-07-13
22:15:04,1960-06-28,1986-09-18
06:09:53,1964-03-01,1984-05-10
13:58:32,1960-12-20,2018-01-05
05:37:12,1963-01-21,1985-04-07
15:41:51,1960-10-02,1960-08-21
03:25:32,1963-09-19,1963-09-19

text=""

01,01-MAR-1999
02,25-DEC-2002
03,02-AUG-1973
04,08-APR-1984
05,04-FEB-2003
06,02-SEP-1966
07,26-SEP-1969
08,10-FEB-1995
09,01-SEP-1970
10,20-DEC-1979
11,19-3UL-2002
}%,04—SEP—2001

:42:00,24-APR-1962
:40:12,09-MAR-1954
:27:41,30-N0oV-1962
:06:49,04-APR-1935
:42:52,18-FEB-1963
:37:17,02-N0OV-1935
:23:10,19-SEP-1964
:17:57,08-FEB-1963
:19:39,01-SEP-1970
:57:52,22-JUN-1963
:23:49,29-FEB-1961
:25:32,28-SEP-1961

For dates we can define date formats directly in the import, but for datetime variables we first
define them as characters. After they are imported, we can convert into real datetime variables.

The structure R data frame after import

str(times)

152

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

'data.frame': 12 obs. of 5 variables:
$ _id : Chr‘ llOlll ||02|| ll03" ll04ll

$ time : chr "01-MAR-1999 11:42:00" "25-DEC-2002 02:40:12" "02-AUG-1973 03:
27:41" "08-APR-1984 17:06:49" ...

$ time2: chr "24-APR-1962 18:25:31" "09-MAR-1954 15:35:26" "30-NOV-1962 08:
56:23" "04-APR-1935 15:34:40" .

$ date : Date, format: "1962-12-15" "1961-09-03" "1962-04-25" "1962-11-16"

$ date2: Date, format: "2005-04-16" "1990-09-24" "1966-10-01" "1979-04-14"

Even though the datetime variables look fine, they are not real datetime variables, but character
variables. To be able to use calculations on them and to format them, we have to convert them to
real datetime variables. We use the as.POSIXct function for this:

times$time <- as.POSIXct(times$time, format="%d-%b-%Y %H:%M:%S")
times$time2 <- as.POSIXct(times$time2,format="%d-%b-%Y %H:%M:%S")

The datetime format is given by these parameters:

%a Abbreviated weekday

%A Full weekday

%b Abbreviated month

%B Full month

%cC Locale-specific date and time
%d Decimal date

%H Decimal hours (24 hour)

%I Decimal hours (12 hour)

%)j Decimal day of the year

%m Decimal month

%M Decimal minute

%p Locale-specific AM/PM

%S Decimal second

%U Decimal week of the year (starting on Sunday)
%w Decimal Weekday (0=Sunday)
%W Decimal week of the year (starting on Monday)
%X Locale-specific Date

%X Locale-specific Time

%y 2-digit year

%Y 4-digit year

%z Offset from GMT

%Z Time zone (character)

153

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Now we can see that the datetime variables are converted:

str(times)
'data.frame': 12 obs. of 5 variables:
$ _id : Chr Ilolll ll02ll ll03ll ll04ll

$ time : POSIXct, format: "1999-03-01 11:42:00" NA "1973-08-02 03:27:41" "19
84-04-08 17:06:49" ...

$ time2: POSIXct, format: "1962-04-24 18:25:31" "1954-03-09 15:35:26" "1962-
11-30 08:56:23" "1935-04-04 15:34:40" ...

$ date : pate, format: "1962-12-15" "1961-09-03" "1962-04-25" "1962-11-16"

$ date2: pate, format: "2005-04-16" "1990-09-24" "1966-10-01" "1979-04-14"

POSIX is an abbreviation for Portable Operating System Interface.

20.5.Python

Working with dates in Python is quite flexible. It is easy to convert an object to a datetime variable.
We use the pd.to_datetime method with parameters that describe the date and time format. We also
convert the variables to datetime64:

data="""

01,01-MAR-1999 11:42:00,24-APR-1962 18:25:31,1962-12-15,2005-04-16
02,25-DEC-2002 02:40:12,09-MAR-1954 15:35:26,1961-09-03,1990-09-24
03,02-AuG-1973 03:27:41,30-NOV-1962 08:56:23,1962-04-25,1966-10-01
04,08-APR-1984 17:06:49,04-APR-1935 15:34:40,1962-11-16,1979-04-14
05,04-FEB-2003 19:42:52,18-FEB-1963 06:53:54,1962-12-04,2013-03-17
06,02-sSEP-1966 09:37:17,02-NOV-1935 16:23:38,1962-01-10,2000-07-13
07,26-SEP-1969 22:23:10,19-SEP-1964 22:15:04,1960-06-28,1986-09-18
08,10-FEB-1995 20:17:57,08-FEB-1963 06:09:53,1964-03-01,1984-05-10
09,01-sep-1970 17:19:39,01-SEP-1970 13:58:32,1960-12-20,2018-01-05
10,20-DEC-1979 04:57:52,22-JUN-1963 05:37:12,1963-01-21,1985-04-07
11,19-3JuUL-2002 18:23:49,29-FEB-1961 15:41:51,1960-10-02,1960-08-21
12,04-SEP-2001 03:25:32,28-SEP-1961 03:25:32,1963-09-19,1963-09-19

times =

times['timea'] = pd.to_datetime(times.time, format='%d-%b-%Y %H:%M:%S",
errors="'coerce') .astype('datetime64[ns]"')

times['time2a'] = pd.to_datetime(times.time2, format='%d-%b-%Y %H:%M:%S",
errors="'coerce') .astype('datetime64[ns]"')

times['datea'] = pd.to_datetime(times.date, format='%Y-%m-%d',
errors="coerce') .astype('datetime64[ns]"')

times['date2a'] = pd.to_datetime(times.date2, format='%Y-%m-%d',
errors="coerce') .astype('datetime64[ns]"')

times['time_diff"'] times['timea'] - times['time2a']
times['date_diff'] times['datea'] - times['date2a']

times

154

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

We now have a data frame with datetime variables. If a datetime is invalid it sets the value to NaT
(not a time), see row 10:

id time time2 date date2 timea time2a datea date2a time_diff date_diff
o of 01-MAR-1999 24-APR-1962 1962-12- 2005-04- 1999-03-01 19620424 1962-12- 2005-04- 13459 days 15463
11:42:00 18:25:31 15 16 11:42:00 18:25:31 15 16 17:16:29 days
P 25-DEC-2002 09-MAR-1954 1961-09- 1990-09- 2002-12-25 19540308 1961-09- 1880-09- 17822 days 10613
02:40:12 15:35:26 03 24 02:40:12 15:35:26 03 24 11:04:46 days
2 03 02-AUG-1973 30-NOV-1962 1962-04- 1966-10- 1973-08-02 1962-11-30 1962-04- 1966-10- 3897 days oo
03:27:41 08:56:23 25 01 03:27:41 08:56:23 25 01 183118 y

s 0 08-APR-1984 04-APR-1935 1962-11- 1979-04- 1984-04-08 19350404 1962-11- 1679-04- 17902days oo
17:0649 153440 16 14 17:0649 15:34:40 16 14 01azgy 0993 days
. 0 04-FEB-2003 18.FEB-1963 1962-12- 2013-03- 2003-02-04 19630218 1962-12- 2013-03- 14596 days -18366
19:42:52 06:52:54 04 17 19:42.52 06:53:54 04 17 12:48:58 days
s 05 02-SEP-1965 02-NOV-1935 1962-01- 2000-07- 1966-00-02 1935-11-02 1962-01- 2000-07- 11261 days 14064
093717 162338 10 13 093717 16:23:38 10 13 17:13:39 days
6 o7 26-SEP-1969 19-SEP-1964 1960-06- 1985-08- 1969-09-26 1964-09-19 1960-06- 1986-09- 1833days ooo0

22:23:10 22:15:04 28 18 222310 22.15:04 28 18 00:08:06 ~ y

0 10-FEB-1995 08-FEB-1963 1964-03- 1984-05- 1995-02-10 19630202 1964-03- 1984-05- 1690 days oo
20-17°57 06:08:53 01 10 201757 06:09:53 01 10 140804 1375 days
8 0 01-SEP-1970 01-SEP-1970 1960-12- 2018-01- 1970-09-01 19700801 196012 201801~ [oo o -20835
17:1939 13:58:32 20 05 17:19:39 13:58:32 20 05 ysios21: days

s 10 20-DEC-1979 22.JUN-1963 1963.01- 1985-04- 1979-12-20 19630622 1963-01- 1985-04- 8024 days oo
045752 05:37:12 21 07 04:57-52 0537-12 21 o7 230040 S112days

18-JUL-2002 29FEB-1961 1960-10- 1960-08- 2002-07-19 1960-10- 1960-08-

D W 18:23:49 15:41:51 02 21 18:23:49 falj 02 21 e EEER

" 04-SEP-2001 22-SEP-1961 1963-00- 1953-00- 2001-09-04 19610928 1963-09- 1963-00- 14586 days 0
032532 0325:32 19 19 032537 032532 19 19 00-00:00 ays

155

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The datetime format is given by these parameters:

%a Locale’s abbreviated weekday name.

%A Locale's full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

%H Hour (24-hour clock) as a decimal number [00,23].

%I Hour (12-hour clock) as a decimal number [01,12].

%)j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale’s equivalent of either AM or PM.

%S Second as a decimal number [00,61].

%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53].
All days in a new year preceding the first Sunday are considered to be in week 0.

%W Weekday as a decimal number [0(Sunday),6].

%W Week number of the year (Monday as the first day of the week) as a decimal number [00,53].
All days in a new year preceding the first Monday are considered to be in week 0.

%X Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.
Time zone offset indicating a positive or negative time difference from UTC/GMT of the form

%z +HHMM or -HHMM, where H represents decimal hour digits and M represents decimal
minute digits [-23:59, +23:59].

%Z Time zone name (no characters if no time zone exists).

%% A literal '%' character.

156

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

21. Tabulation

We have seen earlier how we can make tables for frequencies and descriptive statistics. Quite often
we need to create more advanced tables. There are several kinds of tables, and we will now look
into some of them and see how we can create them in the different software packages. The results
may come in different formats. Sas creates Html files as default, the other packages put the table in
more or less plain text formats as default. In some of the packages it is possible to wrap layout
around the table and display them in other formats. We will here only look at the default output.

There are different types of tables, and they may be rather complex. The basic tables consist of two
dimensions with one or more variables in the rows and one or more variables in the columns. It
should be possible to add totals and subtotals, and also to decide if they shall be placed before or
after the rows or columns. When we have more than one variable in one dimension, they can be
either nested or stacked. A nested variable appears as a subgroup to another variable, while stacked
variables appear independently after each other.

The variables used in our tables can either be used as categorical or as measure variables.
Categorical variables are used for distribution as there will be one row or column for each value of a
categorical variable. Measure variables will be used for different statistical measures like sum, mean,
median, etc.

We will now show some different table types and how they can be made in the different software
packages. The simplest table is a two-way table with one categorical variable in the rows and one in
the columns. In the cells of the table the frequency is counted:

Table 1. Simple cross tabulation with frequency counts

Varl Var2
X Y z
A 6 5 8
11 7 9
c 4 2 4

For each combination of the categories in the rows and columns, the number of observations/rows
are counted.

Totals can be added in both dimensions. It should be possible to place them either before or after
the categories. Here is an example with totals after:

Table 2. Simple cross tabulation with frequency counts and total

Varl Var2

X Y y4 Total
A 6 5 8 19
B 11 7 9 27
(o 4 2 4 10
Total 21 14 21 56

157

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can have nested variables in the rows and/or columns:

Table 3. Cross tabulation with nested variables in the rows, frequency counts and total

Varl Var3 Var2
X Y Z Total
A G 4 1 5 10
H 2 4 3 9
B G 8 3 5 16
H 3 4 4 11
C G 4 0 1 5
H 0 2 3 5
Total 21 14 21 56

Here we have nested variables in both dimensions:

Table 4. Cross tabulation with nested variables in the rows and columns, frequency counts and total

Varl Var3 Var2

X Y Z Total
Var4 Var4 Var4
P M P M P

A G 2 2 1 0 2 3 10
H 2 0 0 4 2 1 9
B G 2 6 2 1 2 3 16
H 1 2 3 1 2 2 11
C G 3 1 0 0 1 0 5
H 0 0 1 1 1 2 5
Total 10 11 7 7 10 11 56

158

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

Now we add subtotals. We see that the total is also calculated for Var3 in the rows and Var4 in the
columns. The subtotals of these will add up to the grand total:

Table 5. Cross tabulation with two nested variables in the rows and two nested in the columns, frequency counts,

total and subtotals

Var1 Var3 Var2
X Y y4 Total
Var4 Var4 Var4 Var4
M P Subtotal M Subtotal M P Subtotal M P Subtotal
A G 2 2 4 1 1 2 3 5 5 5 10
H 2 0 2 0 4 2 1 3 4 5 9
Subtotal 4 2 6 1 5 4 4 8 9 10 19
B G 2 6 8 2 3 2 3 5 6 10 16
H 1 2 3 3 4 2 2 4 6 5 11
Subtotal 3 8 11 5 7 4 5 9 12 15 27
C G 3 1 4 0 0 1 0 1 4 1 5
H 0 0 0 1 2 1 2 3 2 3 5
Subtotal 3 1 4 1 2 2 2 4 6 4 10
Total G 7 9 16 3 4 5 6 11 15 16 31
H 3 2 5 4 10 5 5 10 12 13 25
Subtotal 10 11 21 7 14 10 11 21 27 29 56
Instead of nested variables, we can have them stacked:
Table 6. Cross tabulation with stacked variables in rows and
columns, frequency counts and total
Varl Var2 Vard
X Y Z M P Total
A 6 5 8 9 10 19
B 11 7 9 12 15 27
C 4 2 4 6 4 10
Var3
G 16 4 11 15 16 31
H 5 10 10 12 13 25
Total 21 14 21 27 29 56

159

Documents 2023/1

Instead of counting the frequency, we can count the sum, mean etc. of a measure variable. We can
still have categorical variables in the rows and columns. Her we have chosen to put the sum of the
Var6 variable into the cells of the tables:

Data processing in Sas, Spss, Stata, R and Python. A comparison

Table 7. Cross tabulation with sum of measure
variable and totals

Varl Var2
X Y Z Total
Var6 Var6 Var6
Sum Sum Sum Sum
A 21 33 11 65
B 24 26 15 65
c 27 21 12 60
Total 72 80 38 190

We should be able to calculate percentages in our tables, both total, row and columns percentages:

Table 8. Cross tabulation with
percent of total frequency

Table 9. Cross tabulation with

Table 10. Cross tabulation with

counts percent of row frequency counts percent of column frequency counts

Varl Var2 Total | Varl Var2 Total | Varl Var2 Total
X Y y4 X Y 4 X Y Z

A 10,7 89 143 339| A 31,6 26,3 42,1 100,0| A 286 357 381 339

B 19,6 12,5 16,1 482| B 40,7 259 33,3 1000| B 52,4 50,0 42,9 482

c 71 36 71 179| C 40,0 20,0 40,0 1000| C 190 14,3 190 17,9

Total | 37,5 25,0 37,5 100,0| Total | 375 250 37,5 100,0| Total | 100,0 100,0 1000 100,0

Finally, different counts can be shown in the same table. Here we have both frequencies and column
frequencies:

Table 11. Cross tabulation with percent of column frequency counts

Varl N %
Var2 Var2 Total
X Y Z Total X Y Z
A 6 5 8 19 28,6 35,7 38,1 33,9
B 11 7 9 27 52,4 50,0 42,9 48,2
(o 4 2 4 10 19,0 14,3 19,0 17,9
Total 21 14 21 56 100,0 100,0 100,0 100,0

160

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

These are just some examples on what kind of tables it should be possible to make in a tabulation
procedure. Now we will look at how these tables can be made in the different software packages.

21.1.Sas

In Sas, there are two procedures that is suitable for making tables: Proc tabulate and Proc report. The
default output is sent to the result window as an html file. This means the tables looks fine and they
can easily be exported to for instance Excel. Here, we will only look at Proc tabulate.

We use the Proc tabulate statement to choose the dataset to create the table from. We have to
define how the variables we use in the table is to be used and we do that with the Class and Var
statements. Variables mentioned in the Class statement will be used as categorical variables.
Variables mentioned in the Var statement will be used as measure variables. The table layout will be
defined in the Table statement.

