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Sammendrag 

Tradisjonelle analyser av arbeidstilbud er basert på antakelsen om at arbeiderne har mulighet til å 

velge arbeidstid fritt såfremt konsumutgiftene ikke overstiger disponibel inntekt. Denne artikkelen 

drøfter et rammeverk for modellering av arbeidstilbud der en fundamental egenskap er at 

arbeidstilbudstilpasningen medfører valg av type jobb. Mer presist er arbeiderne antatt å ha preferanser 

over jobber (uobserverbare) innen individ-spesifikke valgsett av jobber, hvorfra den mest attraktive 

jobben velges. Denne artikkelen generaliserer tidligere arbeidstilbudsmodeller basert på diskret 

valghandlingsteori i flere retninger, med spesielt fokus på identifikasjon og aggregeringsegenskaper. 

Vi har videre estimert en empirisk modellversjon basert på norske mikro data. Vi har brukt denne 

modellen til å beregne lønnselastisiteter og til å simulere effekten av eksogene endringer i 

valgmengdene av tilgjengelige jobber. 



4 

1. Introduction 
In the traditional approach (the standard approach), individual labor supply is viewed as a choice 

among feasible leisure and disposable income combinations. This approach has been criticized for 

ignoring important behavioral aspects: namely, that individuals in the labor market typically have 

preferences regarding job types and may face restrictions on their choices regarding job opportunities 

and hours of work. Recently, the discrete choice approach to labor supply modeling has gained 

widespread popularity, mainly because it is much more practical than the conventional continuous 

approach based on marginal calculus: see Creedy and Kalb (2005). For example, with the discrete 

choice approach, it is easy to deal with non-linear and non-convex economic budget constraints, which 

is not the case with the continuous approach, where kinked and non-convex budget sets represent 

major difficulties (Bloemen and Kapteyn, 2008). However, from a theoretical perspective, the 

conventional discrete choice approach represents no essential departure from the standard approach. 

This is because the only new assumptions postulated are that the set of feasible hours of work is finite 

and that the random components of the utility function have particular distributional properties.  

The main purpose of this paper is to provide an extension of the conventional discrete choice 

model to accommodate for agents’ preferences being dependent on non-pecuniary job attributes, as 

well as possible restrictions on hours of work opportunities. In the conventional discrete choice labor 

supply model, it is common practice in empirical applications to introduce dummy variables in the 

model specification to account for observed concentration of hours of work, although these approaches 

are ad hoc. In contrast, our approach offers a theoretical rationale and an alternative interpretation for 

this practice. 

 The theoretical point of departure is the assumption that a worker’s labor supply follows from 

his or her choice of job. More precisely, labor supply is viewed as resulting from a choice among 

latent job “packages”, each of which is characterized by an offered wage rate, offered hours of work, 

and non-pecuniary (qualitative) attributes describing the nature of the job-specific tasks to be 

performed. This starting point can thus be viewed as a version of Lancaster’s characteristic approach – 

see Lancaster (1966, 1971) – where agents not only have preferences over consumption and leisure, 

but also over job characteristics. The characteristic approach is intuitively appealing because it shifts 

the focus to qualitative aspects of the labor market that everyday life experiences tell us are important. 

Examples of such latent job attributes of major importance are job-specific tasks to be performed, 

location, quality of the social and physical environment, etc.1 More recently, Farzin (2009) has 

                                                      
1 A further example is provided by the so-called Job Characteristics Model, developed by organizational psychologists 
Hackman and Oldham (1976). Their model takes a normative characteristics approach to the analysis of job enrichment. 
They specify five core job dimensions, which include skill variety (the range of tasks performed), task identity (the ability to 
complete the whole job from start to finish), and task significance (the impact of the job on others). 
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discussed the effects of including non-pecuniary variables explicitly in the standard labor supply 

model and argues that ignoring such aspects of jobs can give biased estimates and thus result in 

misleading policy suggestions. Further related approaches are given by Sattinger (1993, 1995) and van 

Ophem, Hartog and Vijverberg (1993). 

In a modeling context where “job” is allowed to be a decision variable, it is necessary to 

specify the choice set of available jobs in addition to the budget constraint. The individual-specific sets 

of feasible jobs are endogenous in the sense that they are determined by market equilibrium conditions 

and/or by negotiations between unions and employers. However, to the individual agent the set of job 

opportunities may be viewed as given. The difficulty with applying a modeling approach that 

addresses the issue of job choice is that one seldom has sufficiently detailed information about non-

pecuniary job attributes and choice sets. However, in this context we are not primarily interested in 

modeling the job choice per se, but only in the wage and hours of work combination that follows from 

the job choice. That said, it would certainly still be of interest to have detailed information about jobs 

and choice sets, because such information could prove vital for testing key modeling assumptions. As 

will be clear below, our particular point of departure allows us to address neglected aspects in 

traditional labor supply analysis: namely, that workers face important restrictions on their job choice 

in the labor market. The resulting labor supply model can, in our framework, be represented as a type 

of multinomial logit model, where the representative utility terms are weighted by a measure 

(opportunity measure) of job availability. It follows that this framework is flexible and practical to 

apply, and provides a better analogy to crucial features of the “true” choice setting.  

 There have already been several interesting attempts in the literature of labor supply to deal 

with restrictions on hours and job opportunities. They include Ilmakunnas and Pudney (1990), van 

Soest, Woittiez and Kapteyn (1990), Tummers and Woittiez (1991), Dickens and Lundberg (1993), 

Stewart and Swaffield (1997), Bloemen (2000, 2008), and Ham and Reilly (2002). All these 

contributions are versions of discrete choice models, extended to account for particular representations 

of choice restrictions. In a way, our model is consistent with that of Dickens and Lundberg (1993). 

However, our model is simpler to interpret and easier to implement in practice. 

 The analysis in this paper develops further the approach taken by Dagsvik (1994) and Dagsvik 

and Strøm (2006). The paper contains a number of new contributions. First, we discuss in detail the 

identification problem, which differs from standard identification results of discrete choice models 

because the present model contains representations of both preferences and choice constraints. We 

show that suitable separability conditions are required for non-parametric identification of the model 

based on typical labor supply data available.  

Second, we extend the basic framework in order to make the approach more realistic in the 

context of empirical applications. We show how one can introduce more general taste distributions 
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that do not require the Independence from Irrelevant Alternatives (IIA) assumption. In addition, we 

show how one can accommodate unobserved heterogeneity in the choice restrictions: that is, when 

allowing for stochastic choice sets of job offers. In contrast to the multidimensional Poisson process 

representation approach applied by Dagsvik and Strøm (2006), our approach is based on a particular 

random coefficient approach and thus is more familiar to most researchers.  

Finally, we illustrate the practical application of the framework by estimating an empirical 

model version for married/cohabitating couples. Since functional form assumptions on preferences are 

important in empirical model specifications, we compare two specifications of the deterministic part of 

the utility function: namely, the quadratic and the generalized Box-Cox function (generalized to allow 

for interaction terms). We find that both specifications provide good fit to the data, with the 

generalized Box-Cox slightly outperforming the quadratic specification. However, the estimates of the 

quadratic specification imply that utility is decreasing in leisure for high levels of leisure. Furthermore, 

we conduct out-of-sample prediction exercises which show that the model performs rather well. We 

also show how the model can be applied to simulate the effect of particular changes in choice 

restrictions. 

 The paper is organized as follows. In Section 2 we discuss the basic structure of the modeling 

framework. The section also includes discussion on how the model can be identified. In Section 3 we 

discuss two extensions: a relaxation of IIA and an introduction of unobserved heterogeneity of choice 

sets of latent jobs. In Section 4 we discuss aspects on simulation of labor supply effects and in Section 

5 we report results from the empirical application. Section 5 also contains out-of-sample prediction 

exercises and simulations of the effect of particular changes in choice restrictions. Section 6 

concludes. 

2. The basic framework 
In this section we first present the basic structure of our modeling approach, which will serve as a 

point of departure for the extensions and application discussed below. In contrast to the traditional 

approach, in which the agent is restricted to having preferences over combinations of total 

consumption and hours of work, we allow the agent to have preferences over total consumption, hours 

of work, and non-pecuniary job attributes, such as the nature of the job-specific tasks to be performed 

and location of the workplace, etc. Thus this approach is similar to the characteristic approach taken by 

Lancaster (1966, 1971), with job attributes playing a role that is entirely analogous to his 

characteristics.  

 Let ( , , )U C h z  be the (ordinal) utility function of the household, where C denotes household 

consumption (disposable income) and h is hours of work. The positive indices, z = 1, 2,…, refer to 
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market opportunities (jobs) and 0z =  refers to the non-market alternative. For a market opportunity 

(job) z, associated hours of work and wage are assumed fixed and equal to (H(z),W(z)). In this paper, 

we shall assume that the hours of work and wage take only discrete values in a given set.2 Let D be the 

set of possible positive hours of work and G be the set of possible values of wage. The utility function 

is assumed to have the structure 

(2.1)                              ( , , ) ( , ) ( ),U C h z v C h z= ε  

for 0,1,2,...,z = where v(⋅) is a positive deterministic function and{ ( )}zε are positive random taste 

shifters that are i.i.d. with c.d.f. ),/1exp( x−  for positive x.3 The random taste shifters are assumed to 

account for unobservable individual characteristics and non-pecuniary job-specific attributes that 

affect utility, and hence will vary across both households and job opportunities.  

 For given hours and wage, h and w, the economic budget constraint is represented by 

(2.2)                                 ,( , )C f hw I=  

where I is non-labor income, C is (real) disposable income, and f(⋅) is the function that transforms 

gross income into after-tax household income. The function f(⋅) can in principle capture all details of 

the tax and benefit system.  

 For simplicity, we use the notation 

(2.3)                                  ( )( , , ) ( , ),h w I v f hw I hψ ≡ . 

The term ( , , )h w Iψ  is the representative utility of jobs with hours of work h, a given wage w, and non-

labor income I.  

 In addition to (2.2), there are restrictions on the set of available market opportunities faced by 

a specific worker. This is because there are job types for which the worker is not qualified and there 

may be variations in the set of job opportunities for which he or she is qualified. In addition, due to 

competition in the labor market, the most preferred type of job for which a worker is qualified may not 

                                                      
2 A version where hours of work and wage rates are realizations in a continuous set is discussed in Dagsvik and Strøm 
(2006). 
3 In the terminology of Resnick (1987) this c.d.f. is called type I (standard) extreme value distribution, or Frechet distribution. 
Other authors call this c.d.f. type III extreme value distribution. Note that the error terms being distributed according to type I 
extreme value distribution exp(-1/x), for positive x, in a multiplicative formulation of the utility function are equivalent to the 
error terms being distributed according to the c.d.f. )),exp(exp( x−−  for any real x, in an additive utility formulation. This 
follows immediately by taking the logarithm of the multiplicative utility function in (2.1). 
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necessarily be available to him or her. Let B(h,w) denote the agent’s set of available jobs with hours of 

work and wage (h,w): that is, this set contains those jobs z for which ( )H z h=  and W(z) = w.  

Let m(h,w) be the number of jobs in B(h,w). For the non-market alternative, (0,0)m  is normalized to 

one. In the following we shall call m(h,w) the opportunity measure. The choice sets {B(h,w)} are 

unobserved to the researcher. In this section we assume that the choice sets {B(h,w)} are equal for 

observationally identical workers. In Section 3 this assumption will be relaxed to allow for unobserved 

heterogeneity in the choice sets.  

 Let ( , )h wϕ  denote the probability that the agent chooses a particular job with offered hours h, 

wage w, given non-labor income I, and individual characteristics. Let D be the maximal set of possible 

positive hours of work and G the maximal set of positive wages. By applying standard results in 

discrete choice theory (McFadden, 1973), it follows that  

(2.4)      

( )( ){0}, , ( , )
( , )

( , )
, , ( , ) ,

( , | ) ( , , ) ( ) max max ( , , ) ( )

( , , ) ( , , ) ( , ) ,
( , , ) (0,0, ) (0,0, ) ( , , ) ( , )

x D y G k B x y
z B h w

z B h w
y G x D z B x y y G x D

h w I P h w I z x y I k

h w I h w I m h w

x y I I I x y I m x y

ϕ ψ ε ψ ε

ψ ψ
ψ ψ ψ ψ

∈ ∪ ∈ ∈∈

∈
∈ ∈ ∈ ∈ ∈

= =

= =
+ +



    

 

for , 0,h w >  and  

(2.5)      

,

(0,0, )(0 | ) ,
(0,0, ) ( , , ) ( , )

y G x D

II
I x y I m x y

ψϕ
ψ ψ

∈ ∈

=
+ 

 

for 0.h =  The resulting expression is a choice model that is analogous to a multinomial logit model 

with representative utility terms { ( , , )},h w Iψ weighted by the frequencies of available jobs, { ( , )}.m h w  

Note that it is a consequence of our distributional assumptions of the stochastic error terms in the 

utility function that the respective numbers of available latent jobs, { ( , )},m h w  represent a set of 

sufficient statistics for the corresponding choice sets. Thus the modeling framework above allows the 

researcher to account for restrictions on latent job opportunities through the opportunity measure.  

 As mentioned earlier, there are several contributions in the literature that address the issue of 

restrictions on hours and job opportunities. The one that is closest to ours is Dickens and Lundberg 

(1993).4 They propose a model where the choice environment is assumed to consist of a random set of 

hours of work alternatives. Compared to the modeling framework presented above, Dickens and 

Lundberg (1993) assume that only hours of work and consumption matter; thus there are no non-

pecuniary attributes of the job offers that affect preferences. In addition, the resulting choice 

                                                      
4 Bloemen (2000) and Tummers and Woittiez (1991) have developed extensions of the approach taken by Dickens and 
Lundberg (1993). 
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probabilities are rather complicated and cannot be expressed in closed form as in the framework 

considered above. On the other hand, their approach has the advantage that the choice sets of offered 

jobs are random, thus allowing for unobserved heterogeneity across individuals. However, it is 

possible to extend the framework considered above to allow for random choice sets of job 

opportunities (Section 3.2).  

 The conventional discrete choice approach proposed by van Soest (1995) can be seen as a 

special case of the model above, obtained by letting .1),( =whm  Evidently, the conventional model 

with standard assumptions about preferences cannot explain the high concentration of hours of work at 

full-time, and possibly part-time, a feature which is typical in many countries. Many authors, including 

van Soest (1995), make use of an ad hoc adjustment by introducing alternative specific dummies in the 

specification of the representative utilities. When the opportunity measure ( , )m h w depends on hours 

of work only – that is, ( , ) ( )m h w m h≡ – the alternative specific dummies can be viewed as a 

reformulation of our framework. In other words, our framework offers a theoretical formalization of 

the add hoc approaches in the literature.  

2.1. Identification 

We now turn to a discussion of identification of the model. In our model, the observed wage and hours 

of work are a result of both preference (utility function) and job choice constraints (opportunity 

measure). Since the opportunity measure ( , )m h w  is not directly observable, we need to estimate it 

simultaneously with the systematic part of the utility function ).,( hCv  It is thus important to discuss 

under what conditions we can identify these two factors separately.5 It follows immediately from (2.4) 

and (2.5) that  

(2.6)                    ( ( , ), ) ( , ) ( , | )
.

( (0, ),0) (0 | )

v f hw I h m h w h w I

v f I I

ϕ
ϕ

=  

Note that the sample counterpart of ( , | ) / (0 | )h w I Iϕ ϕ is the relative share between the number of 

workers with hours of work and wage pair (h,w) and workers who do not work, given the same non-

labor income I, which is observable. Thus one can identify )0),,0((/),()),,(( IfvwhmhIhwfv  non-

parametrically.  

 

 

 

                                                      
5 Recently, several authors have suggested using subjective information such as desired hours of work to estimate labor 
supply models. See, for example, Bloemen (2008) and references given there. In principle, if one can identify the preferences 
using desired hours of work first, one can then identify the job offer distributions based on actual observed hours of work.  
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 However, (2.6) does not allow us, without further assumptions, to identify the preference 

( , ) ( , )h w v C hψ =  and the choice constraints represented by m(h,w) separately. In the following, we 

shall first show that although ( , )v C h  depends on non-labor income I through the budget constraints 

( , )C f hw I= , whereas ( , )m h w does not, one still cannot, without further assumptions, recover 

( , ).v C h  In fact, one cannot even identify ( , ) / .v C h C∂ ∂  However, if we assume that the opportunity 

measure is multiplicatively separable – that is, 1 2( , ) ( ) ( )m h w m h m w=  – one can identify v(C, h) non-

parametrically up to a multiplicative factor ( ),hδ  say, that depends on hours of work only: see 

Appendix A.  

 Note that for the purposes of simulating solely the effect of counterfactual changes in the tax 

function it is, however, not necessary to separate ( )hδ  from 1 ( ).m h  The reason for this is that the tax 

function enters the model only through ( , ),v C h  and since ( , )v C h is identified one can simulate the 

effects of tax reforms conditional on fixed distribution of offered hours even if ( )hδ  and 1 ( )m h  are 

not identified separately. 

One way to obtain full identification is to make parametric functional form assumptions about 

both ( , )v C h  and ( , ).m h w  To this end Dagsvik and Strøm (2006), Dagsvik and Røine Hoff (2011), 

and Dagsvik (2012) have embarked upon a theoretical approach to justify the choice of functional 

form based on particular invariance principles. These invariance assumptions imply that the systematic 

term ( , )v C h  is of a generalized Box-Cox functional form that allows for particular interaction terms in 

order to accommodate non-separability features: see Dagsvik and Strøm (2006) and Dagsvik and 

Røine Hoff (2011) for details. Specifically, they show that the resulting non-separable functional form 

is given by 

(2.7)  
( 1) ((1 / ) 1) ( 1)((1 / ) 1)

log ( , ) ,
C h M C h M

v C h
α β α βγ δ μ
α β αβ

− − − − − −= + +  

where δγβα ,,,  and μ  are parameters, and M is a predetermined constant representing time which 

can be allocated to working. If , 1, , 0,α β γ δ< >  and with suitable restriction imposed on μ , then 

utility is increasing and concave in consumption and leisure. Another popular candidate is the 

polynomial function, often quadratic, which has the advantage of being flexible and easy to estimate: 

see, for example, van Soest, Das and Gong (2002) and Blundell and Shepard (2012). 

 When the tax function is piecewise linear in both wage income and non-labor income, as many 

tax systems are, it can shown that if one assumes that (2.7) holds one can identify v(C, h) up to a 

multiplicative factor ( )hδ  even if the opportunity measure is not separable (Appendix A). However, 

this is not true when we assume polynomial functional form for the deterministic part of the utility 

function.  
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In empirical applications (Dagsvik and Strøm, 2006; Dagsvik et al. 2011) it is typically 

assumed that the above separability condition on opportunity measure is satisfied and 1 ( )m h  is 

uniform apart from peaks at part-time and full-time hours of work. However, given our identification 

result above, we can also specify non-separable opportunity measures that allow offered wages to be 

correlated with offered hours of work,6 when we assume that (2.7) holds.  