Here is the syntax to create a two-way table with frequency counts:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state urbrur;
table state

4

urbrur
/misstext="'-";
title "Table 1. Persons by state and location";

run;

As we define both state and urbrur in the Class statement, they will be categorical variables. In the
Table statement the comma divides the dimensions from each other. What is placed before the
comma will end up in the rows and after the comma in the columns. As we have not explicitly
defined what to count, Sas will count the frequencies and show that with the column header N. We
can add some options for the table after the slash. Here we have added the option Misstext to tell
that we want to fill empty cells with a dash. The table will be like this:

Table 1. Persons by state and location

Urban/Rural location of household

Urban Rural
N N
State
02 Capital 17 -
04 East 12 -
05 South - [
06 West 12 -

We can add total to the table with the All option. We also tell that we want to count the frequencies
with the N option, and then we can also tell that we don't want any column header for it. The syntax
is now like this:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state urbrur;
table all="'Total' state=""

4
(all="Total' urbrur='"')*n=""
/misstext="-";
title "Table 2. Persons by state and location. With totals";
run;

161

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We have put the totals before the categories:

Table 2. Persons by state and location. With totals

Total | Urban = Rural

Total 47 41 G
02 Capital 17 17 -
04 East 12 12 -
05 South 6 - G
06 West 12 12 -

Now we will have two nested variables in the rows. We add the gender variable (b4) to the class
statement and include the variable in the rows in the table statement. To nest the variables, we

insert an * sign between the two variables:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state urbrur b4;
table all="'Total' state='""'*pb4=""
’
(all="Total' urbrur='")*n=""
/misstext="'-"' nocellmerge;
title "Table 3. Persons by state, sex and location. Nested";
run;

The table have now two nested variables in the rows. For each value of the state variable, which is

mentioned first, we will have a gender distribution. The sub-group b4 is not distributed for the total,

it is only a grand total:

Table 3. Persons by state, sex and location. Nested

Total | Urban | Rural
Total 47 41 5}

02 Capital | Male 7 7
Female 10 10
04 East Male 4 4
Female 8
05 South | Male 2
Female 4
06 West | Male 8
Female 4

We will now add a nested variable, b6, in the columns as well. It is done the same way as previously,

except the new variable is inserted in the columns of the table definition:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state urbrur b4 b6;
table all="'Total' state='"'*b4=""
(all="'Total' b6='""*urbrur='")*n=""
/misstext="'-"' nocellmerge;

title "Table 4. Persons by state, sex, civil status and location.

run;

162

Nested";

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The table show the nesting in both dimensions. Categories with no values are excluded, we can see
that because there is no Rural column for Missing values or Married - Polygamy:

Table 4. Persons by state, sex, civil status and location. Nested

Total | Missing | Never married | Married - monogamy | Married - polygamy

Urban | Urban | Rural Urban Rural Urban
Total 47 12 15 3 10 3 4
02 Capital Male 7 2 1 2 - 2
Female 10 4 3 3 -
04 East Male 4 1 2 1 - -
Female 8 3 2 1 2
05 South | Male 2 - - 1 - 1 -
Female 4 - - 2 - 2 -
06 West Male 8 2 5 -
Female 4 - 2 2 -

We can now add subtotals to our nested table. We add the all option for the subtotals and introduce
parenthesis for adding have the distribution of the nested variables for the totals as well:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state urbrur b4 Db6;
table (all="'Total' state='"')* (all='Both genders' b4="")
14
(all="'Total' b6="")*(all='Both locations' urbrur='"')*n=""
/misstext="'-"' nocellmerge;
title "Table 5. Persons by state, sex, civil status and location. Nested
with totals";
run;

Our table is now extended:

Table 5. Persons by state, sex, civil status and location. Nested with totals

Total Missing MNever married Married - monogamy Married - polygamy
Both locations | Urban | Rural = Both locations | Urban | Both locations | Urban | Rural | Both locations | Urban | Rural | Both locations | Urban
Total Both genders 47 41 [12 12 18 15 3 13 10 3 4 4
Male 21 19 2 5 5 9 8 1 5 4 1 2 2
Female 26 22 4 7 7 9 7 2 8 6 2 2 2
02 Capital | Both genders 17 17 6 6 4 4 5 5 2 2
Male 7 7 2 2 1 1 2 2 2 2
Female 10 10 4 4 3 3 3 3 -
04 East Both genders 12 12 4 4 4 4 2 2 2 2
Male 4 4 1 1 2 2 1 1 -
Female 8 3 - 3 3 2 2 - 1 1 - 2 2
05 South | Both genders 6 - 6 3 3 3 3
Male 2 2 1 1 1 1
Female 4 4 2 - 2 2 - 2
06 West Both genders 12 12 - 2 2 7 T - 3 3 -
Male 8 3 - 2 2 5 5 1 1
Female 4 4 2 2 2 2

Now we want to have our variables stacked after each other instead of nested within each other. To
stack the variables, we simply drop the * sign between the listed variables in the table statement:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state urbrur b4 b6;
table all="'Total' state b4
4
(all="Total' b6 urbrur)*n=""
/misstext="'-"' nocellmerge;
title "Table 6. Persons by state, sex, civil status and location. Stacked";
run;

163

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We see that our variables are now stacked, both in the rows and columns:

Table 6. Persons by state, sex, civil status and location. Stacked

Total Civil status Urban/Rural location of household
Missing | Never married = Married - monogamy = Married - polygamy Urban Rural

Total 47 12 18 13 4 41 B
State
02 Capital 17 4 5 17
04 East 12 4 2 12
05 South 6 3 3 3
06 West 12 2 7 3 12
Sex
Male 21 9 19
Female 26 7 9 3 2 22

Now we will introduce a measure variable. It shall be defined in the Var statement. When we use it,
we should also connect it to a measurement, like sum or mean. If not, the sums will be calculated.
We want to calculate the average age (b5) of the persons distributed by state and b4:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state b4 ;
var bb;
table all="Total' state=""

4

(all="'Total' b4="'")*b5=""*mean=""
/misstext="'-"' nocellmerge;
title "Table 7. Average age of persons by state and sex";

run;
The connection is done with the * sign. The table cells will now contain average age:

Table 7. Average age of persons by state and sex

Total | Male | Female

Total 21 22 21
02 Capital 19 24 16
04 East 18 18 17
05 South 34 40 32
06 West 22 13 28

Now we will look at three ways to calculate percentages, of grand total, rows and columns. We
choose between these with either pctn, rowpctn or colpctn:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state b4 ;
table all="Total' state=""
4
(all="Total' b4="")*pctn=""
/misstext="'-"' nocellmerge;
title "Table 8. Persons by state and sex. Percent of total";
run;

proc tabulate data=mdg.mdgperson nodup f=15. missing;

class state b4 ;
table all='Total' state=""

164

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

(all="Total' b4="")*rowpctn=""
/misstext='-"' nocellmerge;
title "Table 9. Persons by state and sex. Percent of rows";
run;

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state b4 ;
table all="'Total' state=""
4
(all="Total' b4="")*colpctn=""
/misstext='-"' nocellmerge;
title "Table 10. Persons by state and sex. Percent of columns";
run;

The tables will be like this:

Table 8. Persons by state and sex. Percent of total

Total | Male Female

Total 100 45 55
02 Capital 3& 15 21
04 East 26 9 17
05 South 13

06 West 26 17

Table 9. Persons by state and sex. Percent of rows

Total Male Female

Total 100 45 55
02 Capital 100 4 59
04 East 100 33 67
05 South 100 33 67
06 West 100 a7 33

Table 10. Persons by state and sex. Percent of columns

Total Male Female

Total 100 | 100 100
02 Capital 36 33 38
04 East 26 19 3
05 South 13 10 15
06 West 26 38 15

Finally, we can combine absolute figures with percentages. Her we choose all the absolute figures in
the first columns and then the column percentages:

proc tabulate data=mdg.mdgperson nodup f=15. missing;
class state b4 ;
table all="'Total' state=""
4
(n rowpctn="'%"')*(all="Total' b4="")
/misstext="'-"' nocellmerge;

165

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

title "Table 11. Persons by state and sex. Absolute figures and percent of
rows";
run;

This is the table produced:

Table 11. Persons by state and sex. Absolute figures and percent of rows

N %
Total Male Female Total Male Female
Total 47 21 26 100 45 55
02 Capital 17 7 10 100 41 59
04 East 12 4 g 100 33 &7
05 South 6 2 100 33 &7
06 West 12 8 100 67 33

It is possible to create other kinds of tables with Proc tabulate, so it is a useful procedure to learn.

21.2.Spss

In Spss the CTABLES command is suitable for tabulation. It is found under the
Analyze=»Tables=»Custom Tables menu. Here we can generate syntax which can be executed, or we
can write our own syntax. The default output is sent formatted to the Output Window. From there it
is easy to export the tables into for instance Excel. We just right click on the table and choose Copy
and then Excel spreadsheet.

In CTABLES we can use these subcommands for our basic tabulation:

e VLABELS Decide how to display value labels

e TABLE Define the table layout. The rows are defined first. Then, after BY, the
columns are defined

e CATEGORIES Describe options for the categorical variables

e TITLES The title of the table

The variables can be defined as Categorical (C), Ordinal (O) or Scale (S). This can be done within the
Table subcommand. Only Scale variables may be used for measures.

In our first example we have decided to show the labels of the variables state and urbrur. In the table
we put state in the rows and urbrur in the columns. In the cells of the table, we put the count which
will count the number of cases with the different values for these categorical variables. In the
Categories subcommand we say that both variables are to be sorted in ascending order by the value
of the variables. We also will exclude user missing values if there were any present in the variables
used (system missing values are always excluded):

GET FILE='mdgperson nodup.sav'.
CTABLES
/VLABELS VARIABLES=state urbrur DISPLAY=LABEL
/TABLE state [COUNT F40.0] BY urbrur
/CATEGORIES VARIABLES=state urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE
/TITLES
TITLE="'Table 1. Persons by state and location'.

166

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When we run, the table is sent to the Output window and looks like this:

Table 1. Persons by state and location

Urban/Rural location of
hausehold

Urban Rural
Count Count
State 02 Capital 17 0
04 East 12 0
05 South 0 B
06 West 12 0

We can now add the totals to our table and choose to have them before the variables. For this, we
use the Total=yes and Position=before options:

CTABLES

/VLABELS VARIABLES=state urbrur DISPLAY=NONE

/TABLE state [COUNT F40.0] BY urbrur

/SLABELS VISIBLE=NO

/CATEGORIES VARIABLES=state urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE
TOTAL=YES POSITION=BEFORE

/TITLES

TITLE='Table 2. Persons by state and location. With totals'.

Totals are now added to our table:

Table 2. Persons by state and
location. With totals

Total Urban Rural
Total 47 41 6
02 Capital 17 17 0
04 East 12 12 0
05 South G 0 6
06 West 12 12 0

We can add a nested variable, b4, to our rows. Then we use the > sign to do the nesting. We see that
we can have more than one Categories subcommand. When parameters differ between the
categorical variables, we need more Categories subcommands:

CTABLES

/VLABELS VARIABLES=state b4 urbrur DISPLAY=NONE

/TABLE state > b4 [COUNT F40.0] BY urbrur

/SLABELS VISIBLE=NO

/CATEGORIES VARIABLES=state urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE
TOTAL=YES POSITION=BEFORE

/CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE

/TITLES

TITLE="'Table 3. Persons by state, sex and location. Nested'.

167

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The table shows the nested variables in the rows. We see that the subgroup b4 is also used for the
total. However, there is no grand total in this table:

Table 3. Persons by state, sex and location.

Nested
Total Urban Rural
Total Male 21 19 2
Female 26 22 4
02 Capital Male 7 7 0
Female 10 10 0
04 East Male 4 4]
Female 8 8 0
05 South Male 2 0 2
Female 4 0 4
06 West Male 8 8 0
Female 4 4 0

Now we want to add the variable b6 nested under to the urbrur variable in the columns. b6 has
missing values and to include them in the table they must be set to user missing or a valid value. We
set them to user missing first and then make the table:

IF (missing(b6) = 1) b6 = 9.
MISSING VALUES b6 (9).

CTABLES
/VLABELS VARIABLES=state b4 b6 urbrur DISPLAY=NONE
/TABLE state > b4 [COUNT F40.0] BY b6 > urbrur
/SLABELS VISIBLE=NO
/CATEGORIES VARIABLES=state b6 ORDER=A EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE MISSING=include
/CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=NO
LABEL='Both sexes'
POSITION=BEFORE
/CATEGORIES VARIABLES=urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=NO
LABEL='Both locations'
POSITION=BEFORE
/TITLES
TITLE='Table 4. Persons by state, sex, civil status and location.
Nested'.

168

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

For the variable b6, we have added the missing=include option in the Categories subcommand. The
user missing values will now be included in the table:

Table 4. Persons by state, sex, civil status and location. Nested

Total Never married Married — monogamy rsglly:;aklmy MNIA

Urban Rural Urban Rural Urban Rural Urban Urban

Total Male 19 2 8 1 4 1 2 5
Female 22 4 [2 6 2 2 7

02 Capital Male 7 0 1 0 2 0 2 2
Female 10 0 x| 0 3 0 0 L)

04 East Male 4 0 2 0 1 0 0 1
Female 8 0 2 0 1 0 2 3

05 South Male 0 2 0 1 0 1 0 0
Female 0 - 0 7 0 2 0 0

06 West Male B 0 5 0 1 0 0 2
Female 4 0 2 0 2 0 0 0

In the next table we want to add sub-totals. We do that by changing the Total parameter to Yes in the

Categories commands. We have also made different labels for the sub-totals:

CTABLES
/VLABELS VARIABLES=state b4 b6 urbrur DISPLAY=NONE
/TABLE state > b4
/SLABELS VISIBLE=NO

/CATEGORIES VARIABLES=state b6 ORDER=A EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE MISSING=include

[COUNT F40.0]

BY b6 > urbrur

/CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
LABEL='Both sexes'
POSITION=BEFORE
/CATEGORIES VARIABLES=urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
LABEL='Both locations'
POSITION=BEFORE
/TITLES
TITLE='Table 5.
with totals'.

The sub-totals are now added. We see that for the total we have both the grand total and the totals

Persons by state,

within the b4 and urbrur variables:

Both
locations

Table 5. Persons by state, sex, civil status and location. Nested with totals

Total

Urban

Rural

Never married

Both
locations

Urban

Rural

sex,

Married — monogamy

Both
locations

Urban

Rural

Married — polygamy

Both
locations

Urban

civil status and location.

NIA
Both
locations

Nested

Urban

Total

02 Capital

04 East

05 South

08 West

Both sexes
Male
Female
Both sexes
Male
Female
Both sexes
Male
Female
Both sexes
Male
Female
Both sexes
Male

Female

47
21
26
17

10
12

ol |

Li
19
22
17

7
10
12

4

8
0
0
0
2
8
4

o olols o oloole oo sinae

LT N R R R R I e P - N =)

15

N o~wle olonn elw=als~o

olo|lo|v|-|w|lo|o|o|e|o|o|m|=|w

10

4
6
5
2
3
2
1
1
0
0
0
3
1
2

oolojmw = |w oloojoolom = w

oclolo|lo ojlolm|ioiv|o nininin s

ololo|lo ololmoimie winL v e

olninjeoololw = lselaenia~wlan

olnwip|oololw| = else e ~wlnn

169

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We would now like to stack the variables in the row and columns. Then we use the + sign instead of
the > sign in the Tables subcommand:

CTABLES

/VLABELS VARIABLES=state b4 b6 urbrur DISPLAY=LABEL

/TABLE state [COUNT F40.0] + b4 [COUNT F40.0] BY b6 + urbrur

/SLABELS VISIBLE=NO

/CATEGORIES VARIABLES=state ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE

/CATEGORIES VARIABLES=b4 urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE

/CATEGORIES VARIABLES=b6 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE MISSING=INCLUDE

/TITLES

TITLE='Table 6. Persons by state, sex, civil status and location.

Stacked'.

Now the variables follow each other, they are stacked:

Table 6. Persons by state, sex, civil status and location. Stacked

Urban/Rural location of

Civil status household
Never Married — Married —
Total married monogamy polygamy NIA Urban Rura
State Total 47 18 13 4 12 41]
02 Capital 17 4 < 2 6 17 0
04 East 12 4 2 2 4 12 0
05 South 6 3 3 0 0 0 6
06 West 12 7 3 0 2 12 0
Sex Male 21 9 5 2 5 19 2
Female 26]] 2 7 22 4

We will now introduce b5 as a scale variable, so we can have average age in our table cells. Now we
nest b4 with b5 and choose the mean of the b5 variable. We include [S] after the variable name to
make sure it is used as a scale variable. For b4 we have added [C] to be sure itis used as a
categorical variable. This is only necessary if the variables are not defined the way we want to use
them:

CTABLES

/VLABELS VARIABLES=state b4 b5 DISPLAY=NONE

/TABLE state BY b4 [C] > b5 [S] [MEAN F40.0]

/SLABELS VISIBLE=NO

/CATEGORIES VARIABLES=state b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE

/TITLES

TITLE='Table 7. Average age of persons by state and sex'.