One way of rationalizing the multiplicative separability assumption of the opportunity 

measure is to assume that the marginal product to a firm of hiring a worker is constant. For example, 

this property follows if production functions exhibit constant returns to scale. The marginal product 

may be determined by the worker’s education and in addition by firm-specific experience. A typical 

feature of labor markets in Scandinavia is that wage is determined in part by negotiation between labor 

organizations and in part by the marginal product of the workers, and in these negotiations the 

workload usually plays no role (apart from overtime recompense). If in addition we assume that the 

skills required by the respective firms are not correlated with the firm-specific hours of work, then the 

opportunity measure will clearly be separable: that is, 1 2( , ) ( ) ( ).m h w m h m w=  In the special case where 

the marginal product depends only on person-specific human capital, wages will depend solely on 

worker characteristics, but not on firm characteristics. In this case, all firms will offer the same wage 

to a given worker, which means that 1( , ) ( )m h w m h=  if the agent faces wage w and zero otherwise.  

3. Further development of the basic framework  
In Section 2 we presented the basic framework of the model. In this section we relax some of the 

crucial assumptions made above, such as the IIA assumption and the restrictive assumption on 

heterogeneity in choice opportunities.  

 Consistent with our empirical application below, we shall henceforth discuss only the special 

case in which the wage does not vary across jobs for a given agent and the wage is observed (or 

depends only on observed individual characteristics). As regards the formal treatment, this 

simplification represents no essential loss of generality, as it is easily seen how the arguments modify 

in the general case. Thus, from now on and similar to the traditional neoclassical model of labor 

supply, the agent is assumed to face an individual-specific wage. In this case the model given in (2.4) 

and (2.5) simplifies to 

(3.1)   1

1

( , , ) ( )
( | , ) ,

(0,0, ) ( , , ) ( )
x D

h w I m h
h w I

I x w I m x

ψϕ
ψ ψ

∈

=
+

 

                                                      
6 For example, Barzel (1973) argued that wage offers may systematically vary hours of work, typically an inverted U-shaped 
relationship. See also Wolf (2002) for a selection of arguments. 
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for positive h, and a similar expression for h = 0, obtained by replacing the numerator in (3.1) by 

(0,0, ).Iψ  

3.1. Relaxation of the IIA assumption 

In the basic model presented above, we assume that the random components of the utility function are 

i.i.d. type I extreme value distributed across all jobs. As is well known from the theory of discrete 

choice, these distributional assumptions are consistent with the Independence from Irrelevant 

Alternatives (IIA) assumption: see Luce (1959). The basic underlying intuition of the IIA assumption 

is that the agent’s ranking of job opportunities from a subset, say B, within the choice set of feasible 

jobs with given job-specific hours of work and wage rate does not change if the choice set of feasible 

jobs is altered. As is also well known, IIA will be violated if the random terms in the utility function 

are correlated across alternatives. Whereas IIA can be realistic in many empirical applications, one 

cannot rule out a priori that it may be restrictive in our context. However, the choice model above is in 

fact consistent with a setting where IIA is not satisfied, which we shall now demonstrate. 

 Assume that the utility function )(),,( zIwh εψ  is replaced by ( , , ) ( , ),h w I h zψ ε  where the joint 

c.d.f. of the error terms { ( , )}h zε  that correspond to jobs within the set of available jobs with hours h, 

( ),B h  say, is given by 

(3.2)  ( ) 1/

( )( )

( , ( , )) exp ( , )
z B hz B h

P h z x h z x h z

α
αε −

∈∈

     ≤ = −           
 , 

for ( , ) 0,x h z > where the error terms ( )zε and ( ')zε  are independent for ( )z B h∈  and ' ( ')z B h∈ , 

provided that h differs from .h  The error term associated with the “not working” alternative is 

independent of all other error terms. The parameter α  belongs to the interval (0,1] and it can be 

interpreted as  

(3.3)   2(log ( , ), log ( , ')) 1 ,Corr h z h zε ε α= −  

when , ' ( ).z z B h∈  The structure in (3.2) means that within any ( )B h  the joint distribution of the error 

terms is symmetric. This type of correlation structure can, for example, be a result of common 

unobserved factors affecting preferences across jobs with given hours of work. From (3.3) we realize 

that within each choice set ( )B h any correlation between the taste shifters is possible. Let 

( ) ( )( ) max ( , ) ( , )max ( , ).z B h z B hU h U h z h w h zψ ε∈ ∈= =  We realize that U(h) is the utility of the preferred 

job with hours of work h. The assumption in (3.2) implies that  
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(3.4)      ( ) 1

( )

( , ) ( )
( ) ( ) exp ,

( , )z B h

h w m hx
P U h x P z

h w x

αψε
ψ∈

    
≤ = ≤ = −         

  

for x > 0. The expression in (3.4) means that we can write  

(3.5)   1( ) ( , , ) ( ) ( ),U h h w I m h hψ ε=   

where 1 1( ) ( )m h m h α= and where the error terms { ( )}hε  are independent and type I extreme value 

distributed. From (3.4) and well-known results in the theory of discrete choice, it now follows 

immediately that the choice model that corresponds to agents maximizing the utility function in (3.5) 

is given by (3.1) with 1( )m h  replaced by 1( ).m h  Thus the structure of the opportunity measure is 

invariant under the extension represented by (3.2). It is possible to extend the model further by 

allowing the similarity parameter α  to depend on h. However, under this extension the separability 

structure of the opportunity distribution evidently breaks down.  

 As we have seen above, the structure in (3.2) does not represent any departure from the IIA 

assumption as regards the final observable properties of the model. However, this invariance depends 

crucially on the assumed correlation patterns over the error terms. We shall next point out another 

extension of the model where the error terms have a nested structure that differs from (3.4). Suppose 

that the joint c.d.f. of the error terms in the utility functions is given by  

(3.6)     ( ) 1 1/
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where ρ  similarly to α is a correlation parameter, ].1,0(∈ρ The structure in (3.6) means that all the 

error terms associated with the working alternatives (jobs) are symmetrically correlated, whereas the 

error term associated with the “not working” alternative is independent of all other error terms. The 

motivation for this structure is that there may be an unobservable attribute common to all working 

alternatives which is associated with social aspects and the feeling of meaningfulness achieved by 

carrying out the specific tasks required in the respective jobs. Note that in this version, preferences 

over jobs with different hours of work as well as jobs with the same hours of work are allowed to be 

correlated, whereas the structure in (3.2) allows only jobs with the same hours of work to be 

correlated. By standard derivation – see McFadden (1984) – it follows that 
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and similarly for the probability of not working. We note that when 1,ρ =  the formula in (3.7) reduces 

to the expression in (3.1). 

3.2. Unobserved heterogeneity in the choice sets 

As we have seen above, our framework allows for more general representations of preferences 

depending on non-pecuniary attributes and is considerably more practical than previous approaches. 

However, in the way it has been presented so far it has a serious drawback: namely, that choice sets 

are identical for observationally identical agents. Dagsvik (1994) and Dagsvik and Strøm (2006) have 

demonstrated that the choice probabilities in (3.1) (or in (2.4) and (2.5)) are in fact consistent with 

random choice sets. Their approach to accommodating random choice sets is based on a 

multidimensional inhomogeneous Poisson process. We shall now present an alternative approach 

which is a great deal simpler and does not require as much knowledge of probability theory. 

 Recall that in our framework the respective numbers of available latent jobs, 1{ ( )},m h  

represent a set of sufficient statistics for the corresponding choice sets. So random choice sets across 

identical individuals can be accounted for by allowing 1{ ( )}m h  to be stochastic. Assume now that 

1 ( )m h  has the representation 1 1( ) ( ) ( ),m h m h hω=  where ( ),hω ,h D∈  are positive random variables 

and 1( ),m h ,h D∈ are corresponding positive deterministic terms. A challenging issue is how to 

characterize the distribution of { ( )}.hω  Our approach to this end is to postulate plausible properties 

we believe this distribution should possess and subsequently derive the implications. The properties 

we postulate are the following: (i) ( ) 0;hω >  (ii) for any hours of work, h1 and h2, and non-negative 

constants, b1 and b2, 1 1 2 2( ) ( )b h b hω ω+  has the same distribution as 1( ),hτω  where τ is a positive 

constant that may depend on h1, w1, h2, w2, b1, and b2; (iii) the random variables 1)hω(  and 2hω( )  are 

i.i.d. The motivation for (i) is obvious: unless this condition is satisfied, for some hours of work, the 

conditional choice probabilities would be zero or negative. Conditions (ii) and (iii) mean that for any 

positive 1 2, ,..., ,rh h h  the distribution of the conditional aggregate choice probabilities 

   { }( )
1

| , , ( ),
r

k
k

h w I x x Dϕ ω
=

∈  

(which are random variables because they depend on { ( ), }),h h Dω ∈  across unobservable choice sets, 

belongs to the same family of distributions as the conditional choice probabilities, 

{ }( | , , ( ), )kh w I x x Dϕ ω ∈ . In other words, requirement (ii) implies that the distribution of the 

conditional choice probabilities is invariant under an aggregation of alternatives (a combination of 

hours of work and wage rates). The motivation for property (ii) is that since the aggregation level 

within the total set of available hours and wages is somewhat arbitrary, it seems intuitive that the 
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distributional properties of the model should not depend critically on the partition of the set of feasible 

hours and wages into aggregate alternatives. The independence assumption (iii) is equivalent to 

asserting that the correlation between the sizes of any two choice sets is independent of which choice 

sets are compared. It can, however, be demonstrated that one can easily allow for an asymmetric 

dependence structure of the joint distribution of { ( )}.hω  Specifically, this can be done by applying 

multivariate stable distributions. However, to discuss this extension will be left for another occasion. 