The table with the average ages is here:

Table 7. Average age of persons by
state and sex

Total Male Female
Total 21 22 21
02 Capital 19 24 16
04 East 18 18 17
05 South 34 40 =
06 West 22 18 28

170

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

To make percentage tables we use the tablepct.count, rowpct.count and the colpct.count measures.
This will give us tables with percentages made by the grand total, the row totals and the column
totals:

CTABLES
/VLABELS VARIABLES=state b4 DISPLAY=NONE
/TABLE state BY b4 [TABLEPCT.COUNT F40.0]
/SLABELS VISIBLE=NO
/CATEGORIES VARIABLES=state b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE
/TITLES
TITLE='Table 8. Persons by state and sex. Percent of total'.
CTABLES
/VLABELS VARIABLES=state b4 DISPLAY=NONE
/TABLE state BY b4 [ROWPCT.COUNT F40.0]
/SLABELS VISIBLE=NO
/CATEGORIES VARIABLES=state b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE
/TITLES
TITLE="'Table 9. Persons by state and sex. Percent of rows'.

CTABLES

/VLABELS VARIABLES=state b4 DISPLAY=NONE

/TABLE state BY b4 [COLPCT.COUNT F40.0]

/SLABELS VISIBLE=NO

/CATEGORIES VARIABLES=state b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE

/TITLES

TITLE='Table 10. Persons by state and sex. Percent of columns'.

The percentage tables:

Table 8. Persons by state and sex. Table 9. Persons by state and sex.
Percent of total Percent of rows

Total Male Female Total Male Female
Total 100 45 55 Total 100 45 55
02 Capital 36 15 21 02 Capital 100 41 59
04 East 26 q 17 04 East 100 33 67
05 South 13 4 g 05 South 100 33 67
06 West 26 17 g 06 West 100 67 33

Table 10. Persons by state and sex.
Percent of columns

Total Male Female
Total 100 100 100
02 Capital 36 33 k}:]
04 East 26 19 31
05 South 13 10 15
06 West 26 38 15

171

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Finally, we will combine absolute figures with column percentages:

CTABLES

/VLABELS VARIABLES=state b4 DISPLAY=NONE

/TABLE state BY b4 [COUNT 'N' F40.0] + b4 [COLPCT.COUNT '$%' F40.0]

/CATEGORIES VARIABLES=state ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES
POSITION=BEFORE

/CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=INCLUDE TOTAL=YES
POSITION=BEFORE

/TITLES

TITLE='Table 11. Persons by state and sex. Absolute figures and percent of
columns'.

Unfortunately, the measure texts (N, %) are placed under the variable and repeated. It would be
better to have them once above the variable texts. It does not seem to be possible to change this in
an easy way (one way is to copy the b4 variable to a new name, give them different labels and use
one of them for the absolute figures and the other one for the percentages):

Table 11. Persons by state and sex. Absolute figures and percent

of columns
Total Male Female Total Male Female
N N N % % %
Total 47 21 26 100 100 100
02 Capital 17 7 10 36 33 38
04 East 12 4 8 26 19 31
05 South] 2 4 13 10 15
06 West 12 8 4 26 a8 15

There are several more ways to use the CTABLES command. Hence, it is very useful for presenting
results in Spss.

21.3.Stata

In Stata we can use the procedures table, tabulate and tab2 for cross tabulation. These procedures
are not especially flexible but can be useful to create basic tables. The table is sent to the Log and
listing window. To copy the table to another format we can mark the table, right click, and choose
Copy Table or Copy table as Html. Then we can paste it into for instance Excel.

The table, tabulate (tab) and tab2 procedures syntax are short and concise. It is not possible to add
titles to table within these procedures. Stata operates with rows, superrows, columns and
supercolumns. Supercolumns are used for nesting variables in the columns and the by option to
nest variables in the rows (superrows). It is not possible stack variables in either dimension.

We will start with a simple table with one categorical variable in each dimension. We just mention
the two variables in the table procedure and the first (state) will be placed in the rows and the
second (urbrur) in the columns. We add the missing option to display a dot in empty cells:

table state urbrur, missing

172

Documents 2023/1

This is the table:

Urban/Rural
location of
household
State Urban Rural
82 Capital 17
g4 East 12 -
@5 South . 6
B85 West 12

Data processing in Sas, Spss, Stata, R and Python. A comparison

Next, we will add totals. They will always appear at the end. We just change to tab procedure and the

totals will be included in our table:

tab state urbrur

Now we have totals in both dimensions. Empty cells are filled with zeros:

Urban/Rural location
of household

State Urban Rural Total

82 Capital 17 2] 17
84 East 12 a 12

@5 South o 6 6
86 West 12 a 12
Total 41 B 47

Now we want to have two nested variables in the rows. We use the table procedure and add the row
and col options to have totals added. We use the variable state in the by option to have it as the first
variable (superrows) in the rows. To have dots instead of nothing in empty cells we use the missing

option:

table b4 urbrur, by(state) row col missing

173

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We have now a table with two nested variables in the rows. The totals added are actually subtotals
for each of the states. The grand total is not included in the table:

Urban/Rural location
State and of household
Sex Urban Rural Total
82 Capital
Male 7 . 7
Female 10 . 10
Total 17 . 17
84 East
Male 4 . 4
Female 8 . 8
Total 12 . 12
@85 South
Male 2 2
Female . 4 4
Total N 6 6
86 West
Male 8 . 8
Female 4 . a
Total 12 . 12

We now want nested variables in the columns as well. In the table command, we start we the nested
variable b4. Then we name the two variables in the columns. Urbrur is named first and will be the
nested one. B6 is then mentioned and will be the supercolumn. After the comma, we use the by
option to name the state variable in the rows, as the superrow variable. We also add subtotals with
the row (row totals), col (column totals) and sc (supercolumn totals) options. Finally, we include the
missing option to place dots in empty cells:

table b4 urbrur b6, by(state) row col sc missing

174

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The table is a little bit strange because there are columns for the total of the nested variable, urbrur,
independent of the b6 variable. However, for the rows there are no independent totals for b4, which
is the nested variable there. In addition, there are no grand totals:

Civil =status and Urban/Rural locaticn of household
State and — Never married — — Married - meneog — - Married - polyg — Total
Sex Urban Rural Total Urban Rural Total Urban Rural Total Urban Rural Total
82 Capital
Male 1 - 1 2 . 2 2 - 2 5 . 5
Female 3 N 3 3 . 3 . N
Total 4 - 4 5 . 5 2 - 2 11 . 11
24 East
Male 2 - 2 1 . 1 . - . 3 . 3
Female 2 N 2 1 . 1 2 N 2 5 . 5
Total 4 - 4 2 . 2 2 - 2 8 . 8
@5 South
Male . 1 1 - 1 1 . - . - 2 2
Female . 2 2 . 2 2
Total . 3 3 - 3 3 . - . - 6 6
86 West
Male 5 - 5 1 . 1 . - . 6 . 6
Female 2 N 2 2 . 2 . N . 4 . 4
Total F - F 3 . 3 . - . 16 . 16

Missing values in the categories are always excluded. If we want to include missing values, we must
recode to a valid value. We also change the value labels:

replace b6 = 9 if b6 == .

label define civil_status ///
"Never married" ///
"Married - monogamy" ///
"Married - polygamy" ///
"Widowed" ///

"Separated” ///

"Divorced" ///

"N/A", replace

ooouhwWNER

table b4 urbrur b6, by(state) row col sc missing

175

Documents 2023/1

The new table include the missing variables:

Data processing in Sas, Spss, Stata, R and Python. A comparison

Civil status and Urban/Rural location of household

State and — MNever married — — Married - monog — — Married - polyg — Total
Sex Urban Rural Total Urban Rural Total Urban Rural Total Total Urban Rural Total
82 Capital
Male 1 - 1 2 2 2 7 . 7
Female 3 . 3 3 3 4 10 . 10
Total 4 - 4 5 5 3 17 . 17
84 East
Male 2 - 2 1 1 1 4 . 4
Female 2 . 2 1 1 3 8 . 8
Total 4 - 4 2 2 4 12 . 12
@85 South
Male N . 1 N . 2 2
Female . 2 2 . 2 . . a4 a4
Total - 3 3 . 3 - . 6 6
86 West
Male 5 - 5 1 1 2 8 . 8
Female 2 . 2 2 2 . a . a
Total 7 - 7 3 3 2 12 . 12

When it comes to tables with stacked variables, it is not possible within these tabulation procedures.

Instead, we can divide the table into separate two-way tables:

tab2 state b6, missing
tab2 state urbrur
tab2 b4 b6, missing
tab2 b4 urbrur

There are some problems with the labels for the b6 variable, they are truncated. In the table
procedure it is possible to set the cell width up to 20 positions, however that is not possible in the
tab2 procedure. The 4 tables:

Civil status

State Mever mar Married - Married - N/A Total
82 Capital 4 5 2 B 17
B84 East 4 2 2 4 12
@5 South 3 3] 5] &
B6 West 7 3 5] 2 12
Total 18 13 4 12 47
Urban/Rural location
of household

State Urban Rural Total

82 Capital 17 2] 17

B84 East 12 a 12

@5 South o 6 6

B85 West 12 a 12

Total 41 B 47

176

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Civil status

Sex | Newver mar Married - Married - N/A Total
Male 9 5 2 5 21
Female 9 8 2 7 26
Total 18 13 4 12 47

Urban/Rural locaticn
of household

Sex Urban Rural Total
Male 19 2 21
Female 22 4 26
Total 41 & 47

Now we want to calculate the average age by state and b4. We use the contents option with the
mean statistic and the variable name, b5. We format the cells with a fixed format with no decimals.

table state b4, contents(mean b5) row col format(%9.0f)

The table cells are now average age without decimals:

Sex
State Male Female Total
82 Capital 24 16 19
84 East 18 17 18
B85 South 48 32 34
86 West 18 28 22
Total 22 21 21

When we want to make frequency tables, we turn back to the tab2 procedure. We add the cell option
to add the percentages of the grand total and nofreq to suppress the frequencies to the first table.
Then we use the row option to have row percentages in the second and col for column percentages
in the third table:

tab2 state b4, cell nofreq

tab2 state b4, row nofreq
tab2 state b4, col nofreq

177

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We have now three tables with percentages of the grand total, the rows and the columns:

Sex Sex
State Male Female Total State Male Female Total
82 Capital 14.89 21.28 36.17 B2 Capital 41.18 58.82 100.00
B84 East 8.51 17.82 25.53 B4 East 33.33 Bb.67 100.00
@5 South 4.26 8.51 12.77 B85 South 33.33 Bb.67 100.00
B85 West 17.82 8.51 25.53 85 West 6B .67 33.33 100.00
Total 44.68 55.32 100.00 Total 44,68 55.32 100.00
Sex
State Male Female Total
B2 Capital 33.33 38.46 36.17
84 East 19.85 30.77 25.53
@5 South 9.52 15.38 12.77
86 West 3B.10 15.38 25.53
Total 166.00 106.00 166.00

Finally we wil combine the absolute figures with percentages. To do that we just delete the nofreq
option:

tab2 state b4, col

The absolute figures and the percentages will be placed in the different rows, not in different
columns:

Sex
State Male Female Total
B2 Capital 7 18 17
33.33 38.46 36.17
84 East 4 8 12
19.85 30.77 25.53
85 South 2 4 6
9.52 15.38 12.77
86 West 8 4 12
38.10 15.38 25.53
Total 21 26 47
160 .060 160 .00 160 .060

These tabulation procedures have very concise syntax and that makes the possibilities somewhat
limited. The additional tabout procedure (see
https://www.ianwatson.com.au/stata/tabout_tutorial.pdf) is also a possibility, however its syntax is
rather complex.

21.4.R

There are no flexible tabulation commands in base R. However, there is a package called tables that
includes the function tabular. This is a flexible function that can create many kinds of tables. It
seems to be inspired by the Proc tabulate procedure in Sas, as the syntax is similar to the table
statement in Proc tabulate.

We activate the tabular procedure with the library function, if it is not installed we have to do that
first with the install.packages command:

178

https://www.ianwatson.com.au/stata/tabout_tutorial.pdf

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

install.packages("tabTles")
Tibrary(tables)

The dimensions are separated by the ~ sign. To nest variables and to combine with measures, we
use the * sign. We can stack variables with the + sign. To add totals and subtotals we simply add a 1
where we want them. Our categorical variables must be defined as factor variables.

The output can be displayed directly in the Console or written to an R object. When it is written to an
object it consists of several lists. The output in the Console window is a plain text and it is not easy to
export it properly to other formats. However, we may wrap the table into other functions, like knitr
or latex to convert to for instance html.

There is no option within the tabular function to add titles to the table.

First, we will look at a simple two-way table with state in the rows and urbrur in the columns:

tabular(state ~ urbrur,data=mdgperson_nodup)
The table:

urbrur
state Urban Rural
01 central O
02 capital 17
03 Morth 0
04 East 12
05 Ssouth 0
06 west 12

(= R e

We want to add totals and do that with adding 1 before the variables because we want the totals
before the distributions. The + sign is used to stack the total with the categorical variables:

tabular(l + state ~ 1 + urbrur,data=mdgperson_nodup)

Now totals are included:

urbrur
A1l Urban Rural
all a7 41 a
state 01 Central O 0 0
02 capital 17 17 0
03 Morth 0 0 0
04 East 12 12 0
05 South 6 0 [
06 West 12 12 0

To nest variables in the rows we use the * sign:

tabular(l + state*b4 ~ 1 + urbrur,data=mdgperson_nodup)

179

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Here we see that b4 is distributed for every value of state:

urbrur
A1l Urban Rural

all 47 41 7

state 01 Central b4 mMale 0 0 a
Female O 0 0

02 cCapital Male 77 0
Female 10 10 a

03 Morth Male 0 0 0
Female O 0 0

04 East Male 4 4 a
Female 8 g 0

05 south Male 2 0 2
Female 4 0 4

06 wWest Male 8 g 0
Female 4 4 0

As mentioned, categorical variables must be defined as factors. To include NA's we have to change
b6 to a factor which don't exclude them before we can use it in our table. We can now nest b6 with
urbrur:

mdgperson_nodup$b6 <- factor(mdgperson_nodup$b6, exclude = NULL)
tabular(l + state*b4 ~ 1 + b6*urbrur,data=mdgperson_nodup)

The table will now include the NA's:

be
Never married married - monogamy married - polygamy NA
urbrur urbrur urbrur urbrur
A7 Urban Rural Urban Rural uUrban Rural uUrban Rural
AT11 47 15 3 10 3 4 o 1z (V]
state 01 cCentral b4 male s} o] o Q] o Q]
Female O o i} o a i} o a i}
02 capital Male 7 1 Q 2 aQ 2 o 2 Q
Female 10 3 V] 3 0 V] [} 4 V]
a3 wnorth male 0 [s] () o Q () (o] Q ()
Female © o 1] o Q 1] o Q 1]
d4 East Male 4 2 (] 1 a (] o] 1 (]
Female &8 2 V] 1 0 2 [} 3 V]
a5 south Male 2 [u] 1 o 1 ()] o] [()]
Female 4 o 2 o 2] o Q]
06 west Male = 5 (] 1 a (] o] 2 (]
Female 4 2 V] 2 0 V] o 0 V]

We will add subtotals and also have b4 and urbrur distributed on the totals. We do that by adding

parenthesis. The expression (1 + state)*(1 + b4) will combine 1 and state to both 1 and b4. 1*1 will
be the grand total and 1 * b4 the subtotals. We also add headings and they must be placed before
the variable and be connected with the * sign:

tabular((1l + state)*(Heading('Both sexes')*1+b4) ~ (1 + b6)*(Heading('Both
locations')*1 + urbrur),data=mdgperson_nodup)

The table with the grand total and all the subtotals:

b6

AN Never married married - monogamy varried - polygamy NA
urbrur urbrur urbrur urbrur urbrur
Both locations Urban Rural Both locations Urban Rural Both locations urban Rural Both Tocations urban Rural Both locations urban Rural
Al Both sexes 47 15

b4 male 21 19

Female 26 22

state 01 central BOTh sexes
bs Male

8

o)
o)
Female o 0

02 capital Both sexes 17 17
ba male 7

Female

o

cochnNOOOCOO0OOGO00AN

"
N NNPEWNNEOOOWREOO0 WK 0R
COONFWOB0000006000N W

"
NPWNREWHRENOOOWNND OO0 Huw

"
NPWOOOHFENOOOWNVOOOa kG
COONFWOOOO000O000ONEW
COCOOONONOOOONNOOONN A
OO O0ONONOOOONNOOO NN
COC0000DC00000C000000

"
ONNOOOWRECOORNGOOO U

"
ONNOOOWREOOORNGOOO U
coeooocReEO0CRGRO00Ra

0

0

0

2

7 1

0 3

03 north BOTh sexes 0 0 0
bs Male 0 0 0

Female 0 0 0

04 East Both sexes 12 12 4
b4 male 4 2

Female 8 8 2

05 south BOTh sexes 6 0 0
bs Male 2 0 0

Female 4 0 0

06 west Both sexes 12 12 7
b4 male 8 8 5

Female 4 4 2

For stacking variables, we use the + sign:

tabular(l + state + b4 ~ 1 + b6 + urbrur,data=mdgperson_nodup)

180

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

This is the table with stacked variables:

bé urbrur
A171 Never married Married - monogamy Married - polygamy WA Urban Rural
all 47 18 13 4 2 41 6
state 01 central O O a 0 o 0 0
02 capital 17 4 5 2 6 17 0
03 wnorth 0 0 a 0 o 0 0
04 East 12 4 2 2 4 12 0
05 south 6 3 3 0 o 0 6
06 wWest 12 7 3 o] 2 12 0
b4 Male 21 9 5 2 519 2
Female 26 9 8 2 7 22 4

When we want to add measures, the default is that they are not calculated when there are NA’'s
(missing values). That means the table will be filled with NA’s in these cells. We see that when we
introduce the b5 variable to calculate the average ages. We have also formatted the numbers in the
cells with no decimals:

tabular(l + state ~ (1 +
He§ding()*b4)*Heading()*bS*Heading()*mean*Format(digits=1),data=mdgperson_nod
up

The table looks like this:

Al1T mMale Female
a1l MNA NA 21
state 01 Central MWaN NaN Naw
02 capital 1% 24 16
03 Morth MaN NaN Nawn

04 East 18 18 17
05 south 34 40 32
06 west MA NA 28

To calculate average values for all non-missing values, we can create a new Mean function that will
exclude NA's and the create the table again:

Mean <- function(x) base::mean(x, na.rm=TRUE)

tabular(l + state ~ (1 +
He§ding()*b4)*Heading()*bS*Heading()*Mean*Format(digits=1),data=mdgperson_nod
up

Now only those where all values are missing will be NA:

ATl male Female
all 21 22 21
state 01 Central NaN NaMN NaN
02 capital 19 24 16
03 Morth MaN NaM Nan

04 East 18 18 17
05 South 34 40 32
06 West 22 18 28

If we want to exclude the empty categories for state we can exclude the missing values:

mdgperson_nodup$state <- factor(mdgperson_nodup$state, exclude = NULL)
tabular(l + state ~ (1 +
Heading()*b4)*Heading() *b5*Heading () *Mean,data=mdgperson_nodup)

181

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The new table omits the empty categories:

A11 male Female
ATl 21 22 21
state 02 capital 19 24 16
04 East 18 18 17
05 south 34 40 32
06 west 22 18 28

Now we will look at percentages, both calculated on the grand total, rows and columns. We use the
Percent option, first without any parameters for the grand total. Then row and col parameters for
row and column percentages:

tabular(l + state ~ (1 + b4)*Percent()*Format(digits=1),data=mdgperson_nodup)
tabular(l + state ~ (1 +
b4)*(RowPct=Percent("row"))*Format(digits=1),data=mdgperson_nodup)

tabular(l + state ~ (1 +
b4)*(ColPct=Percent("col"))*Format(digits=1),data=mdgperson_nodup)

The percentage tables:

ba b4
all Male Female a1l Male Female
Percent Percent Percent ROWPCT ROWPCT ROWPCT
All 100 45 55 a1l 100 45 55
state 02 Capital 36 15 21 state 02 capital 100 41 59
04 East 26 2] 17 04 East 100 33 a7
05 south 13 4 4 05 Ssouth 140 33 o7
06 west 26 17 9 06 wWest 100 67 33
ba
all mMale Female
colPct ColPct ColPct
ATl 140 100 100
state 02 capital 386 33 38
04 East 26 19 31
05 south 13 10 15
06 west 26 38 13

Finally, we will combine absolute figures with column percentages:
tabular(Heading('Total')*1 + state ~ Heading('N')*(Heading('Total')*1 +

Heading()* b4) + (Heading('%')*(Heading('Total')*1 + Heading()* b4)*
Heading()* Percent("col"))*Format(digits=1),data=mdgperson_nodup)

The table now includes both absolute figures and column percentages:

N kS
Total mMale Female Total Male Female
Total 47 21 26 1040 100 100
state 02 capital 17 7 10 36 33 38
04 East 12 4 8 26 19 31
05 Ssouth] 2 4 13 10 15
06 West 12 8 4 26 38 13

The tabular function is a very flexible tabulation tool. However, the output format has by default a
very simple layout.

21.5.Python

In Python, we have the Pandas crosstab we can use for tabulation. It has a simple syntax and can
create tables with more nested levels both in the rows and columns. It does not stack variables in
either dimension and it does not support sub-totals.

We start with a simple two-way table. The row variable is defined first, then the column variable:

182

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.urbrur)

The output table:

urbrur Rural Urban
state

02 Capital 0 17

04 East 0 12

05 South 6 0

06 West 0 12

We will now add totals and also name them. Furthermore, we give name to the row variable and
suppress the column name:

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.urbrur,
margins=True, margins_name='Total',
rownames=['State'], colnames=[""]

The output table with totals, they are always placed at the end:

Rural Urban Total

State
02 Capital 0 17 17
04 East 0 12 12
05 South 6 0 6
06 West 0 12 12
Total 6 41 47

Now we will add sex to the rows as a sub-item to state. To do that we add the b4 variable and put it
in brackets together with state. We also add Sex to the rownames in a similar way:

pd.crosstab([mdgperson_nodup.state, mdgperson_nodup.b4],
columns=mdgperson_nodup.urbrur, margins=True, margins_name='Total',
rownames=['State', 'Sex'], colnames=['Location']

183

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

There are no subtotals within each state in the output table:

Location Rural Urban Total

State Sex
02 Capital Female 0 10 10
Male 0 I 7
04 East Female 0 8 8
Male 0 4 4
05 South Female 4 0 4
Male 2 0 2
06 West Female 0 4 4
Male 0 8 8
Total 6 41 47

We can have nested variables in the columns as well, we just add the variable to the columns and
colnames parameters:

pd.crosstab([mdgperson_nodup.state, mdgperson_nodup.b4],
columns=[mdgperson_nodup.b6, mdgperson_nodup.urbrur],

margins=True, margins_name='Total', rownames=['State', 'Sex'],
colnames=["'Marital status', 'Location']

We have now a table with two nested variables both in the rows and columns. We see that there are
no columns for the combinations of Marital status and Location that is not in the data:

Marital status Married - monogamy Married - polygamy Never married missing Total

Location Rural Urban Urban Rural Urban Urban

State Sex
02 Capital Female 0 3 0 0 3 4 10
Male 0 2 2 0 1 2 7
04 East Female 0 1 2 0 2 3 8
Male 0 1 0 0 2 1 4
05 South Female 2 0 0 2 0 0 4
Male 1 0 0 1 0 0 2
06 West Female 0 2 0 0 2 0 4
Male 0 1 0 0 5 2 8
Total 3 10 4 3 15 12 47

Now we can look at how to add average values of a measure variable to our table. We only use on
variable in each dimension in this example. The variable to calculate the averages by is added to the
values parameter and we tell that we want the averages with the aggfunc parameter. We also style
the figures with one decimal and decimal comma:

184

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.b4,
values=mdgperson_nodup.b5, aggfunc='mean',
margins=True, margins_name='Total'
).style.format(decimal=","', precision=1)

Missing values are omitted from the calculations:

b4 Female Male Total

state
02 Capital 158 237 191
04 East 17,2 180 175
05 South 31,5 400 343
06 West 280 179 215

Total 205 221 212

As seen above, we can do formatting with style.format. Here are some useful options:

e precision Number of decimals

e decimal Decimal sign

e thousands Thousand separator

e na_rep Representation of missing values

There are 3 basic percentage tables, percentages based on the grand total, the row total, and the
column total. Here are examples on these 3. We choose which percentage calculation we want in
the normalize parameter. We also use the round function and multiply with 100 to display the
percentages with one decimal:

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.b4, margins=True,
margins_name='Total',
normalize=True
) .round(3)*100

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.b4, margins=True,
margins_name='Total"',
normalize="'1index'
) .round(3)*100

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.b4, margins=True,
margins_name='Total',
nhormalize="'columns'
) .round(3)*100

185

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We see that the total column is omitted from the row percentages table and the total row is omitted
from the column percentages table as the values are always 100:

b4 F le Male Total
emale ale ol . ol LEE b4 Female Male Total

state state
state

02 Capital 213 148 362 02 Capital 588 412
02 Capital 385 333 362

04 East 170 &85 265 04 East B66.7 333
04 East 308 190 255

05 South 85 43 128 05 South 66.7 333
AT 85 170 255 06 West i G 05 South 154 95 128
Total 553 447 100.0 Total 553 447 06 West 154 381 255

Crosstab is easy to learn, however the tables we can create are limited.

186

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

22. Graphs

All these softwares have possibilities for creating different kind of graphs, like line plots, bar charts,
pie charts, scatter plots and so on. There are lots of options when it comes to layout and combining
different graphs in the same chart. We will now have a brief glimpse of some bar charts just to lead
the way to different and more complex graphs.

22.1.Sas

There is an additional module with extra license fee for graphs in Sas, called Sas/Graph. When it is
available, we can create many different graphs and also enhance the layout. There are some basic
chart procedures with limited layout like Proc chart and Proc plot. Sas have made more flexible
procedures called Proc gchart and Proc gplot, which we will use here.

We start with a simple vertical bar chart which counts the number of persons (observations) by
state. There will we one bar for each state. We use the discrete option to make sure that there will be
one bar for each state:

proc gchart data=mdg.mdgperson nodup;
vbar state /discrete;
title 'Persons by state';

run;

This syntax will create a graph like this:

Persons by state

FREQUENCY
17

16
15

14

12
"
10
9
8
7
8
5
4
3
2
1
0

02 Capital 04 East 05 South 06 West

State

We can introduce another variable, b4, to create a stacked bar chart. When we define it as a
subgroup, it will be stacked:

proc gchart data=mdg.mdgperson nodup;
vbar state / subgroup=b4 discrete;
title 'Persons by state and sex';
run;

187

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We see that we have sex stacked in each bar:

Persons by state and sex

FREQUENCY
17

02 Capital 04 East 05 South 06 West
State
Sex] Male EEEEE Female

Now we can put the sex variable in separate columns. To do that, we can change the order of the
variables in the vbar statement and make state a group instead of a subgroup. To get the same
colour for the same sex, we use the parameter midpoint for the patternid option:

proc gchart data=mdg.mdgperson nodup;
vbar b4 / group=state discrete patternid=midpoint ;
title 'Persons by state and sex';

run;
Sex is now in separate bars within each state:

Persons by state and sex

FREQUENCY
104

Male Female Male Female Male Female Male Female Sex

02 Capital 04 East 05 South 06 West State

We will now add the measure variable b5 (age) and calculate the average age. To do that we use the
type and sumvar options:

188

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

proc gchart data=mdg.mdgperson nodup;

vbar b4 / type=mean group=state sumvar=b5 discrete patternid=midpoint ;
title 'Average age of persons by state and sex';

run;

The graph made for average age:

Average age of persons by state and sex

b5 MEAN
40
30
20
| I I I I
0.
Male Female Male Female Male Female Male Female b4
02 Capital 04 East 05 South 06 West state

189

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

22.2.Spss

In Spss, we have a Graph command that creates graphs with nice layout. There is also the Ggraph
command, which is more flexible. However, the syntax is much more complicated. The Ggraph also
needs the GPL (Graphics Productions Language) to define the graph. We will look at some vertical
bar charts. First, one with one bar for each state:

DATASET CLOSE all.

GET FILE='mdgperson nodup.sav'.

GRAPH /BAR = count by state
/TITLE="'Persons by state'.

The syntax above will give us this graph:

Persons by state

20

02 Capital 04 East 05 South 06 West
State

We add the b4 variable and stack it for each state:

GRAPH /BAR (stacked) = count by state b4
/TITLE="'Persons by state and sex'.

Now the bars show the distribution by sex:

Persons by state and sex

20
W Male
BWremale

02 Capital 04 East 05 South 06 West
State

190

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can put the sex variable into separate bars:

GRAPH /BAR = count by state b4
/TITLE='Persons by state and sex'.

The graph:

Persons by state and sex

Sex

W Male
BWFemale

Count

02 Capital 04 East 05 South 06 West
State

Finally, we can add a measure variable, b5, to the graph and make the average age:

GRAPH /BAR = mean (b5) by state b4
/TITLE='Average age of persons by state and sex'.

The graph looks like this:

Average age of persons by state and sex

Sex

B Male
BFemale

40

30

20

Mean Age

02 Capital 04 East 05 South 06 West

State

191

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can use the menus in Spss to create graphs. However, the pasted syntax will be for the Ggraph
command. We find the graphs under Graphs > Chart builder. Here is the generated syntax for the
same graph as the first one above:

GGRAPH
/GRAPHDATASET NAME="graphdataset" VARIABLES=state COUNT () [name="COUNT"]
MISSING=LISTWISE
REPORTMISSING=NO
/GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
SOURCE: s=userSource (id("graphdataset"))
DATA: state=col (source(s), name ("state"),
DATA: COUNT=col (source(s), name ("COUNT"))
GUIDE: axis(dim(1l), label("State"))
GUIDE: axis(dim(2), label ("Count"))
GUIDE: text.title(label ("Persons by state"))
SCALE: linear (dim(2), include(0))
ELEMENT: interval (position(state*COUNT), shape.interior (shape.square))
END GPL.

unit.category())

As we see, the syntax for the Graph command is much easier than the Ggraph syntax. However,
there are more possibilities when using Ggraph.

22.3.Stata

In Stata, we have separate commands for different plots. There is for instance the bar command for
vertical bar charts, line for line plots and the graph pie command for pie charts.

We can make a simple vertical bar chart for the state variable like this:

use "mdgperson_nodup.dta", clear
graph bar (count), over(state) title(Persons by state)

This will produce a graph like this:

Persons by state

20
1

15

frequency
10
1

02 Capital 04 East 05 South 06 West

192

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We introduce the b4 variable and make separate bars for each value:

graph bar (count), over(b4) over(state) title(Persons by state and sex) asyvars

The asyvars option will give us different colours for the sexes:

Persons by state and sex

frequency

02 Capital 04 East 05 South 06 West
| \vale NN Female |

We can use the stack option to put the sex variable in the same bar for each state:

graph bar (count), over(b4) over(state) stack title(Persons by state and sex) asyvars

The graph has now stacked bars for each state:

Persons by state and sex

15 20
1

frequency
10
1

02 Capital 04 East 05 South 06 West
[N Male EEEEEN Female |

193

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can add a measure variable to our graph, here we choose to calcluate the average age (b5) of the
persons:

graph bar (mean) b5, over(b4) over(state) title(Average age of persons by state and
sex) asyvars

The graph:

Average age of persons by state and sex

30 40
1 1

mean of bb
20

10
1

02 Capital 04 East 05 South 06 West

|_ Male [Female

194

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

22.4.R

In R there are different procedures for creating graphs. One of the most common is ggplot2. It has a
broad variety of graphs, see https://ggplot2.tidyverse.org/. Now we will create some bar charts. We
start with a vertical bar chart that counts the number of persons (rows) for each state:

Tibrary(ggplot2)
mdgperson_nodup <- readRDS("../data/mdgperson_nodup.rds")
ggplot(data=mdgperson_nodup, aes(x=state)) +
geom_bar(stat="count") +
ggtitle("Persons by state')

This will give us a very simple bar chart:

Persons by state

12 Capital 04 Easl 05 Seuth 08 West
slate

We can add some colours and make the bars a little bit slimmer:

ggplot(mdgperson_nodup, aes(x=state)) +
geom_bar(stat="count"”, width=0.7, fill="steelblue") +
ggtitle("Persons by state")

It looks better now:

Persons by state

m- I
| I
0.

92 Caital 04 Enst 05 Seuih 08 st
state

count

195

https://ggplot2.tidyverse.org/

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Now we want to add the b4 variable to our chart:

ggplot(mdgperson_nodup, aes(x=state, fill=b4)) +
geom_bar(stat="count", width=0.7) +
ggtitle("Persons by state and sex")

As we now have a fill variable, R chooses automatically different colours for each of the stacked
sexes:

Person by state and sex

15+
10+
bd
B vae
B ol
| I
o-

02 Captal 04 East 08 Soulh 0F Wast
state

count

We can put sex in separate bars within each state by adding the position option:

ggplot(mdgperson_nodup, aes(x=state, fill=b4)) +
geom_bar(stat="count", width=0.7, position=position_dodge())+
ggtitle("Persons by state and sex")

The graph:

Person by state and sex

75
b
a- 0 vae
|
25+ I
-

02 Caital 04 East 05 South 06 Wast

count
o

We introduce a measure variable, for instance b5 and calculate the mean values:

196

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

ggplot(mdgperson_nodup, aes(x=state, y=b5, fill=b4)) +

geom_bar (stat="summary", fun="mean", width=0.7, position=position_dodge())
+

ggtitle("Average age of persons by state and sex")

Now the graph shows the average age in the bars:

Average age of persons by state and sex

ane

-
| I
e

02 Capital 04 East 05 South 08 West
state

b4
0 vae
B remai:

There are lots of other possibilities within the ggplot2 procedure, both when it comes to different
chart types and layout. We can also use the plotly package for R. It is like plotly in Python, see the
next chapter.