 It can be demonstrated that the postulated assumptions imply that the distribution of ( )hω  is 

strictly stable, (1,1,0),Sα  with (0,1),α ∈  and totally skewed to the right.7 Recall that the class of stable 

distribution is a generalization of the normal distribution and follows from an extended version of the 

Central Limit Theorem: see, for example, Embrechts, Klüppelberg and Mikosch (1997). From (2.4) 

and these distributional assumptions, it is shown in Appendix B that the probability of choosing a job 

with hours and wage (h) is given by 

(3.8)       1 1

1 1
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for h > 0, with a similar formula for h = 0, where 1 1( ) ( ) .m h m h α=  Thus we realize that the assumptions 

of this section are equivalent to (3.2) since they yield the same structure on the choice probabilities as 

the one following from (3.2). From (3.8) we realize, provided that log ( , , )h w Iψ is linear in some of the 

parameters, that the parameter α  is absorbed in these parameters. Thus we have obtained the neat 

result that the basic model structure is invariant under unobserved heterogeneity in choice sets, 

provided that particular distributional assumptions are fulfilled. By allowing the random variables 

{ ( )}hω  to be multivariate stable, one can allow for correlated choice sets across alternative hours of 

work.8  

4. Simulation of labor supply effects 
In the extended versions of the model discussed in Section 3, the opportunity measure typically takes 

the form 1( )m h α , where α is a positive parameter that is less than or equal to one. In these cases, the 

part which corresponds to the choice constraints, 1( )m h α , no longer represents the number of feasible 

                                                      
7 The notation ( , , )Sα σ β μ  refers to the Stable distribution with index of stability (0,2],β ∈  scale parameter 

0,σ > skewness parameter [ 1,1],β ∈ −  and location parameter .μ  
8 Under particular assumptions about the dependence structure, one can show that the resulting model is of a multinomial 
nested logit case. 
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jobs with hours h. However, 1( )m h α can still be interpreted as an opportunity measure since it is a 

strictly increasing mapping of the number of feasible jobs with hours h. 

 It is useful to break down the opportunity measure in the following manner: namely,     

(4.1)   1 1( ) ( ),m h g hα θ=  

where 

(4.2)    1
1

1

( )
( ) ,

( )
x D

m h
g h

m x

α

α
∈

=


  and   1( ) ,
x D

m x αθ
∈

=  

where (0,1].α ∈  We shall call )(1 hg  the opportunity distribution of hours. In the basic job choice 

model, where 1,α = 1 ( )g h  is the proportion of jobs with offered hours equal to h available to the 

worker. The term θ  can be interpreted as a measure of the relative size of the market opportunity set 

with respect to the not working opportunities. It could also be extended to account for the fixed cost of 

working and the disutility of working. However, in this case we will not be able to identify the fixed 

cost of working from the “true” working opportunity measure given the typically available data on 

labor supply. In practice, θ  may depend on variables that represent the effects of schooling and 

experience and characterize local labor market conditions, plus possible variables that represent the 

fixed cost of working.   

 Empirical evidence suggests that there is a wide variation in the wage opportunities across 

agents, and it seems hardly possible to account for this distribution by observed individual 

characteristics, such as length of schooling and potential experience. According to Mortensen (2003), 

observable worker characteristics that account for productivity differences typically explain no more 

than 30 percent of the variation in compensation across workers. The unexplained differences can be 

due to both unobserved individual abilities and unobserved job-specific effects. To account for 

unobserved individual-specific abilities in the wage offer distribution, we introduce a random effect in 

this distribution. Let η  be a positive random effect such that w= wη , where w is a deterministic term 

that depends on observed covariates such as experience and length of schooling. Then the 

unconditional marginal choice probability of hours of work is of course equal to  

(4.3)   ( | , ) ( | , ),h w I E h w Iηϕ ϕ η=  

where Eη denotes the expectation operator with respect to .η  One important implication of the random 

effect specification above is that the resulting choice probabilities will no longer satisfy the IIA 

assumption. This is the approach used in the empirical part of this paper, as well as in Dagsvik and Jia 

(2006), Dagsvik and Strøm (2006), Kornstad and Thoresen (2007), and Dagsvik et al. (2011). Another 
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approach is to ignore the unobserved individual effect and attribute the unobserved wage differential 

solely to job-specific variations. For example, Aaberge, Dagsvik and Strøm (1995) applied such a 

strategy. Although our conjecture is that inter-individual variation in wages is more important than 

intra-individual variation in wages, it is pretty much an open question which wage variation is the 

most important. Evidently, the best “solution” would be to accommodate both types of wage variation. 

One possibility that we intend to pursue in the future is to apply panel data to identify and separate 

variations in offered wages across jobs from inter-individual heterogeneity offered wages.9  

 Once an empirical version of the model has been estimated, one can simulate the effects on 

labor supply of different types of reform, such as the effects of changes in wage rates and the tax 

system. In the context of counterfactual simulation of pure labor supply effects, it makes sense to keep 

job opportunities fixed under changes of wages. Since the choice sets are represented by the 

opportunity distribution, 1{ ( )}g h  and θ  are kept fixed in this type of simulation.  

A particular feature of our model is that it can be used to study the effects on labor supply of 

changes in the choice sets. If, for example, one assumes that 1 ( )g h  is uniform for all h, it is equivalent 

to assuming that there are no restrictions on hours of work. In this case the model, conditional on 

working, expresses the distribution of desired hours of work.10  

5. An empirical application 

5.1. Empirical results for a job choice model for married couples 

In this section we report the results from an empirical application based on micro data from the 

Norwegian Labor Survey 1997. In this application we analyze joint labor supply behavior of married 

couples. Although the model specified above is only for single-individual households, it can easily be 

extended to married couples: see Appendix C. 

 Since there are very few married men who are not working, we have excluded households 

where the husband is not working and assume that husbands can choose only positive working hours. 

We specify eight hours of work alternatives, which correspond to annual hours of work at 0, 260, 780, 

1,040, 1,560, 1,950, 2,340, and 2,600.  

 

                                                      
9 This is closely related to the study of wage dispersion. See, for example, Mortenson (2003) for a detailed discussion. In 
particular, we refer to Abowd, Kramarz and Margolis (1999) and Abowd and Kramarz (2001) for a discussion on the 
breakdown of the wage dispersion into worker and employer components.  
10 In the presence of Stated Preference data on desired hours of work, one could test our model specification by comparing 
the predictions with the Stated Preference data. Unfortunately, this kind of data is not yet available to us. 
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The wages are assumed to be individual-specific and equal across jobs for a given individual, 

but we allow for unobserved heterogeneity across individuals. To deal with the problem that wages are 

unobserved for those who do not work, we need to estimate wage equations as well. This, in principle, 

can be done simultaneously with the estimation of the labor supply model. However, wages may be 

correlated with the taste-shifters in the utility function, which makes it difficult to implement this 

strategy in practice. Instead, we follow a three-stage estimation procedure proposed by Dagsvik and 

Strøm (2004). This means that we first estimate a reduced form participation probability and then 

estimate the wage equations using the results from the first stage to control for selectivity bias. In the 

third stage we estimate the labor supply model by the maximum likelihood method after inserting the 

estimated wage equations into the model. This procedure has the added advantage of reducing the 

measurement error caused by a negative correlation between hours of work and wages.  

We assume that the mean in the wage distribution across individuals for gender k, k = F, M is 

equal to kkw η , where { }kη  are random terms that account for unobserved differences in wages across 

workers, and we assume that log kη are independent and normally distributed, ( )0, .kN σ  Furthermore, 

we assume that log kw is a linear function of the length of schooling, experience, and experience 

squared. Experience is defined as age minus years of schooling minus seven. When the wage 

equations are inserted into the model and the error terms in these equations are integrated out, we 

obtain an empirical model of labor supply behavior for married couples which is similar to (4.3). In 

practice, we compute the expectation by Monte Carlo simulation when estimating the model.  

Since wages do not vary across different jobs for a given worker in our maintained model, the 

corresponding opportunity measure depends only on hours of work. Following (4.1), we rewrite the 

opportunity measures as 1k kg ( h )θ  k = F, M.11 The term θF, which is supposed to measure the number 

of jobs available for the female (and possibly account for the fixed cost of working), is assumed to 

depend on length of schooling and capture partially the (observed) individual differences in choice 

constraints.12 The opportunity distributions of hours, ),(1 hg k k = F, M, are uniform except for peaks at 

full-time and part-time hours. The full-time peak corresponds to 1,950 hours annually (37.5 hours a 

week), while the part-time peak corresponds to 1,040 hours annually (20 hours a week). The part-time 

and full-time peaks in the hours distribution capture institutional restrictions and technological  

 

                                                      
11 Note that when we allow for stochastic choice sets, as discussed in section 3.2, the opportunity measures are individual-
specific. Thus the estimates for kθ  can be interpreted as means of the corresponding individual measure for observable 

identical individuals, while )(1 hg k  can be seen as the sample average.   

12 Note that since our sample includes only households where husbands are working, we are not able to identify θM. 
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constraints and hence market imperfections in the economy. Recall that this specification of the 

opportunity distribution is formally equivalent to introducing suitable dummy variables at full-time 

and part-time hours of work in the utility specification of the conventional discrete choice 

specification: see, for example, van Soest (1995). 

For the structural term of the utility function, many different versions are proposed in the 

literature, such as polynomials, translog, and generalized Box-Cox functions. Given our identification 

results above, it would in principle be possible to apply a non-parametric or semi-parametric approach 

to estimate the utility function, since we have assumed that the opportunity measures are separable. 

However, due to difficulties in estimation we have chosen instead a parametric approach and apply the 

generalized Box-Cox functional form. Since the quadratic specification is easier to estimate (because it 

is linear in parameters) and is widely used in applications, we have also estimated a model version 

with quadratic utility specification.  

The deterministic part of the utility function is allowed to depend on household disposable 

income, individual leisure for both husband and wife. Disposable income, C, is measured as the sum 

of the annual household wage income after tax, household capital income after tax, and child 

allowances. Gender specific individual leisure , , ,kL k F M=  is defined as 1 3650.k kL h= −  The 

detailed empirical specification of the model is presented in Appendix D.  

 Estimates of the wage equations and the parameters of the structural choice model are given in 

Tables D.1–D.3 in Appendix D. As shown in Table D.1, the selection bias in the wage equations is 

negligible. The estimates of the variances of the error terms in the wage equations are large. Thus it 

seems important to account for the error terms in the wage equations when estimating the structural 

model. 

 The estimates for the generalized Box-Cox utility specification are reported in Table D.2. The 

results imply that ),(log hCv  is strictly increasing and concave in consumption and leisure. The 

marginal utilities of female and male leisure are increasing functions of age. The number of children 

has a significant effect on the marginal utility of leisure of the female. In contrast, the marginal utility 

of leisure for the male does not depend significantly on the number of children. This indicates that the 

female takes more responsibility for the children within the family than the male, which is not a 

surprising result. The exponent 1α associated with consumption is significantly different from zero, 

which implies that the households care about not only relative consumption levels (beyond 

subsistence) but also absolute levels. The measure of the number of available jobs for females, 

,Fθ depends positively on the length of schooling (S). Higher educational level increases job 

opportunities for females. Note also that the full-time and part-time peaks in the opportunity density of 

hours for males are substantially higher than the corresponding peaks for females. The reason for this 
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is that more women work in other labor market sectors (such as health care) than men and therefore 

may face different choice restrictions. This could be partially due to the differences in gender-specific 

human capital investments, which are important in shaping the job choice constraints.13  

 

Figure 1. Predicted and observed distributions of hours of work for married males, 1997  

 

 

Figure 2. Predicted and observed distributions of hours of work for married females, 1997 

 

                                                      
13 In a sector-specific model, similarly to Dagsvik and Strøm (2006) one could obtain explicit sector-specific opportunity 
measures. 
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For the quadratic specification of ),,(log hCv  the corresponding estimates (Table D.3) imply 

that the utility function is not monotonic for higher levels of a wife’s leisure.  

 Both specifications fit the data quite well with values of McFadden’s ρ2 about 0.44, with the 

generalized Box-Cox slightly outperforming the quadratic as measured by the likelihood levels, even 

though it has two parameters less than the quadratic one. Figures 1 and 2 show the observed and 

(aggregate) predicted values of participation and hours of work for married couples based on our 

model. We note that the model predicts these aggregates quite well. Similar results have also been 

found by other researchers: see Dagsvik and Strøm (2006), Dagsvik et al. (2011), and Mastrogiacomo 

et al. (2011). However, since the Box-Cox functional form is non-linear in parameters, it is more 

complicated to estimate than the corresponding quadratic one. Mastrogiacomo et al. (2011) report 

difficulties with estimating Box-Cox utility specifications in some cases. Blundell and Shepard (2012) 

found that their Box-Cox utility specification resulted in an unacceptable estimate of one parameter. 

5.2. Prediction performance 

A test of model performance other than goodness-of-fit is to examine the extent to which the model is 

able to predict out-of-sample labor supply behavior. Below we report selected prediction results of this 

type. 

 During the prediction exercises we keep the parameters of the opportunity measure fixed but 

allow mean wages to follow the respective observed trends. In the first exercise, we compare model 

predictions based on data from the same source as our sample used for estimation but nine years later: 

namely, the Labor Force Survey of 2006. The advantage of using this sample for comparison is that 

one can construct all variables in the same way as we did for the sample used to estimate the model 

and apply the same sample-selection rules.  

 In a second performance assessment we investigate the prediction performance of the model 

on a completely different dataset: the income tax returns filed in 2003. The problem is that there is no 

information on labor supply available in this dataset. Instead, we compare the predicted distribution of 

disposable income with the corresponding empirical income distribution. Thus in this out-of-sample 

prediction exercise we simulate how predictions of hours and wages affect disposable income. The 

only sample-selection criterion imposed on this simulation is the requirement that individuals should 

be wage earners between 26 and 62 years of age.  

 Two parameters are important when using the model estimated for one year (the base year) to 

predict labor market behavior and corresponding incomes in another year (the simulation year): 

namely, the wage growth rate and the inflation rate, both measured from base year to simulation year. 

We use the observed wage growth rate from the base year (1997) to the year of prediction (2006 or 
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2003), together with the wage equations estimated in the base year, to generate the wage in the 

simulation year. Similarly, incomes in the simulation year are adjusted by using the inflation rate.  

 We also compare predictions from our labor supply models with results from a “naive” 

prediction procedure, based on the assumption that labor supply behavior remains at the level of 1997. 

The labor supply model should in principle be superior to such a simple procedure, since it takes into 

account the effects of changes in tax rules and wages, as well as changes in the demographic 

composition of the sample. In 2006 a tax reform was introduced that implies a substantial realignment 

of dividend income and wage income taxation. In addition to a higher effective tax on dividends, there 

was a substantial reduction in the maximum marginal tax rate, from 55.3 to 47.8 percent, which was 

expected to increase labor supply. Figures 3 and 4 display the observed and predicted distributions of 

labor supply for married couples obtained from the first exercise. As we see from these figures, the 

predictions for married females from both specifications of our model are very similar and are much 

better than the “naive” method. However, while the quadratic specification performs better than the 

generalized Box-Cox one for married males, both specifications seem to predict too high an increase 

in hours of work for married males, which may indicate that our model has overestimated the males’ 

response to wage changes.  

Figure 3. Predicted and observed distributions of hours of work for married males, 2006 

 

 

 Figure 5 displays the observed and predicted disposable income distribution (adjusted to 1997 

prices) obtained in the second exercise. In this case, our model predicts better than the naive method. 

In particular, the naive method misses the right-shift of the income distribution from 1997 to 2003, 
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which is a result of increased wage level in 2003. In contrast to the naive method, our prediction 

depends on both the labor supply model (conditional on wages) and the wage distribution for males 

and females, which leads to a much better fit for the income distribution.  

 

Figure 4. Predicted and observed distributions of hours of work for married females, 2006 

 

 

Figure 5. Observed and predicted density of disposable income for married couples, 2003 

 

 



24 

5.3. Aggregate wage elasticities 

In this section we report selected wage elasticities. We have chosen to calculate elasticities that take 

into account both the systematic terms and the unobservables in the model. This means that we 

account for how the mean of the distribution of labor supply is affected by changes in, say, wage 

levels. We refer to these elasticities as aggregate elasticities because they accommodate unobserved 

and observed heterogeneity in the population. In Table 1, we report what we term aggregate 

uncompensated elasticities. They are calculated as follows. For each household, we simulate the 

change in the choice probabilities of working and the expected hours of work for females and males 

following a 10 percent increase in wages. We then aggregate over the sample to obtain the 

corresponding change in the mean probability of working and mean expected hours of work. To obtain 

elasticities, we multiply these figures by 10 and divide by the respective mean probability of working 

and the mean expected hours of work. 

 In general, the tables show that the uncompensated wage elasticities are moderate for married 

females but small for males and single females. For married females, the own-wage elasticity of the 

probability of working is equal to 0.33, which means that if the wages of married females were to 

increase by 5 percent, say, then the aggregate proportion of married females working would increase 

by 1.5 percent. If both male and female wages were increased, then the corresponding elasticity of the 

probability of working would be equal to 0.22. This means that the proportion of married females 

working would increase by 1 percent.  

Conditional on working, the wage elasticity of mean hours of work is 0.28 for married 

females. Note also that the elasticities conditional on income groups decrease slightly by income for 

females but increase slightly for males. However, the elasticities with respect to change in both wages 

remain practically constant over income groups. The corresponding unconditional elasticities for the 

females measure the effect on total mean hours of work of a change in wages. Table 1 shows that the 

unconditional elasticities for married females range from 0.71 in the lowest decile to 0.52 in the 

highest decile of disposable income. The figure for the whole population is 0.61. This means that a 5 

percent increase in the wage rate of married females increases total mean annual hours of work by 44 

hours. 