197

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

22.5.Python

In Python, we have several different modules for making graphs, for instance matplotlib, seaborn
and plotly. We will now have a brief look at plotly (https://plotly.com/python/). With plotly, we can
make quite nice graphs with just a little code.

We may have to install plotly before we can use it:

Ipip install plotly

When plotly is installed, we import it:

import plotly.express as px

We start with a vertical bar chart for state, and will use histogram to make the graph:
px.histogram(mdgperson_nodup, x='state', title='Persons by state')

The graph looks like this:

Persons by state

15

T 10
3
o
L ¥

| -

0 :

02 Capital 06 West 04 East 05 South
state

We will add the column b4 as a stacked variable in our chart:

px.histogram(mdgperson_nodup, x='state', color='b4', title='Persons by state
and sex')

Now our graph looks like this:
Persons by state and sex
b4

B Male
B Ffemale

15

10. . .

02 Capital 06 West 04 East 05 South

count
(%]

=]

state

198

https://plotly.com/python/

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can put sex in separate bars in our chart by adding the barmode option:

px.histogram(mdgperson_nodup, x='state', color='b4', barmode="group",
title="'Persons by state and sex')

Persons by state and sex

10

b4
8 M Male
B rfemale

= 6
=1
S

4

2 ‘

0 p

02 Capital 06 West 04 East 05 South
state

We may add a measure variable, like b5, and calculate the mean values:

px.histogram(mdgperson_nodup, x='state', y='b5', color="b4', histfunc="avg',
barmode="group",
title="Averge age of persons by state and sex')

Now we have average age in our graph:

Averge age of persons by state and sex

02 Capital 06 West 04 East 05 South

40 b4

B Male

30 Bl Female

20

avg of b5

10

state

There are lots of other possibilities for different chart types in plotly. We can also enhance the layout
to a large extent.

199

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

23. Data exchange

As Sas, Spss, Stata, R and Python stores data in their own proprietary formats, we can't use datasets
from one software in another without doing a data conversion. They can all import delimited or
from fixed format files. Delimited files use a special character as a delimiter, like a comma, a semi-
colon or a tabulator, between each column. However, we will now look at how the data exchange is
made easier with built-in conversion of data files.

23.1.Sas

Sas has a possibility to read Spss and Stata datasets, but to do that we have to license the module
“Access interface to PC file formats”. Not all versions are compatible. When it comes to R, we can use
the Proc iml procedure to import and export R data frames and also run R code.

Import
When the PC access module is licensed, we can import an Spss file like this:

proc import out=work.MDGPERSON NODUP

datafile = "h:\mdg\data\mdgpgrson_nodup.sav"
dbms = SAV replace;
run;

The formats for the variables are also copied. However, they are stored in a temporary folder. They
may be extracted from that temporary storage and put on a dataset like this:

proc format cntlout=formats;
run;

To save the formats with the other permanent formats we use this syntax (if a format exists it will
overwrite it):

proc format cntlin=formats lib=library;
run;

When we have an Spss dataset with date and time variables and want to import it to Sas, we have to
convert date variables and unformatted time variables. Even though we format date variables in
Spss, Sas will import the Spss time values for that date. We can use a program like this to import the
Spss dataset and convert the times and dates:

proc import out=times from spss
file= "H:\MDG\Data\times.sav"
dbms = SAV replace;
run;
data times from spss;
set times from spss;
date = datepart (date-11903760000) ;
date2 = datepart (date2-11903760000) ;
date nf = datepart(date nf - 11903760000);
date2 nf = datepart(date2 nf - 11903760000);
time nf = time nf - 11903760000;
time2 nf = time2 nf - 11903760000;
format date date2 yymmddlO. ;
run;

If we don't have a license for Access to PC file formats, the dataset should be exported to a Sas
dataset in Spss before importing it to Sas, see page 205.

200

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

When it comes to importing Stata datasets, Sas version 9.4 can read Stata datasets at least up to
release 16. If we cannot import the datasets, it might be because the Stata dataset may be stored in
a higher version of Stata than Sas can read. If so, we must use the saveold command in Stata first:

use "mdgperson_nodup.dta", clear
saveold "mdgperson_nodupl0.dta”, replace

Then we import the dataset in the same way as Spss except for the dbms option:

proc import out=work.MDGPERSON NODUP10

datafile = "H:\MDG\Data\mdgpgrsoninoduplO.dta"
dbms = DTA replace;
run;

If the Stata dataset is saved in newer version than Sas can read, these messages are given in the log:
Didn't see end for |varnames| element. Got -> ||
Requested Input File Is Invalid

ERROR: Import unsuccessful. See SAS Log for details.
The formats can be copied the same way as for imported Spss datasets.

When we have a Stata dataset with time and date variables and import it to Sas, we have to convert
all time variables and format them in Sas:

proc import out=times from stata
file= "H:\MDG\Data\times.dta"
dbms = DTA replace;

run;

data times from stata;
set times from stata;
time = time /1000;
time2 = time2 /1000;
time nf = time nf /1000;
time2 nf = time2 nf /1000;
format time time2 datetimel9. ;
run;

There is no built-in functionality in Sas to import R data frames. However, we can call R from Sas. To
be able to that, we have to add some settings. We must set the Rlang option in our sasv9.cfg file. The
sasv9.cfg file is stored in a sub-folder where Sas is installed, usually something like this: c:\Program
Files\SASHome\x86\SASFoundation\9.4\nls\en\sasv9.cfg. If we search our c-drive for sasv8.cfg, we
might find more than one. Usually, we set the Rlang option in the stored in the nls\en subfolder. At
the bottom of this file, we add this line:

-RLANG

When that is done and we have restarted Sas, we can add the path to R. Before we do that, we must
know the path to the R installation we will use. We do that with Sys.getenv command in R:

Sys.getenv("R_HOME")
Then we can copy the path to our Sas program:

options set=R HOME="C:/Users/krl/DOCUME~1/R/R-40~1.0";

201

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

We can now use the Proc iml procedure in Sas and put our R code between the submit/r and
endsubmit statements. Then we use the call statement to call the ImportDataSetFromR routine to
convert from R data frame to Sas dataset:

proc iml;

submit/r;

load("H:/Mdg/Data/mdgperson nodup.Rdata")

endsubmit;

call ImportDataSetFromR ("mdgperson nodup_ sas", "mdgperson nodup");
quit;

To convert from the newer rds data format we use the readRDS command:

proc iml;

submit/r;

mdg <- readRDS ("H:/Mdg/Data/mdgperson nodup.rds")
endsubmit;

call ImportDataSetFromR ("mdgperson nodup sas rds","mdg");
quit;

The factor variables from the R data frame will we character variables in the Sas dataset where the
levels from R will be values in Sas:

& hh & state & urbrur @ member & b3 H b4t @Ebs A b6
1 020074 02 Capital Urban 1 Head Male 359 Married - polygamy
2 020074 02 Capital Urban 2 Spouse Female 21 Married - monogamy
3 020074 02 Capital Urban 3 Daughterfson Male 16 Never married
4 020074 02 Capital Urban 4 Daughter/fson Female 13 Never married
5 020074 02 Capital Urban 5 Daughterfson Male 10
B 020074 02 Capital Urban & Daughter/son Female 8
7 020700 02 Capital Urban 1 Head Male 45 Marmed - polygamy
8 020100 02 Capital Urban 2 Spouse Female 41 Married - monogamy
9 020100 02 Capital Urban 3 Daughterfson Female 21 MNever married
10 020700 02 Capital Urban 4 Daughter/fson Male 19 Married - monogamy
11 020100 02 Capital Urban 5 Daughterfson Female 16 Mever married
12 020100 02 Capital Urban & Daughterfson Male 10

To keep the original values from the data frame it should be converted to a Sas dataset before the
variables are changed to factors in R. However, the value formats then have to be added within Sas.

Sas version 9.4 cannot read Python data formats like pickle and parquet files. Instead, files should
be converted to csv-files or similar in Python before importing to Sas. In Sas Viya though, it is
possible. We can use the parquet engine in the libname statement and then read directly from a
parquet file and save it as an Sas dataset:

libname pydata parquet 'h:\mdg\data\parquet';
data medgperson nodup;

set pydata.mdgperson nodup;
run;

202

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

23.2.Export

It is also possible to export datasets from Sas to Spss or Stata formats. Then we must add a fmtlib
statement if we want to bring the formats over. Here we export to Spss with formats:

proc export data=work.MDGPERSON NODUP
outfile= "H:\MDG\Data\mdgperson nodup from sas.sav"
dbms = SAV replace;
fmtlib=1library.formats;

run;

When we export date and time variables for use in Spss they should have formats connected before
the export. For time variables we can use the datetime19. format and for date variables yymmdd10.
is suitable:

format time time2 datetimel9. date date2 yymmddlO.;

The syntax for export to Stata with formats is like this:

proc export data=mdg.MDGPERSON NODUP
outfile= "c:\temp\mdgperson nodup from sas.dta"
dbms = DTA replace;
fmtlib=library.formats;

run;

However, we should avoid format names with more than 8 positions as they will not be added to the
Stata datasets when we open them in Stata. If the numeric variables without value labels is less
readable, we can change them like this:

use "mdgperson_nodup_from_sas.dta", clear
format member %1.0f
format b5 %2.0f

When we export time variables to an Spss dataset, formatted date and time variables will be
converted correctly. If they are not formatted, we have to recalculate to get the values right, see
page 204.

When we export to a Stata dataset with time variables, they will be converted to date variables if
they have datetime formats in Sas. If we want to keep the whole time value, we should not use time
formats in Sas. To drop formats in Sas we can use the Format statement in a Data step:

data times;

set times;

format time time2 ;
run;

proc export data=work.times
outfile= "H:\MDG\Data\times from sas.dta"
dbms = DTA replace;

run;

We must convert the time variables after we have imported the Stata dataset that was created by
Sas, see page 209.

If we don't have the Access to PC file formats module licensed, we can export the dataset to a
delimited file and then import that to Stata instead or we can use the Stata import sas functionality,
see page 208.

203

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

To create an R file in Sas, we can use the R interface in Proc Iml. Before we do that, some settings in
Sas must be added, see page 201.

Now we are ready to convert the Sas dataset to an R data frame. We use the Proc iml procedure in
Sas and put our R code between the submit/r and endsubmit statements. First, we use the call
statement to call the ExportDataSetToR routine to convert the Sas dataset to an R data frame. Then
we use the saveRDS command to save the R data frame:

proc iml;
call ExportDataSetToR("mdg.mdgperson nodup", "mdg nodup person from sas");
submit/r;

saveRDS (mdg nodup person from sas,file="H:/Mdg/Data/mdgperson nodup from sas.
rds")

endsubmit;

quit;

Beware that formats are not included in the R data frame. If formats are needed it is better to
import the Sas dataset in R, because then the formats are included as labels (see page 212).

When we want to import date and time variables from R, they are imported to Sas as dates and
times if they are defined as date/time variables in R.

Sas version 9.4 cannot export to Python data formats like parquet or pickle. Instead, we can export
to a csv-file or similar before we import the file in Python. In Sas Viya though, it is possible. We can
use the parquet engine in the libname statement and then write directly to a parquet file:

libname pydata parquet 'h:/mdg/data/parquet’;
data pydata.mdgperson nodup;

set mdg.mdgperson nodup;
run;

23.3.Spss

Import
It is easy to import Sas datasets within Spss. We can use syntax like this:

GET SAS DATA='mdgperson nodup.sas7bdat'.

However, value labels (formats) are not included with this syntax. Instead, we can add the formats
with the subcommand Formats. Before we can do that, the formats have to be permanently stored
in Sas (see page 67). To include the value labels, we do like this:

GET SAS DATA='mdgperson nodup.sas7bdat' /FORMATS='..\cat\formats.sas7bcat"'.

Sometimes, the formats will not be imported. It may be because of encoding problems. If so, it will
be better to convert to Spss in Sas instead of trying to import a Sas dataset into Spss.

When we import date and time variables, the date variables are shown as we want. However, to
show the time variables in a readable way we should add a Formats command in Spss:

FORMATS time time2 (DATETIME22).

Time variables which do not have a time format when they are exported from Sas will get wrong
time values if we just add the Formats command in Spss. This is because Sas and Spss use different

204

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

numbers to represent the same time. The same goes for date variables. These will also have to be
adjusted. To adjust from Sas time and date variables to Spss time and date variables we have to re-
compute the time variables:

GET SAS DATA='times.sas7bdat'.

COMPUTE time nf = 11903760000 + time nf.

COMPUTE time2 nf = 11903760000 + time2 nf.

COMPUTE date nf = TIME.DAYS(date_nf+l37775).

COMPUTE dateZ2 nf = TIME.DAYS (dateZ nf+137775).

EXECUTE.

FORMATS time time2 time nf time2 nf (datetime22) date nf date2 nf (adatelO).

The Time.days function returns the day number since day 1 in the Spss day count.

To import a Stata dataset, we do it in a similar way:

GET STATA FILE='mdgperson nodup.dta'

Value labels in the Stata dataset are automatically included in the converted Spss dataset. Data files
stored from Stata 16 are imported without problems. If the Stata version dataset is not supported,
we get an error message like this:

Error # 7202. Command name: GET STATA
Input dictionary read error.
Execution of this command stops.

Your new version of Stata is not supported

We must beware of the fact that all different missing values set in Sas and Stata will be converted to
system missing in Spss.

When we import a Stata dataset with time and date variables to Spss we have to convert
unformatted dates and all time variables. We can do it like this:

GET STATA FILE='times.dta'.

COMPUTE date nf = TIME.DAYS (date nf+137775).
COMPUTE date2 nf = TIME.DAYS (date2 nf+137775).
COMPUTE time = 11903760000 + (time/1000).
COMPUTE time2 = 11903760000 + (time2/1000).
COMPUTE time nf = 11903760000 + (time nf/1000).
COMPUTE time2 nf = 11903760000 + (time2 nf/1000).
EXECUTE.

FORMATS time time2 (datetime22).
FORMATS time nf time2 nf date nf date2 nf (£f16).
SAVE OUTFILE='times from stata.sav'.

There is now built-in functionality to import an R or Python data frame to an Spss dataset. It is easy
to read and write Spss datasets in R or Python, so it should be done there instead (see page 213).

Export
To export Spss data to Sas we use the Save translate command. When it comes to value labels, we
can add them with the subcommand Valfile.

GET FILE='mdgperson nodup.sav'.
SAVE TRANSLATE OUTFILE='mdgperson nodup from spss.sas7bdat'

205

Documents 2023/1

/TYPE=SAS
/VERSION=7
/PLATFORM=WINDOWS

/MAP

/REPLACE
/VALFILE='..\syntax\formats.sas"'.

Data processing in Sas, Spss, Stata, R and Python. A comparison

Here we name a syntax file that will include the Sas syntax needed to create the formats and the
connection to the data. This syntax file will assume that the formats and the datasets are in the
same folder which they should not. We have to change a little bit in the Sas syntax before the
program is executed, we end up with this:

proc format library = library ;
value STATE

1 = "'01 Central'
2 = '02 Capital’
3 = '03 North'
4 = '04 East'
5 = '05 South'
6 '06 West' ;
value URBRUR
1 = 'Urban'
2 = 'Rural' ;
value B3F
0 = 'Head'
1 = 'Spouse'
2 = 'Daughter/son'
3 = 'Spouse of son/daughter'
4 = 'Grandchild'
5 = 'Sister/brother’
6 = 'Sister/brother in-laws'
7 = 'Parent'
8 = 'Parent-in-law'
9 = '"Niece/nephew'
10 = 'Other relative'
11 = 'Non relative' ;
value B4F
1 = "Male'
2 = 'Female' ;
value B6F
1 = '"Never married’
2 = 'Married - monogamy'
3 = 'Married - polygamy'
4 = '"Widowed'
5 = 'Separated'
6 = 'Divorced' ;

run;

proc datasets library = mdg nolist;
modify mdgperson nodup from spss;
format
format
format
format
format

quit;

state STATE.;
urbrur URBRUR.;
b3 B3F.;

b4 BA4F.;

b6 B6EF.;

The definitions of the librefs Library and Mdg are assigned earlier in the Autoexec flow.

If there are problems with adding the formats, it might be encoding mismatches. An error message
like this will be shown in the log:

206

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

ERROR: File MDG.MDGPERSON NODUP FROM SPSS cannot be updated because its
encoding does not match the session encoding or the file is

in a format native to another host, such as WINDOWS 32.