It is important to be aware of the fact that models are non-linear. As also emphasized by van 

Soest and Das (2001), results will in all likelihood depend on aggregation methods: for instance, 

whether elasticity estimates are based on average elasticities or elasticities of the average. The 

elasticities reported in Table 1 are calculated as the average elasticities of the estimation sample and 

depend crucially on the sample distribution of the exogenous variables, such as age, education, and 

non-labor income.  
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Table 1. Uncompensated wage elasticities for married couples 

  
Female 

base value 
Male base 

value 

Female 
own-wage 
elasticity

Female 
cross-
wage 

elasticity

Male own-
wage 

elasticity

Male 
cross-wage 
elasticity 

Female 
elasticity 

with 
respect to 
both wage 

rates 

Male 
elasticity 

with 
respect to 
both wage 

rates 

Whole sample 0.89  0.33 –0.14   0.22  

Lowest decile 0.87  0.42 –0.18   0.28  

2nd to 8th decile 0.90  0.33 –0.14   0.22  

Proba-
bility of 
working 

Highest decile 0.92  0.25 –0.09   0.17  

Whole sample 1,601 2,015 0.28 –0.09 0.08 –0.02 0.20 0.06 

Lowest decile 1,581 2,002 0.29 –0.09 0.07 –0.02 0.21 0.05 

2nd to 8th decile 1,602 2,015 0.28 –0.09 0.08 –0.02 0.20 0.06 

Mean 
hours of 
work 
con-
ditional 
on 
working 

Highest decile 1,618 2,030 0.27 –0.08 0.09 –0.01 0.19 0.08 

Whole sample 1,444  0.61 –0.23   0.42  

Lowest decile 1,383  0.71 –0.26   0.48  

2nd to 8th decile 1,445  0.61 –0.22   0.42  

Uncon-
ditional 
mean 
hours of 
work Highest decile 1,500  0.52 –0.18   0.37  

5.4. Desired hours of work and changes in the opportunity distribution of 
offered hours of work 

As discussed above, an important feature of our job choice model is that it enables us to represent 

restrictions on hours of work in a convenient way through the opportunity measures. The framework 

enables us to predict the “desired hours of work”: that is, the labor supply when there are no 

constraints in the labor market. Figures 6 and 7 show the distribution of desired hours of work for 

married males and females respectively. For the purposes of comparison, we also show the “actual” 

hours of work. The predictions of desired hours seem fairly reasonable. The figures show that 

predictions of desired hours of work vary across utility specifications despite the fact that both 

specifications yield rather close fits to the data. This is somewhat surprising and shows that choice of 

functional form may be more crucial than expected. One explanation for this result may be that 

different functional forms may have differing abilities to capture unobserved population heterogeneity 

even though the levels of the corresponding likelihood functions are close. 
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Figure 6. Desired hours of working, married men, 1997 

 

 

Figure 7. Desired hours of working, married women, 1997 

 

 

 Using our framework, we can also simulate the effect on labor supply of changing the 

opportunity distribution. In Norway, a high proportion of married women work part-time. In our 

sample, more than 35 percent of the married women work between 20 and 30 hours a week, while 

only around 40 percent work full-time (37.5 hours a week). Many of those in part-time jobs are 

employed in the public sector, especially in health care. Whereas Norwegian working environment 

legislation opens up the possibility of voluntary part-time jobs, an important reason for the high 

concentration of part-time workers relates to particular institutional regulations in the public health 
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sector. Part-time positions are sometimes the only positions offered by public health care 

organizations, in particular in more rural areas. Recently, there has been a heated debate between 

politicians and trade unions about replacing part-time with full-time positions. It has been argued that 

the current hours of work regulations in the labor market affect women in particular and work against 

gender equality. Other parties are more concerned about the cost of this type of reform. The prospects 

of a future shortage of labor supply, particularly in the health sector, have also been an important 

aspect of discussions. A proper assessment of the potential labor supply effect of a reform where part-

time jobs are replaced by full-time ones is therefore of considerable interest.  

 

Figure 8.Change in the aggregated labor supply for married and cohabiting women 

 

 

We shall now explain how the effect of this reform has been simulated by our model. Recall 

that in our framework, 1 ( )F Fg h  represents the proportion of jobs with hours of work Fh  that are 

available to the wife, whereas the parameter Fθ  is a measure of the total number of jobs that are 

available to the wife. Recall that there are two peaks in the estimated offered hour distribution, 

1 ( ).F Fg h  The proposed reform can be interpreted as a change in the opportunity distribution of hours 

for the women, obtained by removing the part-time peak and increasing the full-time peak (since the 

part-time jobs are replaced by full-time ones), while keeping the total number of available jobs 

unchanged (that is, Fθ  is kept unchanged). With the new opportunity distribution, say 1 ( ),F Fg h∗  which 

is uniform apart from the full-time peak, one can apply the model to simulate the corresponding 

realized labor supply distribution. Figure 8 displays the results given the 2004 tax system. As we can 
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see, there is a significant decrease in the share of married/cohabiting women who prefer to work part-

time, accompanied by an increase in the share of full-time hours of work of about a similar magnitude. 

We also observe a slight increase in the share of women who do not work, which indicates that the 

new opportunity distribution is viewed as more restrictive than the old one. In addition, we found that 

the corresponding labor supply of the males is changed very little by the introduction of this reform. 

However, one needs to be careful when interpreting this result in the context of reforms 

specific to labor market sectors (such as the health care sector), since the sector-specific preferences 

and restrictions are not explicitly accounted for in the model. Nevertheless, this simulation exercise 

clearly illustrates the advantage and potential of our modeling framework.  

6. Conclusion 
There is a strong tradition in economics of working with highly stylized models. The standard model 

of labor supply based on consumption/leisure choice is an example of this. In the early days this 

strategy could perhaps be justified owing to the lack of suitable micro data and the absence of suitable 

theoretical and empirical methodology. However, this is no longer the case now. First, detailed micro 

data are available in most countries. Second, as has been demonstrated in this and related papers, the 

emergence of new econometric methodology (for example, the theory of discrete choice) has 

drastically simplified the task of quantitative representation of qualitative choice behavior in the 

presence of different types of choice constraint.  

 As discussed in the introduction, the traditional models of labor supply, being versions of the 

theory of consumer demand with two goods, disposable income and leisure, grossly simplify the 

choice setting. An essential feature of the modeling framework is that it is consistent with the notion of 

latent job opportunities, which implies that one can easily accommodate restrictions on the set of 

feasible jobs and peaks in the hours of work distribution (interpreted as owing to restrictions on hours) 

typically observed in many data sets. As we have explained, our analysis represents a further 

development of the modeling framework of Dagsvik and Strøm (2006). In contrast to the standard 

model, where the choice environment is represented by wage and non-labor income, the alternative 

approach based on the notion of job choice implies that one needs to model a representation of the 

agent-specific choice sets of available jobs. In this paper we have demonstrated one way of doing this: 

namely, through what we have defined as the opportunity measure. In the context of policy analysis, 

this raises new problems, since it is not evident how one should interpret changes in the opportunity 

measure. In this paper we have focussed on policy simulation of labor supply behavior. This means 

that we consider simulation of behavior conditional on choice constraints, represented by the 
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opportunity measure and the economic budgetary constraints. In other words, we do not need a full 

equilibrium representation of the opportunity measure for this purpose. 

 Finally, we have carried out an empirical application of the framework based on a set of micro 

data from Norway. Although Dagsvik and Strøm (2006) have conducted an empirical analysis for the 

single-individual case, our analysis in this paper shows that a corresponding model for married 

couples can readily be estimated. An additional motivation is to contrast the practical features of this 

framework with the inherent difficulties of estimating a two-person version of the Hausman model 

(Hausman and Ruud, 1984): see Bloemen and Kapteyn (2008).  
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Appendix A 

Proof of the identification results 

For a general differentiable function F(x) in several variables, let ( )kF x′  denote the partial derivative 

with respect to the k-th component of x. Assume the tax function ),( yxf  is monotonic and 

differentiable everywhere except at a finite number of points. Recall that from (2.7) we have that 

 (A.1)                    
( ( , ), ) ( , ) ( , | )

.
( (0, ),0) (0 | )

v f hw I h m h w h w I

v f I I

ϕ
ϕ

=  

By taking the logarithm transformation of (A.1) and differentiating with respect to I we obtain 

(A.2)      1 2 1 2( ( , ), ) ( , ) ( (0, ),0) (0, ) log( ( , | ) / (0 | ))
( , , ).

( ( , ), ) ( (0, ),0)

defv f hw I h f hw I v f I f I h w I I
h w I

v f hw I h v f I I

ϕ ϕ ξ
′ ′ ′ ′ ∂− = =

∂
 

Now let ( , )C Iκ be the wage income which is needed to achieve disposable income C at given non-

labor income level I, that is, ( , )C Iκ  satisfies ( ( , ), ).C f C I Iκ=  In a way, this function can been as the 

inverse of the budget function given non-labor income I. By inserting ( , )wh C Iκ=  into (2.7) we get  

(A.3)           1 2 1 2( , ) ( ( , ), ) ( (0, ),0) (0, ) log( ( , ( , ) / | ) / (0 | ))

( , ) ( (0, ),0)

v C h f C I I v f I f I h C I h I I

v C h v f I I

κ ϕ κ ϕ′ ′ ′ ′ ∂− =
∂

 

 ( , ( , ) / , ).h C I h Iξ κ=  

Next, by dividing (A.3) by 2 ( ( , ), )f C I Iκ′  and rearranging, (A.3) becomes 

(A.4)         1 1 2

2 2

( , ) ( (0, ),0) (0, ) ( , ( , ) / , )
.

( , ) ( (0, ),0) ( ( , ), ) ( ( , ), )

v C h v f I f I h C I h I

v C h v f I f C I I f C I I

ξ κ
κ κ

′ ′ ′
= +

′ ′  
  

Note that the left-hand side of (A.4) does not depend on I. We can therefore keep I fixed and equal to 

0I (say). Let 1 0 2 0 0( (0, ),0) (0, ) / ( (0, ),0),r v f I f I v f I′ ′=  which we note is an unknown constant. We have  

(A.5)         0 0

2 0 0 2 0 0

log ( , ) ( , ( , ) / , )
.

( ( , ), ) ( ( , ), )

v C h r h C I h I

C f C I I f C I I

ξ κ
κ κ

∂ = +
′ ′∂  

  

 

(i) The nonparametric case. 

Suppose that no assumption about functional form is made. Let  

 
2 0 0

log ( ) ,
( ( , ), )

C

a

dz
C

f z I I
ζ

κ
=

′  and 0 0

2 0 0

( , ( , ) / , )
log ( , ) ,

( ( , ), )

C

a

h z I h I dz
C h

f z I I

ξ κλ
κ

=
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where a is a suitable given real number. Since f(hw, I) is known and ( , , )h w Iξ can be identified 

through (A.3), both ( )Cζ  and ( , )C hλ  are identified. By integrating (A.5) with respect to C and taking 

the exponential transformation we get  
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(A.5)   ( , ) ( ) ( , ) ( ),rv C h C C h hζ λ δ=  

where r is an unknown constant and ( )hδ  is an unknown function of h, whereas ( )Cζ  and ( , )C hλ  are 

known functions. Thus we have proved that the structure of the model implies that one can identify the 

structural part of the utility function up to the unknown power r of a power transform of ( )Cζ  and a 

multiplicative term that depends on hours of work.  

 

(ii) Separable opportunity measure  

To identify the constant r one needs further assumptions. One possibility is to assume that the 

opportunity measure is multiplicatively separable: that is, 1 2( , ) ( ) ( ).m h w m h m w=  From (2.4) and (A.9) 

it then follows that 

 1 1( , | ) ( ( , ), ) ( ) ( ( , )) ( ( , ) ( ) ( )
,

(0 | ) ( (0, ),0) ( (0, )) ( (0, ),0) (0)

r

r

h w I v f hw I h m h f hw I f hw I h m h

I v f I f I f I

ϕ ζ λ δ
ϕ ζ λ δ

= =  

which, after taking the logarithm transformation and differentiating with respect to w, yields 

(A.7)  
( , | ) ( (0, ),0) ( ( , ))

log / log / .
(0 | ) ( ( , ), ) ( (0, ))

h w I f I f hw I
w r w

I f hw I h f I

ϕ λ ζ
ϕ λ ζ

   ∂ ∂ = ∂ ∂   
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From (A.7) we see that r is identified. According to (A.5), ( , )v C h  is therefore identified up to a 

multiplicative term ( )hδ  that is solely a function of hours of work. Using (2.4), we see immediately 

that 2 ( )m w  is identified. However, similarly to the parametric case considered above, we cannot 

without further assumptions separate ( )hδ from 1 ( ).m h   

 

(iii) The Generalized Box-Cox functional form assumption 

For simplicity we shall in this section assume that the tax function is piecewise linear in both non-

labor income and wage income. This assumption represents in practice no essential restriction since 

most tax systems have this property. In this case, the marginal tax rate with respect to non-labor 

income 2 ( , )f x y′ is constant within certain intervals.  

 Since ( , )C Iκ  is continuous, one can find an interval ( , )C C− + (say) such that 

2 0 0 0( ( , ), )f C I I rκ′ = , when ( , )C C C− +∈ . In this case, (A.5) can be rewritten as  

 

(A.8)   0 0

0 0

log ( , ) ( , ( , ) / , )v C h r h C I h I

C r r

ξ κ∂ = +
∂  
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where r is a unknown constant and 0r  is a known constant. Assume now that ),(log hCv  has a 

generalized Box-Cox structure as in (2.7). It then follows from (2.7) and (A.8) that 

(A.9)  1 0 0

0 0

( , ( , ) / , )
(1 ( ) 1)

r h C I h I
C M h

r r
α βμ ξ κγ

γβ
− + − − = +  

Now by differentiating (A.9) with respect to C yields  

(A.10)  2 0 0

0

( , ( , ) / , ) /
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defh C I h I C
C M h C h
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From (A.9) it follows that further differentiation with respect to C implies that  

 (A.11)     12 ( , )
,
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C h

C C h

α ζ
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which identifies .α  Also from (A.9) it follows by differentiation with respect to h that 
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1
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r C
β
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γ

−
−
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Eq. (A.12) shows that when α  has been identified then β  and /μ γ  are identified. Furthermore, we 

realize that by (A.10) also γ  is identified. Unfortunately, we still cannot identify ),(hδ  so that ( , )v C h  

is still identified only up to a function of h. 

 Thus, under the particular Generalized Box-Cox functional form assumption, the separability 

condition on ( , )m h w is no longer required.  

 

(iv) Quadratic specification 

Consider now the quadratic specification. The cases with higher order polynomials are similar. Thus 

we assume that   

(A.13)   2 2
0 1 2 1 2log ( , ) ,v C h C C h h Chβ α α β β γ= + + + + +  

Then we can rewrite (A.8) as:  

(A.14)   0 0
1 2

0 0

( , ( , ) / , )
2 .

r h C I h I
C h

r r

ξ κα α γ+ + = +  

Using (A.14), it is possible to identify 2α  and γ  similar to the case of the generalized Box-Cox 

function. However, we can never identify 1α , since r is unknown.  
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Appendix B.  

Properties of the family of stable distributions and Stochastic Choice Sets. 

A stable distribution with parameters α, σ, β, and μ is often denoted by ( , , )Sα σ β μ . The parameter α 

is restricted such that 0 2α< ≤  and is an index that characterizes the heaviness of the tails, whereas σ 

is a positive scale parameter that is similar to the standard deviation. The parameter β is restricted to 

the closed interval [−1,1] and it characterizes the skewness of the distribution: 0β =  implies 

symmetry, whereas 1β =  ( 1)β = −  implies that the distribution is maximally skewed to the right 

(left). The parameter μ is a location parameter that coincides with the expectation when 1α > , 

whereas the expectation is not defined when .1≤α  When 2α = , the distribution reduces to the 

normal distribution, in which case β vanishes. However, when 2α < , the variance is infinite. It also 

follows from condition (ii) that 0μ = . If we impose (i), it follows in addition that 1α <  and 1β = : 

see Samorodnitsky and Taqqu (1994). 

Proof of equation (3.8) 

For ease of exposition, we simplify notation in proving the result. Consider the choice among M 

discrete alternatives and assume that alternative j has “utility” of the form j j j j jU v m ω ε= , where 

, 1,2,...,j j Mε =  are i.i.d. positive random variables with c.d.f. ( )exp 1 x− , for 0x > , {vj} and { }jm  

are positive deterministic terms, and jε and ,1,2,...,j Mω  are independent of { }jm and {vj}, and 

distributed according to ( )1,1,0 .Sα Moreover { }jω  and { }jε  are independent. Consider the c.d.f. of 

j jω ε . Because jω and εj are independent, it follows from Proposition 1.2.12 in Samorodnitsky and 

Taqqu (1994, p. 15) that 

(B.1)  ( ) ( ) ( )1exp expj j j j j
j

x
P x EP E x sx αω ε ε ω ω

ω
− −

 
≤ = ≤ = − = −  

 
, 

where ( )1 cos 2s απ= . Eq. (A.1) implies that j jω ε  has the same distribution as 1/ 1/
js α αε . 

Furthermore, this implies that Uj is equivalent to the “utility” function j j j jU v m kα α ε=  because 1
js U α−  

has the same distribution as .jU  According to results that are well known, it follows that 

(B.2)  { }( )max j j j
j k k k

k k k
k

v m
P U U

v m

ω
ω

ω
= =


 

and that 
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k k k k
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 
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Consequently, it follows that 
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The result in (3.8) follows immediately from (B.4). Hence, the proof is complete. Q.E.D. 
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Appendix C.  

Data Description 

The data are obtained by merging the Labor force survey 1997 with two different register data sets that 

contain additional information about incomes, family composition, children and education. The 

concepts of the Labor force survey are in accordance with official statistics from Statistics Norway 

and recommendations given by ILO. Here we only note that persons are asked about their attachment 

to the labor market during a particular week.  

 Information about actual and formal working time in main as well as second job and 

background variables such as demographic characteristics and occupation is also included in the Labor 

force survey. Conditional on labor market participation, respondents are also asked whether they 

consider themselves as self-employed or employee, and based on this information we have excluded 

self-employed persons in the estimation. Working time is measured as formal hours of work in both 

main as well as second job. If this information is missing and the respondent is participating in the 

labor market, information about actual working time is used.  

 Information on education is obtained from the National Education database, a register 

database that can be linked to the Labor force survey using the system with personal identification 

numbers. Work experience is defined as age minus years of education minus preschool age.   

Table C. 1. Summary statistics for married couples in the sample, Norway 1997 

Female not working Female working  

Mean St. dev.     Mean St. dev. 