We can add the formats this way instead:

data mdg.mdgperson nodup from spss;
set mdg.mdgperson nodup from spss;
format state STATE.;
format urbrur URBRUR.;
format b3 B3F.;
format b4 B4F.;
format b6 B6EF.;

run;

To export Spss dataset to Stata we also use the Save translate command. Here the value labels are
automatically added to the Stata dataset. We use this syntax:

SAVE TRANSLATE OUTFILE='mdgperson nodup from spss.dta’
/TYPE=STATA
/MAP
/REPLACE.

Both system missing and user missing values are converted to the missing value dot (.) in converted
Sas and Stata datasets.

When we export datasets with time and date variables, we should not use formats for the time
variables as Stata will convert them to date variables. We change the formats before the export:

GET FILE='times.sav'.
FORMATS time time2 time nf time2 nf (£16).

SAVE TRANSLATE OUTFILE='times from spss.dta’
/TYPE=STATA
/MAP
/REPLACE.

The time variables will have to be converted after they are converted to a Stata dataset, see page
209.

There is now built-in functionality to export an Spss dataset to an R or Python data frame. It is easy
to read and write Spss datasets in R and Python, so it should be done there instead (see page 213).

207

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison
23.4.Stata

Import

Before version 16 of Stata there was no easy way to store Stata datasets as Sas or Spss datasets
within Stata. Beginning with version 16, import functions are added. We can use the interface from
the File=»Import menu and choose Sas or Spss data. A window will appear when we have chosen
our import file. We can mark all our variables (CTRL+A) and click on the arrow to include them in the
import:

import sas - Import SAS files *
Filename:
H:\Mdg\Data\mdgperson_nodup.sas7bdat Browse...
SAS value label filename: (*.sas7bcat file)
Browse...
if: (expression) Variable case:
| Preserve »
[Juse a range of observations
From: 1 To: 47
Names in file: Mames to load: (Leave blank for all)
Name Label Name Label
state State
urbrur Urban/Rural location of household
member Member number within household
b3 Relationship to head of household
b4 Sex
b5 Age
bb Civil status
Filter:
Remove
oK Cancel

When we click OK, the import will be executed. The command will appear in the Results window.
This may be copied into a do file if we like. It looks like this:

import sas hh state urbrur member b3 b4 b5 b6 using
"H:\Mdg\Data\mdgperson_nodup.sas7bdat”, clear

However, when we use syntax, we don't need to mention the variable names when we want to
import them all:

import sas using "H:\Mdg\Data\mdgperson_nodup.sas7bdat", clear

To import formats, we can add the name of the format catalog name with the bcat option. To do this
we have to use syntax. After the import we must add the value labels to the variables. To find the
value labels names we can run the /abel list command. Then we can add them with the label values
command:

import sas using "H:\Mdg\Data\mdgperson_nodup.sas7bdat",
bcat("H:\Mdg\Cat\formats.sas7bcat") clear
label list

label values state STATE

label values urbrur URBRUR
label values b3 HEAD_REL

208

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

label values b4 SEX
label values b6 CIVIL_STATUS

As only numeric variables can have value labels in Stata, formats for character variables cause
problems. If there are character formats in the formats.sas7bcat file, we can get an note like this:

note: invalid numeric value for value label CIVIL_STATUS, skipped

Even though it is only a note, the import will not be executed. The note says it is a problem with one
of the numeric formats, however the problem is that there is at least one character format in the
formats.sas7bcat file. This must be deleted from the formats.sas7bcat file before we can use it in
Stata. Here is an example on how we delete the character format $sex in Sas:

proc catalog catalog=library.formats;
delete sex.formatc;
quit;

Missing values and the Other group in Sas formats will not be included in the value labels in Stata.

We might get an error message if some data cannot be read because of different encoding. This was
thrown when there were problems with a special dash in the formats:

may not label -2.0603e-289
To solve this problem, we must change the value in Sas before the formats are imported to Stata.

Stata counts time in milliseconds and Sas in seconds with milliseconds as decimals. This means we
have to multiply unformatted date values with 1000 to get the right times in Stata. Stata and Sas use
the same numbers for the dates, so it does not matter if these date variables have no formats. In
Stata we should do like this to correct the date and time values:

use "times_from_sas.dta", clear
replace time = time * 1000
replace time2 = time2 * 1000
replace time_nf = time_nf * 1000
replace time2_nf = time2_nf * 1000
format time %tc

format time2 %tc

format time_nf %tc

format time2_nf %tc

format date_nf %d

format date2_nf 7%d

The time variables which were formatted in Sas will still just contain the date when imported to
Stata.

The process is the same for Spss datasets. The converted datasets will include value labels:
import spss using "H:\Mdg\Data\mdgperson_nodup.sav", clear

When importing Stata datasets made in Spss with unformatted time variables we will convert them
like this in Stata:

use "times_from_spss.dta", clear

replace time = (time - 11903760000)*1000
replace time_nf = (time_nf - 11903760000)*1000
replace time2 = (time2 - 11903760000)*1000

209

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

replace time2_nf = (time2_nf - 11903760000)*1000
format time time2 %tc

format time_nf time2_nf %17.0f

replace date_nf = dofc((date_nf - 11903760000)*1000)
replace date2_nf = dofc((date2_nf - 11903760000)*1000)

There are no import built-in functions in Stata to import files from R or Python. However, in R we can
convert a data frame to a Stata dataset, and we can also convert a Stata dataset to an R data frame,
see page 215. In Python, we can export to Stata with the to_stata function, see page 220.

23.5.Export

It is possible to export from Stata to Sas, but only as an export file. The export file may be in version
5 or 8 of Sas. With version 5, formats are also exported (as long as the value labels names in Stata
are 8 or less characters).

Here is an example for export to Sas version 5 xport file:
export sasxport5 "h:\mdg\data\mdgperson_nodup_from_stata5.v5xpt", replace

With this program there will be created a data file and a file with the Sas formats. We must convert
them in Sas to ordinary Sas datasets and formats and create Sas formats from the format xpt file.
We can use syntax like this to convert:

libname xptform xport 'h:\mdg\data\formats.xpf';
libname xptfile xport 'h:\mdg\data\mdgperson nodup from stata5.vbxpt';

proc copy in = xptform out = work ;
run;

proc format cntlin=work.formats;
run;

proc copy in = xptfile out = work ;
run;

We can also use the sasxport8 option for our export. If we want to export the formats as well, we add
the vallabfile option:

export sasxport8 "h:\mdg\data\mdgperson_nodup_from_stata8.v8xpt", vallabfile replace

In addition to the exported data file, Stata will create a Sas program with syntax for the import of the
data and creation of Sas formats. This file will be stored in the same folder as the data file. However,
the import program does not work for xport files higher than version 5 of Sas. Hence, we must
convert it in another way. Sas has made a built-in macro for this which we will use. This macro will
create a Sas dataset named dataset, with no formats attached. We will create the formats from the
Sas program. We can add the formats and save the dataset with a new name:

$xpt2loc(libref=work,
filespec='h:\mdg\data\mdgperson nodup from stata8.v8xpt');
proc format library = work ;
value STATE
1 = '01 Central'
= '02 Capital'
= '03 North'
= '04 East'
'05 South'
'06 West' ;

Ul WN

210

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

value URBRUR

1 = 'Urban'

2 = 'Rural' ;
value HEAD REL
= 'Head'
'Spouse'’
'Daughter/son'’'
= 'Spouse of son/daughter’
'Grandchild’
'Sister/brother’
'Sister/brother in-laws'
= 'Parent'
'Parent-in-law'
'Niece/nephew’
'Other relative'
'Non relative' ;

woJdoULbdWDNERFEO
Il

nH e
M=o
< |

value

[

= 'Male'
2 = 'Female' ;
value CIVIL_STATUS

1 = "Never married'

2 = 'Married - monogamy'
3 = '"Married - polygamy'
4 = 'Widowed'

5 = 'Separated'

6 = 'Divorced' ;

run ;
data mdgperson nodup from stata;
set dataset;
format
state state.
urbrur urbrur.

b3 head rel.

b4 sex.

b6 civil status.
run;

Date variables are converted correctly, but not time and datetime variables. We must divide them by
1000 to get the correct values. Date formats from the Stata dataset will be added to date variables,
but not datetime and time variables. We can import, convert, and correct datetime and time
variables like this:

libname xptfile xport 'h:\mdg\datal\times from statab5.vbxpt';
proc copy in = xptfile out = work ;
run;
data times from stata5;

set times fr;

time = time /1000;

time2 = time2 /1000;

time nf = time nf /1000;

time2 nf = time2 nf /1000;

format time time2 datetimel9. ;
run;

Stata does not have any built-in functionality for exporting a Stata dataset to an Spss dataset.
Instead, we can import a Stata dataset to Spss, see page 224.

Stata does not have any built-in procedures to export files to R or Python. Instead, we can read Stata
files

211

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

in R, by using the Haven package to import Stata datasets, see page 214. In Python, we can use
pd.read_stata to import Stata files.

23.6.R

One common R package to read and write data files from other systems is haven (which is also
included in the tidyverse package). After installation and attaching the package, we can import and
export files. First, we have to attach the package:

Tibrary(haven)

Import
After attaching the haven package, we can import data from other systems. We start with importing
a Sas dataset:

mdgfromsas <- read_sas(data_file="h:/mdg/data/mdgperson_nodup.sas7bdat")

When Sas formats are connected to the Sas dataset we can add them, they are stored in a file called
formats.sas7bcat:

mdgfromsaswithformats <- read_sas(data_file="h:/mdg/data/mdgperson_nodup.sas?
bdat",catalog_file ="h:/mdg/cat/formats.sas7bcat")

The formats are now labels for each variable:

mdgfromsaswithformats

A tibble: 47 x 8

hh state urbrur member b3 b4 b5 b6
<chr> <db1+1b1> <db1+1b1> <dbl> <db1+1b1> <dbl+1b1> <dbi> <dbil+1b1>
1 020074 2 [02 capital] 1 [Urban] 1 0 [Head] 1 [male] 39 3 [Married - polygamy]
2 020074 2 [02 capital] 1 [urban] 2 1 [spouse] 2 [Female] 21 2 [married - monogamy]
3 020074 2 [02 capital] 1 [uUrban] 3 2 [Daughter/son] 1 [Male] 16 1 [Never married]
4 020074 2 [02 capital] 1 [urban] 4 2 [Dpaughter/son] 2 [Female] 13 1 [Never married]
5 020074 2 [02 capital] 1 [Urban] 5 2 [Daughter/son] 1 [Male] 10 NA
6 020074 2 [02 capital] 1 [urban] 6 2 [Daughter/son] 2 [Female] 8 NA
7 020100 2 [02 capital] 1 [Urban] 1 0 [Head] 1 [male] 45 3 [Married - polygamy]
8 020100 2 [02 capital] 1 [urban] 2 1 [spouse] 2 [Female] 41 2 [married - monogamy]
9 020100 2 [02 capital] 1 [urban] 3 2 [Daughter/son] 2 [Female] 21 1 [Never married]
10 020100 2 [02 capital] 1 [urban] 4 2 [paughter/son] 1 [Male] 19 2 [married - monogamy]

H*

. with 37 more rows

However, these labels are a little inconvenient to use. Hence, we can convert the variables to factors
with levels and labels. We use the as_factor function since the as.factor function does not work here.
The labels are attributes to each variable and the attribute is called labels:

mdgfrowsaswithformats$state <- as_factor(mdgfromsaswithformats$state,levels="
;ag$lgmg§swithformats$urbrur <- as_factor(mdgfromsaswithformats$urbrur,levels
Ed;%?g;:agwithformats$b3 <- as_factor(mdgfromsaswithformats$b3, levels="1abels
wdgfromsaswithformats$b4 <- as_factor(mdgfromsaswithformats$b4,levels="1abels

wdgfromsaswithformats$b6 <- as_factor(mdgfromsaswithformats$b6, levels="1abels

)

Now the data frame is like this:

mdgfromsaswithformats

212

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

A tibble: 47 x 8

hh state urbrur member b3 b4 b5 b6
<chr> <fct> <fct> <dbl> <fct> <fct> <dbl> <fct>
1 020074 02 capital Urban 1 Head Male 39 Married - polygamy
2 020074 02 capital urban 2 Spouse Female 21 Married - monogamy
3 020074 02 capital Urban 3 Daughter/son Male 16 Never married
4 020074 02 capital Urban 4 Daughter/son Female 13 Never married
5 020074 02 capital Urban 5 Daughter/son Male 10 NA
6 020074 02 capital urban 6 Daughter/son Female 8 NA
7 020100 02 capital Urban 1 Head Male 45 Married - polygamy
8 020100 02 capital Urban 2 Spouse Female 41 Married - monogamy
9 020100 02 capital Urban 3 Daughter/son Female 21 Never married
10 020100 02 capital Urban 4 Daughter/son Male 19 Married - monogamy
. with 37 more rows

The values behind the levels will change if the original values did not start from 1 and increment
with 1 (as discussed earlier, page 62.

When it comes to date and time variables, they will be converted if they are formatted as date or
time in Sas. If not, the number behind the date or time will be imported:

times <- read_sas(data_file="h:/mdg/data/times.sas7bdat")
We can look at the data frame in R:

times

A tibble: 12 x 9

id time time2 date date2 time_nf time2_nf date_nf date2_nf

<dbl> <dttm> <dttm> <date> <date> <dbT> <dbl> <dbl> <dbT>

1 1 1999-03-01 11:42:00 1962-04-24 18:25:31 1962-12-15 2005-04-16 1235907720 72987931 1079 16542
2 2 2002-12-25 02:40:12 1954-03-09 15:35:26 1961-09-03 1990-09-24 1356403212 -183457474 611 11224
3 3 1973-08-02 03:27:41 1962-11-30 08:56:23 1962-04-25 1966-10-01 428729261 91961783 845 2465
4 4 1984-04-08 17:06:49 1935-04-04 15:34:40 1962-11-16 1979-04-14 765911209 -780827120 1050 7043
5 5 2003-02-04 19:42:52 1963-02-18 06:53:54 1962-12-04 2013-03-17 1360006972 98866434 1068 19434
6 6 1966-09-02 09:37:17 1935-11-02 16:23:38 1962-01-10 2000-07-13 210505037 -762507382 740 14804
7 7 1969-09-26 22:23:10 1964-09-19 22:15:04 1960-06-28 1986-09-18 307318990 148947304 179 9757
8 8 1995-02-10 20:17:57 1963-02-08 06:09:53 1964-03-01 1984-05-10 1108066677 97999793 1521 8896
9 9 1970-09-01 17:19:39 1970-09-01 13:58:32 1960-12-20 2018-01-05 336676779 336664712 354 21189
10 10 1979-12-20 04:57:52 1963-06-22 05:37:12 1963-01-21 1985-04-07 630133072 109575432 1116 9228
11 11 2002-07-19 18:23:49 NA 1960-10-02 1960-08-21 1342722229 NA 275 233
12 12 2001-09-04 03:25:32 1961-09-28 03:25:32 1963-09-19 1963-09-19 1315193132 54962732 1357 1357

We can convert date variables that are not formatted in Sas with the format and as.Date functions.
We use the origin argument to tell which date is date 0 in Sas (1 December 1960). For datetime
variables that are not formatted in Sas, we can convert using the as.POSIXct function. The default
time zone is taken from Sys.timezone(), but may be set with the tz argument, for instance tz="GMT".
Here is an example:

times$time_nf <- as.POSIXct(times$time_nf, origin = "1960-01-01")
times%§;me_nf2 <- as.POSIXct(times$time2_nf, origin = "1960-01-01",tz=Sys.tim
ezone

Eimes$date_nf <- format(as.Date(times$date_nf, origin="1960-01-01"),"%Y-%m-%d

t;m§s$date2_nf <- format(as.Date(times$date2_nf, origin="1960-01-01"), "%Y-%m-
% "

To import Spss files is similar to Sas datasets. We use the read_spss command. However, as value
labels are stored in the Spss file they are included in the import:

mdgfromspss <- read_spss(file="h:/mdg/data/mdgperson_nodup.sav")

213

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

The data frame will be like the one read from Sas. That means we can convert the labelled variables
to factors:

mdgfromspss$state <- as_factor(mdgfromspss$state,levels="Tabels")
mdgfromspss$urbrur <- as_factor(mdgfromspss$urbrur,levels="1abels")
mdgfromspss$b3 <- as_factor(mdgfromspss$b3,levels="1abels")
mdgfromspss$b4 <- as_factor(mdgfromspss$b4,levels="labels")
mdgfromspss$b6 <- as_factor(mdgfromspss$b6,levels="Tabels")