Male Age 44.06 9.41 45.07  8.44

Male Education 12.34 2.62 12.63  2.78

Male Experience 24.72 9.92 25.43  9.08

Male non-labor income 10796 15543 6320  12029

Male wage rate 169.11 65.47 153.80  52.977

Male weekly hours of work 39.16 5.96 38.43  5.38

Female Age 41.68 09.70 42.76  8.39

Female Education 10.97 2.14 12.18  2.64

Female Experience 23.71 10.66 23.58  9.32

Female non-labor income 27689 21701 17648  16558

Female wage rate 120.17  37.86

Female weekly hours of work 30.45  8.93

Number of Children 0–7 0.84 0.98 0.44  0.75

Number of children 8–18 0.81 0.93 0.78  0.93

Number of Households 256 2255 
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 Whereas the Labor force survey yields detailed information about employment and hours of 

work, it does not provide information about annual labor incomes that can be used in the calculations 

of (average) gross wage rates, and non-labor income. To obtain this information we apply the Tax 

Return Register (includes more detailed information about employee income, self-employment 

income, taxable pensions etc.) These data can be linked to the Labor force survey using personal 

identification numbers. Nominal hourly wage rates are measured as labor incomes (for main as well as 

second job) divided by (formal) total annual hours of work (for main and second job). The sample 

includes persons with age between 26–62 years. The motivation for this is that for women under 26 

years of age education is an important activity and for those more than 62 years of age early retirement 

is rather frequent. The number of children includes all children with age less than 19. A person is 

defined as working if he works at least one hour per week. Households where one of the adults has 

income from self-employment higher than NOK 80 000 are excluded. So also are households where 

one of the adults has hours of work higher than 80, or wage rate less than NOK 50 or higher than NOK 

400. In Table C.1 we report the summary statistics for the sample used in estimating the labor supply 

model. 
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Appendix D.  

Model for Married Couples with estimation results 

The modeling framework for two-person households is completely similar to the case for single 

individual households. Let ( ), , ,F MU C h h z  denote the utility function of a household, where hF and hM 

are hours of work for female and male and ( ),F Mz z z=  indexes the combination of jobs for the female 

and male in the household, respectively. Similarly to the single individual households, assume that Let 

( ) ( ), , , , , ( )F M F MU C h h z v C h h zε= , with interpretation that is completely analogous to the case above. 

The budget constraint in this case can be written as 

(D.1) ( ), ,F F M MC f h W h W I=  

where WF and WM are the respective wage rates for female and male and f(·) is the function that 

transforms gross income to disposable income for the household. Let ( ), | , ,F M F Mh h W W Iϕ  be the 

joint density of hours of work for female and male in the household, given wage rates and non-labor 

income. The empirical counterpart of this density is the fraction of couples where the husband works 

hF hours and the wife works hM hours, within the subpopulation of couples with wage rates and non-

labor income equal to ( ), ,F MW W I . We assume furthermore that the offered hours HF and HM are 

independent. 

(D.2) ( ) ( )( ), ; , , , , , ,F M F M F F M M F Mh h W W I v f h W h W I h hψ = .  

Then, under assumptions that are completely similar to the ones for single individual households we 

get that the conditionally density of ( ),F Mh h , given that 0Mh > , equals 

(D.3) ( ) ( ) ( ) ( ), ; , ,
, | , , F M F M F F M M

F M F M

h h W W I m h m h
h h W W I

M

ψ
ϕ = , 

for 0, 0F Mh h> > , and 

(D.4) ( ) ( ) ( )0, ; , ,
0, | , , M F M M M

M F M

h W W I m h
h W W I

M

ψ
ϕ =  

for 0Fh =  and 0Mh = , where 

(D.5) ( ) ( ) ( )
0 , 0,

, , 0, ; , , ( ) , | , , ( ) ( )F M F M M F M F M
y x y

M W W I y W W I m y x y W W I m x m yψ ψ
> >

= +  . 
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Model specification: 

The opportunity measure for women, θF is assumed to depend on the wages solely through the amount 

of schooling. Specifically, we assume that 

(D.6) 1 2log F F Ff f Sθ = + , 

where S is the length of education. Furthermore, we specify ( )⋅v  to be of the form 

(D.7)            

( ) ( ) ( )

( ) ( ) ( )

1
3

4 34

4
0

2
1 3

15
4 34

10 1 1log , ,

1 11

F

M

F
F M

M FM

C C Lv C h h

L LL

α α

α ααβ

βα
α α

α
α αα

−               

   +  
    
        

− − −
= +

− −−+
 

where                    ( )2
5 6 7 8 9log log 6 6F F FA A CU COβ α α α α α= + + + +  

and                       2
10 11 12 13 14log (log ) 6 6M M MA A CU COβ α α α α α= + + + +  

C0 are subsistence level and , , ,kA k F M=  is age for gender k divided by 10, CU6 and CO6 are the 

number of children below or equal to and above the age of six respectively, C is given by the budget 

constraint similarly to (2.2), , , ,kL k F M=  is leisure for gender k, with 1 3650,k kL h= −  and 

, 1,2,...,15j jα = , are unknown parameters. Note that we have subtracted from total annual hours a 

“subsistence” level, 0L = 5,110 hours, which allows for sleep and rest. This corresponds to about 14 

hours per day reserved for sleep and rest. We have chosen C0 to be approximately NOK 40,000 N , 

where N is the number of persons in the household. Disposable income, C, is measured as the sum of 

the annual household wage incomes after tax, household capital income after tax, and child 

allowances.  

 

The Quadratic Specification 

The opportunity measure is specified the same as in the Box-Cox case. Only thing different is the 

deterministic part of utility function ( )⋅v  is specified as the following: 

(D.8)                               
( )

2 2

2
1 2

2 2

log , ,

.

F M M M F F FM F M

M F MC M FC FM F

v C h h C L L C L L

L L L C L C

α β β α β

β β α α

= + + + +

+ ++ +
 

where variables and parameters defined as in (D.7). 
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Table D.1. Estimates of wage equations, females and males, 1997 

Males Females Females (selection 
corrected) Variables 

Estimate t-value Estimate t-value Estimate t-value 

Constant 4.08 135.1 4.10 132 4.11 109 

Experience in 
years/10 

0.22 12.2 0.143 8.6 0.141 7.8 

(Experience in 
years/10)2 

–0.03 –10.1 –0.022 –6.6 –0.022 –6.1 

Education in years 0.044 26.9 0.0388 23.1 0.0386 19.7 

Married 0.05 6.02 –0.022 –2.67 –0.21 –2.37 

Log(P)     0.013 0.3 

Variance of error 
term 

0.3029 0.2755 0.2755 

No. observations 5,448 5,074 5,074 

R2 0.15 0.10 0.10 
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Table D.2. Estimates of the parameters of the utility function. Married couples, 1997. Quadratic 
Utility Function. 

 Married couples 

 Parameter
Estimate  

Standard 
error 

Preferences:    

Consumption (10−4)    

    Linear  1α  0.3834 0.512 

    Quadratic α2 –0.0003 0.003 

Female leisure: Linear    

    Constant α5 53.8310 14.670 

    Log(age/10) α6 –45.3454 11.875 

    Log(age/10) squared α7 18.3212 4.258 

    No. children below or equal 6 years α8 2.5597 0.328 

    No. children above 6 years α9 1.3089 0.232 

Female leisure: Quadratic âF2 –23.6216 2.603 

Male leisure: Linear    

    Constant α10 39.3266 23.357 

    Log(age/10) α11 –63.4562 23.488 

    Log(age/10) squared α12 23.5614 8.278 

    No. children below or equal 6 years α13 –0.2039 0.578 

    No. children above 6 years α14 –0.5795 0.411 

Male leisure: Quadratic 15α  –13.8534 5.275 

Leisure interaction 16α  23.1948 7.126 

Consumption Male Leisure interaction 17α  0.5304 0.274 

Consumption Female Leisure interaction 18α  0.2181 0.175 

The parameters θF; θ +F F1 F2log f f S=     

    Constant fF1 –4.5023 0.495 

    Education fF2 1.3450 0.395 

Opportunity density of offered hours    

    Male full-time peak  2.4090 0.096 

    Female full-time peak  1.3464 0.060 

    Male part-time peak  1.2592 0.291 

    Female part-time peak  0.3789 0.071 
    

Number of Observations   2,511  

Log likelihood  –5,728.2  

McFadden’s 2ρ   0.44  
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Table D.3. Estimates of the parameters of the utility function. Married couples, 1997. 
Generalized Box-Cox specification  

 Parameter 
Married couples

  Estimate  Standard error

Preferences:    

Consumption    

    Exponent 1α  0.6643 0.054 

    Scale 10−4
 α2 1.8411 0.352 

    Subsistence  C0 40,000 N   

Female leisure    

    Exponent α3 –0.8334 0.182 

    Constant α5 11.8387 1.888 

    Log(age/10) α6 –12.5285 1.945 

    Log(age/10) squared α7 5.2456 0.733 

    No. children below or equal 6 years α8 0.9682 0.168 

    No. children above 6 years α9 0.5075 0.094 

Male leisure    

    Exponent α4 –1.8043 0.430 

    Constant α10 3.8929 1.112 

    Log(age/10) α11 –4.3054 1.142 

    Log(age/10) squared α12 1.6682 0.444 

    No. children below or equal 6 years α13 0.0547 0.051 

    No. children above 6 years α14 0.0083 0.029 

Leisure interaction α15 0.2047 0.147 

    Leisure subsistence L0 5,110  

The parameters θF; θ +F F1 F2log f f S=     

    Constant fF1 –3.5041 0.435 

    Education fF2 1.2389 0.366 

Opportunity density of offered hours    

    Male full-time peak  2.3769 0.086 

    Female full-time peak  1.4380 0.296 

    Male part-time peak  1.0960 0.063 

    Female part-time peak  0.5622 0.067 

Number of Observations   2,511  

Log likelihood  –5,706.5  

McFadden’s 2ρ   0.44  
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