When we convert an Spss dataset with dates and times, we have to convert the Spss time number to
R date and/or time. Then we have to set the origin to October 14, 1582 as that is date zero in Spss.
All time and dates are counted in seconds from that time, so we must divide with 86400 if we want
to convert to a date. There may also be some issues with time zones and daylight-saving time. This
can lead to some different hours than the original. Here is an example:

times_spss <- read_sav(file="h:/mdg/data/times.sav")

times_spss$time_nf <- as.POSIXct(times_spss$time_nf, origin = "1582-10-14")
times_spss$time2_nf <- as.POSIXct(times_spss$time2_nf, origin = "1582-10-14")
times_spss$date_nf <- format(as.Date(times_spss$date_nf/86400, origin="1582-1
0-14"),"%Y-%m-%d")

times_spss$date2_nf <- format(as.Date(times_spss$date2_nf/86400, origin="1582
-10-14"),"%Y-%m-%d")

times_spss

The output dataset:
A tibble: 12 x 9
id time time2 date date2 time_nf time2_nf date_nf date2_nf
<dbl> <dttm> <dttm> <date> <date> <dttm> <dttm> <chr> <chr>

1 1999-03-01 11:42:00 1962-04-24 18:25:31 1962-12-15 2005-04-16 1999-03-01 12:42:00 1962-04-24 19:25:31 1962-12-15 2005-04-16
2 2002-12-25 02:40:12 1954-03-09 15:35:26 1961-09-03 1990-09-24 2002-12-25 03:40:12 1954-03-09 16:35:26 1961-09-03 1990-09-24
3 1973-08-02 03:27:41 1962-11-30 08:56:23 1962-04-25 1966-10-01 1973-08-02 04:27:41 1962-11-30 09:56:23 1962-04-25 1966-10-01
4 1984-04-08 17:06:49 1935-04-04 15:34:40 1962-11-16 1979-04-14 1984-04-08 19:06:49 1935-04-04 16:34:40 1962-11-16 1979-04-14
5 2003-02-04 19:42:52 1963-02-18 06:53:54 1962-12-04 2013-03-17 2003-02-04 20:42:52 1963-02-18 07:53:54 1962-12-04 2013-03-17
6 1966-09-02 09:37:17 1935-11-02 16:23:38 1962-01-10 2000-07-13 1966-09-02 10:37:17 1935-11-02 17:23:38 1962-01-10 2000-07-13
7 1969-09-26 22:23:10 1964-09-19 22:15:04 1960-06-28 1986-09-18 1969-09-26 23:23:10 1964-09-19 23:15:04 1960-06-28 1986-09-18
8 1995-02-10 20:17:57 1963-02-08 06:09:53 1964-03-01 1984-05-10 1995-02-10 21:17:57 1963-02-08 07:09:53 1964-03-01 1984-05-10
9 1970-09-01 17:19:39 1970-09-01 13:58:32 1960-12-20 2018-01-05 1970-09-01 18:19:39 1970-09-01 14:58:32 1960-12-20 2018-01-05
0 1979-12-20 04:57:52 1963-06-22 05:37:12 1963-01-21 1985-04-07 1979-12-20 05:57:52 1963-06-22 06:37:12 1963-01-21 1985-04-07
1 2002-07-19 18:23:49 NA 1960-10-02 1960-08-21 2002-07-19 20:23:49 NA 1960-10-02 1960-08-21
2 2001-09-04 03:25:32 1961-09-28 03:25:32 1963-09-19 1963-09-19 2001-09-04 05:25:32 1961-09-28 04:25:32 1963-09-19 1963-09-19

CRNOUAWNER

10 1
11 1
12 1

We see that time and time_nf differs with one to two hours.

We use read_dta to import a Stata file. We can also convert labelled variables to factors:

mdgfromstata <- read_dta(file="h:/mdg/data/mdgperson_nodup.dta™)
mdgfromstata$state <- as_factor(mdgfromstata$state,levels="Tabels")
mdgfromstata$urbrur <- as_factor(mdgfromstata$urbrur,levels="1abels")
mdgfromstata$h3 <- as_factor(mdgfromstata$h3,levels="Tabels")
mdgfromstata$h4 <- as_factor(mdgfromstata$b4,levels="Tabels")
mdgfromstata$h6 <- as_factor(mdgfromstata$b6,levels="Tabels")

For Stata, it is similar to Spss when it comes to datetime variables. However, the time is counted in
milliseconds, not seconds with decimals as Spss does. This means we have to divide with 1000 to
convert the datetime values. Still there may be some time zone problems here as well. For date
variables, we must set the original date 0 to January 1, 1960:

times_stata <- read_dta(file="h:/mdg/data/times.dta")

times_stata$time_nf <- as.POSIXct(times_stata$time_nf/1000, origin = "1960-01
_()ljl)

times_stata$time2_nf <- as.POSIXct(times_stata$time2_nf/1000, origin = "1960-
01-01")

t;mes_statagdite_nf <- format(as.Date(times_stata$date_nf, origin="1960-01-01
" s "%Y—%m—% "

times_stata$date2_nf <- format(as.Date(times_stata$date2_nf, origin="1960-01-
01™), "%Y-%m-%d")

214

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

times_stata

Here, time and time_nf differs with up to two hours:

id time time2 date date2 time_nf time2_nf date_nf date2_nf
<dbl> <dttm> <dttm> <date> <date> <dttm> <dttm> <chr> <chr>
1 1 1999-03-01 11:42:00 1962-04-24 18:25:31 1962-12-15 2005-04-16 1999-03-01 12:42:00 1962-04-24 19:25:31 1962-12-15 2005-04-16

2002-12-25 02:40:12 1954-03-09 15:35:26 1961-09-03 1990-09-24 2002-12-25 03:40:12 1954-03-09 16:35:26 1961-09-03 1990-09-24
1973-08-02 03:27:41 1962-11-30 08:56:23 1962-04-25 1966-10-01 1973-08-02 04:27:41 1962-11-30 09:56:23 1962-04-25 1966-10-01
1984-04-08 17:06:49 1935-04-04 15:34:40 1962-11-16 1979-04-14 1984-04-08 19:06:49 1935-04-04 16:34:40 1962-11-16 1979-04-14
2003-02-04 19:42:52 1963-02-18 06:53:54 1962-12-04 2013-03-17 2003-02-04 20:42:52 1963-02-18 07:53:54 1962-12-04 2013-03-17
1966-09-02 09:37:17 1935-11-02 16:23:38 1962-01-10 2000-07-13 1966-09-02 10:37:17 1935-11-02 17:23:38 1962-01-10 2000-07-13
1969-09-26 22:23:10 1964-09-19 22:15:04 1960-06-28 1986-09-18 1969-09-26 23:23:10 1964-09-19 23:15:04 1960-06-28 1986-09-18
1995-02-10 20:17:57 1963-02-08 06:09:53 1964-03-01 1984-05-10 1995-02-10 21:17:57 1963-02-08 07:09:53 1964-03-01 1984-05-10
1970-09-01 17:19:39 1970-09-01 13:58:32 1960-12-20 2018-01-05 1970-09-01 18:19:39 1970-09-01 14:58:32 1960-12-20 2018-01-05
10 10 1979-12-20 04:57:52 1963-06-22 05:37:12 1963-01-21 1985-04-07 1979-12-20 05:57:52 1963-06-22 06:37:12 1963-01-21 1985-04-07
11 11 2002-07-19 18:23:49 NA 1960-10-02 1960-08-21 2002-07-19 20:23:49 NA 1960-10-02 1960-08-21
12 12 2001-09-04 03:25:32 1961-09-28 03:25:32 1963-09-19 1963-09-19 2001-09-04 05:25:32 1961-09-28 04:25:32 1963-09-19 1963-09-19

CONOUVTAWN
CONOUVTAWN

N

We can import parquet files from Python with the read_parquet command in the arrow library. This
library is not included in the basic R installation, so we have to install it first. With internet
connection we can install it like this:

install.packages('arrow")

When it is properly installed, we can activate it:
Tibrary(arrow)

Now we can import a parquet file to R:

mdgperson_from_parquet <- read_parquet('h:/mdg/data/mdgperson.parquet')

Export

To export a R data frame to a Sas dataset we could use the write_sas command. However, it is
experimental and doesn’t seem to work. Instead, we can run R from Sas and convert from R to Sas
within Proc iml, see page 202.

To write to an Spss dataset we can use the write_sav command.

write_sav(data=mdgperson_nodup,path="h:/mdg/data/mdgperson_nodup_from_r.sav",
compress = TRUE)

This will create a compressed Spss dataset which can be opened with this command in SPSS.
Variable and value labels will be included if they are stored in the R data frame. Factor variables with
levels will be converted to numeric variables with value labels. The same goes for numeric variables
with label attributes.

If we don't want the Spss dataset to be compressed, we can omit the compress argument or set it to
FALSE.

To open the dataset in Spss we can use the GET command:
GET FILE ="h:\mdg\data\mdgperson_nodup_from_r.sav" .

We can use the write_dta command to convert a R data frame to a Stata dataset:
write_dta(data=mdgperson_nodup,path="h:/mdg/data/mdgperson_nodup_from_r.dta")
It converts factors variables with levels and numeric variables with label attributes to numeric

variables with value labels.

215

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

To open the converted Stata dataset, we can use a command like this:
use "h:\mdg\data\mdgperson_nodup_from_r.dta", clear

We can write parquet files from R. To do that, we need the arrow package. It is not included in the
basic R installation, so page 215 how to install it. We activate the library and do our export:

Tibrary(arrow)
write_parquet(mdgperson_nodup, 'h:/mdg/data/mdgperson_from_r.parquet")

23.7.Python

Import
We can use Pandas read_sas to read a Sas dataset into a Python data frame. But that demands that
pyreadstat is installed and imported:

!pip install pyreadstat
import pyreadstat

When it is installed, it is easy to import:

mdgperson_from_sas = pd.read_sas(datapath + 'mdgperson.sas7bdat')

For variables with value labels, these are not converted into category variables. Only the codes are
imported. Character variables are sometimes, if the locale of the Sas dataset is different from what
is used in Python, surrounded by b". To avoid these annoyances, we can use this syntax instead
where we add the encoding parameter:

mdgperson_from_sas = pd.read_sas(datapath + 'mdgperson.sas7bdat’,
encoding ='i1s0-8859-1")

Another way to do this is to use pyreadstat.read_sas7bdat instead:

mdgperson_from_sas, meta = pyreadstat.read_sas7bdat(datapath +
'mdgperson.sas7bdat')

Date and time variables will be converted correctly as long as they are formatted in Sas with a
datetime or date format. Unformatted date and time variables will have the number behind the date
and time imported. We can convert these numbers to datetime variables in Python. One way to do it
is to use the Pandas timedelta function and count the seconds from the time 0 in Sas which is
January 1, 1960.

times_sas, meta = pyreadstat.read_sas7bdat(datapath + 'times.sas7bdat')
times_sas['time_nf'] = pd.to_timedelta(times_sas['time_nf'], unit='s"') +
pd.Timestamp('1960-01-01")

times_sas['time2_nf'] = pd.to_timedelta(times_sas['time2_nf'], unit="'s') +
pd.Timestamp('1960-01-01")

times_sas['date_nf'] = pd.to_timedelta(times_sas['date_nf'], unit='D") +
pd.Timestamp('1960-01-01")

times_sas['date2_nf'] = pd.to_timedelta(times_sas['date2_nf'], unit='D"') +
pd.Timestamp('1960-01-01")

times_sas

216

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

The imported and converted data frame with converted datetime variables:

time

time2

date

date2

time_nf

time2_nf

date_nf

date2_nf

o O N 3 o B W N

1

We can use Pandas read_spss to read an Spss dataset into a Python data frame. But, that demands

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0

1999-03-01 11:42:00
2002-12-25 02:40:12
1973-08-02 03:27:41
1984-04-08 17:06:49
2003-02-04 19:42:52
1966-09-02 09:37:17
1969-08-26 22:23:10
1995-02-10 20:17:57
1970-08-01 17:19:39
1979-12-20 04:57:52
2002-07-19 18:23:48
2001-09-04 03:25:32

1962-04-24 18:25:31
1954-03-09 15:35:28
1962-11-30 08:56:23
1935-04-04 15:34:40
1963-02-18 06:53:54
1935-11-02 16:23:38
1964-08-19 22:15:04
1963-02-08 06:09:53
1970-09-01 13:58:32
1963-06-22 05:37:12

NaT
1961-09-28 03:25:32

1962-12-15
1961-09-03
1962-04-25
1962-11-16
1962-12-04
1962-01-10
1960-06-28
1964-03-01
1960-12-20
1963-01-21
1960-10-02
1963-09-19

that pyreadstat is installed and imported

!pip install pyreadstat

import pyreadstat

When it is installed, it is easy to import:

mdgperson_from_spss =

2005-04-16
1980-09-24
1966-10-01
1979-04-14
2013-03-17
2000-07-13
1986-08-18
1984-05-10
2018-01-05
1985-04-07
1960-08-21
1963-08-19

1999-03-01 11:42:00
2002-12-25 02:40:12
1973-08-02 03:27:41
1984-04-08 17:06:49
2003-02-04 19:42:52
1966-09-02 09:37:17
1969-08-26 22:23:10
1995-02-10 20:17:57
1970-08-01 17:19:39
1979-12-20 04:57:52
2002-07-19 18:23:48
2001-09-04 03:25:32

1962-04-24 18:25:31
1954-03-09 15:35:26
1962-11-30 08:56:23
1935-04-04 15:34:40
1963-02-18 06:53:54
1935-11-02 16:23:38
1964-09-19 22:15:04
1963-02-08 06:09:53
1970-09-01 13:58:32
1963-08-22 05:37:12

NaT
1961-09-28 03:25:32

pd.read_spss(datapath + 'mdgperson.sav')

1962-12-15
1961-09-03
1962-04-25
1962-11-16
1962-12-04
1962-01-10
1960-06-28
1964-03-01
1960-12-20
1963-01-21
1960-10-02
1963-09-19

2005-04-16
19980-09-24
1966-10-01
1979-04-14
2013-03-17
2000-07-13
1986-08-18
1984-05-10
2018-01-05
1985-04-07
1960-08-21
1963-08-19

For variables with value labels, these are converted into category variables so that the labels are

imported to the Python data frame.

When we import date and time variables, those who are defined as datetime variables in Spss are
converted without problems. For date variables, the number behind the actual date is imported.
That is the number of seconds since October 14, 1582. We can convert that number to a date
number starting from January 1, 1970, which is the Python time 0 by subtracting the number
12219379200. We also tell that the date and time is given in seconds with the parameter unit:

times_spss =

pd.read_spss(datapath + 'times.sav')

times_spss['date']= pd.to_datetime(times_spss['date'] - 12219379200,

i?%zzwzﬁzs['dateZ']z pd.to_datetime(times_spss['date2'] - 12219379200,
i?%zzwzﬁzs['time_nf']z pd.to_datetime(times_spss['time_nf'] - 12219379200,
i?%Z::ZEzs['timeZ_nf']= pd.to_datetime(times_spss['time2_nf'] - 12219379200,
z?%zzizﬁgs['date_nf']= pd.to_datetime(times_spss['date_nf'] 12219379200,
z?%zz_zp%s['dateZ_nf']= pd.to_datetime(times_spss['date2_nf'] - 12219379200,
unit="s"

times_spss

We may not use the origin parameter with a Timestamp as the first valid timestamp is September
22,1677.

217

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

The output has now datetime variables that are converted correctly:

time

time2

date

date2?

time_nf

time2_nf

date_nf

date2_nf

Invalid date and time are given the missing value NaT (Not a Time).

1.0
20
30
40
50
6.0
70
80
90
10.0
11.0
12.0

1999-03-01 11:42:00
2002-12-25 02:40:12
1973-08-02 03:27:41
1984-04-08 17:06:49
2003-02-04 19:42:52
1966-09-02 09:37:17
1969-08-26 22:23:10
1995-02-10 20:17:57
1970-09-01 17:19:39
1979-12-20 04:57:52
2002-07-19 18:23:49
2001-09-04 03:25:32

1962-04-24 18:25:31
1954-03-09 15:35:26
1962-11-30 08:56:23
1935-04-04 15:34:40
1963-02-18 06:53:54
1935-11-02 16:23:38
1964-09-19 22:15:04
1963-02-08 06:09:53
1970-09-01 13:58:32
1963-06-22 05:37:12

NaT
1961-08-28 03:25:32

1962-12-15
1961-09-03
1962-04-25
1962-11-16
1962-12-04
1962-01-10
1960-06-28
1964-03-01
1960-12-20
1963-01-21
1960-10-02
1963-09-19

2005-04-16
1990-08-24
1966-10-01
1979-04-14
2013-03-17
2000-07-13
1986-08-18
1984-05-10
2018-01-05
1985-04-07
1960-08-21
1963-08-19

19989-03-01 11:42:00
2002-12-25 02:40:12
1973-08-02 03:27:41
1984-04-08 17:06:49
2003-02-04 19:42:52
1966-09-02 09:37:17
1969-09-26 22:23:10
1995-02-10 20:17:57
1970-09-01 17:19:39
1879-12-20 04:57:52
2002-07-19 18:23:49
2001-09-04 03:25:32

1062-04-24 18:25:31
1954-03-09 15:35:26
1962-11-30 08:56:23
1935-04-04 15:34:40
1963-02-18 06:53:54
1935-11-02 16:23:38
1964-09-19 22:15:04
1963-02-08 06:09:53
1970-09-01 13:58:32
1963-06-22 05:37:12

NaT
1961-09-28 03:25:32

1962-12-15
1961-09-03
1962-04-25
1962-11-16
1962-12-04
1962-01-10
1960-06-28
1964-03-01
1960-12-20
1963-01-21
1960-10-02
1963-09-18

2005-04-16
1990-08-24
1966-10-01
1979-04-14
2013-03-17
2000-07-13
1986-08-18
1984-05-10
2018-01-05
1985-04-07
1960-08-21
1963-08-19

We can use Pandas read_stata to read a Stata dataset into a Python data frame. But that demands
that pyreadstat is installed and imported:

!pip install pyreadstat
import pyreadstat

When it is installed, it is easy to import:

mdgperson_from_stata

pd.read_stata(datapath +

"'mdgperson.dta’')

For variables with value labels, these are converted into category variables so that the labels are
imported to the Python data frame.

Date and time variables are converted when they are formatted as date or datetime variables. If
they are not formatted in Stata, the number of the date or time will be imported. They can be
converted with the Pandas timedelta function. We add the number of days or seconds since day 0 in
Stata, January 1, 1960:

times_stata pd.read_stata(datapath + 'times.dta')

times_stata['time_nf'] = pd.to_timedelta(times_statal['time_nf'], unit="s"') +
pd.Timestamp('1960-01-01")

times_stata['time2_nf'] = pd.to_timedelta(times_statal['time2_nf'], unit='s")
+ pd.Timestamp('1960-01-01")

times_stata['date_nf'] = pd.to_timedelta(times_stata['date_nf'], unit='D") +
pd.Timestamp('1960-01-01")

times_stata['date2_nf'] = pd.to_timedelta(times_stata['date2_nf'], unit='D")
+ pd.Timestamp('1960-01-01")

times_stata

218

Documents 2023/1

Data processing in Sas, Spss, Stata, R and Python. A comparison

The Python frame with converted datetime variables:

id time

time2

date

date2

time_nf

time2_nf

date_nf

date2_nf

0 1.0 1999-03-01 11:42:00

1 2.0 2002-12-2502:40:12
3.0 1973-08-02 03:27:41
4.0 1984-04-08 17:06:49
5.0 2003-02-04 19:42:52
1966-09-02 09:37:17
7.0 1969-09-26 22:23:10
8.0 1995-02-10 20:17:57

2
3
4
5 60
-]
T
8 90 1970-09-0117:19:38
9 100 1979-12-20 04:57:52

10 11.0 2002-07-19 18:23:49

11 12.0 2001-09-04 03:25:32

1962-04-24 18:25:31
1954-03-09 15:35:26
1962-11-30 08:56:23
1935-04-04 15:34:40
1963-02-18 06:53:54
1935-11-02 16:23:38
1964-09-19 22:15:04
1963-02-08 06:09:53
1970-09-01 13:58:32
1963-06-22 05:37:12

NaT
1961-09-28 03:25:32

1962-12-15
1961-09-03
1962-04-25
1962-11-16
1962-12-04
1962-01-10
1960-06-28
1964-03-01
1960-12-20
1963-01-21
1960-10-02
1963-09-19

2005-04-16
1990-09-24
1966-10-01
1979-04-14
2013-03-17
2000-07-13
1986-09-18
1984-05-10
2018-01-05
1985-04-07
1960-08-21
1963-09-19

1959-03-27 16:24:21.460041728
1685-09-14 13:22:25.493180416
2101-02-22 15:08:24 680312832
1679-08-27 19:25:04.198832128
1799-11-26 17:49:05.493180416
2200-07-18 02:03:09.194932224
1761-02-17 01:19:06.937622528
1999-12-28 20:36:17.426903040
2106-11-21 07:07:53.228070912
2053-04-13 10:51:33.875245056
1836-09-22 19:53:39.202732032
2133-08-21 23:39:26 621835264

1934-09-05 18:58:25.161793536
1992-01-02 10:18:57.095516160
1951-05-20 13:50:31.452241820
1767-11-04 07:58:15.801167872
2170-03-07 12:27:11.452241920
1763-10-26 08:30:22.091616256
2003-07-09 06:30:10.323587072
2142-09-19 22:50:31.452241920
2106-07-04 15:11:13.228070912
1924-12-25 06:32:37 742680304

NaT
1948-01-14 18:49:38 871345152

1962-12-15
1961-08-03
1862-04-25
1962-11-16
1962-12-04
1962-01-10
1960-06-28
1964-03-01
1960-12-20
1863-01-21
1960-10-02
1963-09-19

2005-04-16
1990-09-24
1966-10-01
1979-04-14
2013-03-17
2000-07-13
1986-09-18
1984-05-10
2018-01-05
1985-04-07
1960-08-21
1963-09-19

There is a Python library called pyreadr which can be used to import R data frames to Python. First,
we have to install and import the library:

Ipip install pyreadr

import pyreadr

Now we can import an Rdata file. It returns an ordered dictionary which we can extract to a data

frame:

result =

mdgperson_from_rdata = result['mdgperson_nodup"']
mdgperson_from_rdata

To import an rds file, we do almost the same. The only difference is that data imported to result has

no name. We use None instead:

result =

mdgperson_from_rds =

mdgperson_from_rds

Export

pyreadr.read_r(datapath + 'mdgperson_nodup.Rdata')

pyreadr.read_r(datapath + 'mdgperson_nodup.rds"')
result[None]

There is no direct way in Python to convert to Sas datasets without using the saspy library. The

saspy library needs Sas to be installed on our computer. Then we must connect to Sas from Python,

and in order to do that we need to some setup first. It is described here;
https.//sassoftware.github.io/saspy/.

There is a write_xport function to export to Sas xport format. However, it does not create an xport
file that Sas can read. Instead, we can create a csv file and import it in Sas.

To export a Python data frame to an Spss dataset we can use pyreadstat as well. The variables are
exported with their values, which also goes for category variables. That means it is the text for the
category that is exported, not the code behind. We can do it like this:

pyreadstat.write_sav(mdgperson_nodup, datapath +
"'mdgperson_nodup_from_python.sav")

When we write a Python data frame to an Spss dataset, datetime variables will also be datetime

variables in Spss:

pyreadstat.write_sav(times_spss, datapath + 'times_from_python.sav')

219

https://sassoftware.github.io/saspy/

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

To export a Python data frame to a Stata dataset we can use to_stata function. The variables are
exported with their values, which also goes for category variables. That means it is the text for the
category that is exported, not the code behind. We can do it like this:

mdgperson_nodup.to_stata(datapath + 'mdgperson_nodup_from_python.dta")

This syntax is also possible, however it may throw an error message in Stata, depending on the Stata
implementation:

pyreadstat.write_dta(mdgperson_nodup, datapath +
'mdgperson_nodup_from_python.dta")

This message may appear:
dataset too large

This .dta file format was created by Stata/MP and has more variables than your
Stata can handle.

When we save a Python data frame to a Stata dataset all datetime variables will be kept as datetime
variables in Stata. Syntax like this should work:

times_stata.to_stata(datapath + 'times_from_python.dta')

There is no method to export to Rdata or rds datasets in base Python. Instead, we can save the data
frame as a feather file. To do that we will first have to install the feather-format package:

Ipip install feather-format

Then we will import the package.

import feather

Finally, we can write to the feather format:

feather.write_dataframe(mdgperson_nodup, datapath +
"'mdgperson_nodup_from_python.feather')

There is a feather library in R. However, when we try to use that on feather files made with Python,
we may get an error message like this:

Error in openFeather(path) : Invalid: Not a feather file

Instead, we can use the arrow package in R. It will read the feather file from Python. The R program
may look like this:

install.packages('arrow")

Tibrary(arrow)

mdgperson_nodup_from_python <- arrow::read_feather('h:/mdg/data/mdgperson_nod
up_from_python.feather")

It is by the time of writing not possible to read Python files like pickles into R. However, to import

Python files in R it should be possible to call Python from R. To do that we can use a package called
reticulate. But then it is a chance that R does not find any Python installations (even though Python
is installed!). If it does not find any Python, R will ask if we will install a Miniconda version of Python.

220

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison
We can do that by answering y to that question. We also need to install Pandas and create a Python
script that reads a pickle file. The Python script may look like this:

import pandas as pd

def read_pickle_file(file):

pickle_data = pd.read_pickle(file)
return pickle_data

In R, we call the Python script (called pickle_reader.py) in a program like this:

install.packages('reticulate')

require("reticulate")

py_install("pandas")

py_install("pickle")

source_python("h:/mdg/syntax/pickle_reader.py")

nmggpgrson_nodup_from_pick1e <- read_pickle_file("H:/mdg/data/mdgperson_nodup
'p "

However, it may give us error messages like this.

PackagesNotFoundError: The following packages are not available from current
channels:

- pickle
Error: one or more Python packages failed to install [error code 1]
Error in py_get_attr_impl(x, name, silent)

AttributeError: 'NoneType' object has no attribute 'axes'

It is better to save to the feather format in Python because R can read feather files. We can try a
program like this:

Tibrary(feather)
mdgperson_nodup_from_python <- read_feather('h:/mdg/data/mdgperson_nodup_from
_python.feather"')

An error message like this may appear:

Error in openFeather(path) : Invalid: Not a feather file

Instead, we can use the arrow package as shown above.

221

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Appendix A:

Command names

These are sets of commonly used commands and subcommands used in Sas, Spss, Stata, R and

Python:
Action Sas Spss Stata R Python
Define an Input Data list infix, infile or read read
import dataset insheet
Naming an Infile File using Within read Within read
external import (subcommand) command command
file
Labelling Label Variable labels | label variable upData (in Hmisc | attrs
variables package)
Labelling Proc format Value labels label define factor with levels | Dictionary with
values and labels keys and values
arguments
Connect value Format Value labels label values factor with levels | map or replace
labels to and labels from dictionary
variables arguments
Save dataset Data Save outfile save or saveold save or saveRDS | pd.to_json,
pd.to_pickle,
pd.to_parquet
and others
One-way Proc freq Frequencies tab1 table pd.crosstab or
frequency table stb.freq (from
siedtable
module)
Two-way Proc freq Crosstabs tabulate table pd.crosstab
frequency table
Descriptive Proc means Descriptives tabstat summary describe
statistics
Descriptive Proc means Means tabstat summarise in groupby with
statistics dplyr package agg function
grouped
Subsets of data | Where or If Select If, if (qualifier), drop | subset loc
Temporary
Conditions If, Where or Select If or Do if if (qualifier), if, ifelse, filter in if, np.where
recode dplyr package
Sort data Proc sort or Proc sql Sort cases sort order, arrange in | sort_values
dplyr package
Read a dataset | Set Get file use read read_...
List data Proc print List list print, head, str print, head,
sample
Compute on assignment: Compute generate (new assignment: assignment:
variables variable=expression (no variable)) variable =
keyword) o variable <- expression (no
repAIace (existing expression, keyword)
variable) or egen mutate in dplyr
package

222

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison
Delete Drop or keep Delete drop or keep subset drop
variables variables
Define working | Libname Cd cd setwd os.chdir()
directory
Match files Proc sqgl or Data step Match files joinby or merge full_join, pd.merge
with Merge and By inner_join,
left_join,
right_join, merge
Aggregate data | Procsql Aggregate collapse group_by and groupby with
summarise in agg function or
dplyr package groupby with
transform
Restructure Proc transpose and Casetovars reshape reshape pivot
from Data steps with Merge
observations to | and By
variables
Restructure Data step with Set, By, Varstocases reshape reshape wide_to_long
from variables | Array, If, Do, Output,
to observations | Label and Format
Defining an Array Vector varlist array array
array (subcommand to
foreach)
Looping Do Loop foreach for for
Recoding Select Recode recode case_when in cut, np.where or
dplyr package define a function
Format Format Formats format format format
variables
Tabulation Proc tabulate or Proc Ctables table, tab2, tabular in tables | pd.crosstab
report tabulate package
Graphs Proc gchart, Proc gplot Graph or graph ggplot2 or plotly | plotly,
and other graph Ggraph matplotlib,
procedures seaborn and
others
Import data Proc import Get Sas or Get | N/A (or download | read_sas, read_sas,
files from other Stata usesas or read_sav, read_spss,
software usespss) read_stata from read_stata,
package haven, read_r
read.sas7bdat
from package
sas7bdat
Export data Proc export Save Translate | outfile (plain text write_sas, write_sav,
files to other format) or write_spss, to_stata
software outsheet write_stata, from
package haven
Comment /* comment */ or * /* comment */ | * comment line # comment (on # comment (on

comment;

or * comment

// comment rest
of line

/* comment */

each line)

each line)

223

Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison

Person dataset

The dataset that is used in most of the examples in this document is listed below. The positions in
the dataset are these:

hh 1-6 Household identification

state 7-7 State

urbrur 8 -8 Urban/rural location of household
member 9-9 Member number within household
b3 10 - 11 Relationship to head of household
b4 12-12 Sex

b5 13-14 Age

b6 15-15 Civil status

This is the dataset with fixed positions which is used in most of the examples:

020074215 2110.
020074211 01393
060036614 21201
040024411 02203
040024412 12332
040024412112233
050069525 42161
060036613 22241
020074213 21161
050069522 12602
020118211 01272
060041615 21 8.
020118215 22 3.
020074216 22 8.
060036615 21181
040024414 21141
060036616 21161
020074214 22131
020100213 22211
020118214 22 5.
050069526 41131
040024415102181
040024415 21 9.
020100212 12412
020100216 2110.
060041611 02312
050069521 01672
060041614 22171
060041613101 .1
020118212 12222
020074212 12212
020100215 22161
020118213 22 8.
040024413112 7.
020100214 21192
060036611 01422
020100211 01453
060041612 21201
050069524 22201
040024414102 9.
040024416 2211.
050069523 22302
060036612 12402
060041614 22171
060041616 21 1.
040024416101121
040024411 01372
040024413 22171

224

	Data processing in Sas, Spss, Stata, R and Python. A comparison
	Preface
	1. Introduction
	2. The user interfaces
	2.1. Sas
	Base Sas
	Sas Enterprise guide

	2.2. Spss
	2.3. Stata
	2.4. R
	2.5. Python

	3. Naming conventions
	4. Operators
	4.1. Sas
	4.2. Spss
	4.3. Stata
	4.4. R
	4.5. Python

	5. Datasets
	6. Execution
	7. Import of files
	7.1. Sas
	7.2. Spss
	7.3. Stata
	7.4. R
	7.5. Python

	8. Getting to know our data
	8.1. Frequency tables
	Sas
	Spss
	Stata
	R
	Python

	8.2. Descriptive statistics
	Sas
	Spss
	Stata
	R
	Python

	8.3. Descriptive statistics grouped
	Sas
	Spss
	Stata
	1.1.1 R
	Python

	9. Conditions
	9.1. Sas
	9.2. Spss
	9.3. Stata
	9.4. R
	9.5. Python

	10. Dealing with duplicates
	10.1. Sas
	10.2. Spss
	10.3. Stata
	10.4. R
	10.5. Python

	11. Labels for variables and data values
	11.1. Sas
	11.2. Spss
	11.3. Stata
	11.4. R
	11.5. Python

	12. Storing datasets
	12.1. Sas
	12.2. Spss
	12.3. Stata
	12.4. R
	12.5. Python

	13. Automatic invocation at start-up
	13.1. Sas
	13.2. Spss
	13.3. Stata
	1.2 R
	13.4. Python

	14. Matching files
	14.1. Sas
	14.2. Spss
	14.3. Stata
	14.4. R
	14.5. Python
	14.6. A matching comparison

	15. Aggregation
	15.1. Sas
	15.2. Spss
	15.3. Stata
	15.4. R
	15.5. Python

	16. Restructuring files
	16.1. Sas
	16.2. Spss
	16.3. Stata
	16.4. R
	16.5. Python

	17. Recoding
	17.1. Sas
	17.2. Spss
	17.3. Stata
	17.4. R
	17.5. Python

	18. Functions
	18.1. Sas
	18.2. Spss
	18.3. Stata
	18.4. R
	18.5. Python

	19. Missing values
	19.1. Sas
	19.2. Spss
	19.3. Stata
	19.4. R
	19.5. Python

	20. Date and time formats
	20.1. Sas
	20.2. Spss
	20.3. Stata
	20.4. R
	20.5. Python

	21. Tabulation
	21.1. Sas
	21.2. Spss
	21.3. Stata
	21.4. R
	21.5. Python

	22. Graphs
	22.1. Sas
	22.2. Spss
	22.3. Stata
	22.4. R
	22.5. Python

	23. Data exchange
	23.1. Sas
	Import

	23.2. Export
	23.3. Spss
	Import
	Export

	23.4. Stata
	Import

	23.5. Export
	23.6. R
	Import
	Export

	23.7. Python
	Import
	Export

	Appendix A:
	Command names
	Person dataset

