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Abstract

The Generalized Extreme Value Model was developed by McFadden for the case with
discrete choice sets. The present paper extends this model to cases with both discrete and
continuous choice sets and choice sets that are unobservable relative to the analyst. We also
propose behavioral assumptions that justify random utility functions (processes) that have a max
stable structure i.e., utility processes where the finite dimensional distributions are of the
multivariate extreme value type.

Finally we derive non-parametrically testable implications for the choice probabilities in the
continuous case.
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1. INTRODUCTION

This paper discusses a particular random utility framework for modeling discrete and

continuous choice. We demonstrate how ideas related to the literature of discrete choice

models can be exploited and extended to establish a unified framework for discrete and

continuous choice.

In the existing consumer demand literature, the stochastic properties of the demand

function are usually specified ad hoc. The present approach, however, employes ideas

developed, in part, by psychologists to obtain a theoretical basis for the choice of functional

form. Examples of this tradition are found in Halldin (1974) and in Suppes et al. (1989),

chapter 17. Specifically, we consider choice settings where each alternative is identified by

a consumption bundle and a vector of qualitative variables called attributes. The set of

attributes that are feasible to the agent is generated by a random device. The agent's

preferences are represented by a utility function that is random. The stochastic properties of

the demand function are derived from behavioral axioms, of which the most important one

is analogous to the "Independence from Irrelevant Alternatives" axiom (1A), proposed by

Luce (1959). Our version of IIA states that, conditional on alternatives with a given level of

the consumption bundle, the utilities for attributes are distributed so as to yield (conditional)

choice probabilities that satisfy a continuous version of IIA. In the context of discrete choice,

it is well known that rrA corresponds to utility functions that are extreme value distributed.

We extend this result in the sense that when utility is viewed as a stochastic process with the

consumption bundle as parameter, our version of IIA is shown to imply that the utility process

is max-stable. This means that the joint distribution of a vector of utilities, evaluated at

different consumption bundles, is of the multivariate extreme value type. Once this has been

established it is possible to draw on recent developments in probability theory (cf. de Haan,

(1984)) to characterize the corresponding probability model for the agent's choices.

A random formulation of the utility function is usually motivated by the

econometrician's need to account for unobservable tasteshifters that are assumed to be

perfectly foreseeable to the agent. However, in the field of psychology, beginning with
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Thurstone (1927), there has been a tradition of interpreting the utility function as random to

the agent himself. The justification for this is that in laboratory experiments, individuals have

been found to make different decisions under identical experimental conditions. One

explanation for this is that the agent's psychological state of mind fluctuates from one

moment to the next in a manner that is unpredictable to him. Alternatively, the agent is

viewed as having difficulties with the evaluation of the rank order of the alternatives. The

framework developed in this paper allows for both interpretations.

A second purpose of this paper is to demonstrate that the proposed framework is able

to accommodate choice situations in which the choice sets are latent and vary across agents.

This is of considerable interest in many empirical applications where the analyst cannot

observe each agent's choice set, but can only observe attributes of the chosen alternative. The

choice of geographical location and housing type (where the feasible sites and feasible

housing categories are typically unobserved) is one example of this type. Within the

conventional framework, it may be rather difficult to account for latent choice sets, and only

special cases have been considered in the literature (cf. McFadden, (1981), Thompson, (1989)

and Poirier, (1980)).

The application of max-stable processes in the context of random utility models is also

discussed by Cosslett (1988) and Resnick and Roy (1991). Their point of departure is the

postulation of an upper semicontinuous utility function, defmed on a continuous set.

Furthermore, they assume that this utility function is a max-stable stochastic process, and they

demonstrate that the choice probabilities can be represented through a social surplus function

analogous to the discrete case, cf. McFadden (1981). Cosslett (1988) also considers statistical

inference in such models. In contrast, we build the theory from axioms on the distribution of

individual preferences for attributes, as described above.

The paper is organized as follows. In the next section, we present the particular choice

setting and we postulate the behavioral axioms. In Section 3 the choice probabilities are

derived for the general case. A non-parametrically testable property, which is analogous to

riA, is also derived. In Section 4, we discuss a special case of the general model framework
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that is consistent with a continuous version of the Luce model, and finally, in Section 5 we

briefly consider the case where the alternatives are discrete.

2. THE CHOICE SETTING AND MAX-STABLE UTILITY PROCESSES

In this paper, except Section 5, it is assumed that each choice alternative is identified by a

pair, (x,T), that belongs to R.T x Y, Y c Rn, where Rrn, x Y is called the choice universe. Here

x is a consumption bundle, Rni., (Xe R : xX)), and T is a vector of variables called

attributes. As usual, the vector inequality y>t is defmed by (yi>ti , y2>t2,..,yn>t,i). These

attributes are assumed to capture qualitative aspects of the alternatives. The agent is assumed

to have preferences over Rn: x Y. The agent's choice set is specified by an economic budget

constraint, and possibly additional quantity constraints. The quantity constraints associated

with x are specified by

(2.1)	 xeKe87,

where K is a closed set that is observable and 8m, is the Borel field associated with K. The

set of feasible attributes is specified as

(2.2)	 Te 3nD, c Y, DE 8*,

where 3 is a countable, unobservable (to the econometrician), and agent-specific set, and D

is an observable set. 8* is the Borel field associated with Y. The set D is introduced in

addition to 3, to allow the analyst to take into account both unobservable and observable

restrictions on the set of feasible attributes. This may be desirable in some applications. Since

is countable it can be mitten as an enumeration, S=a(z), ze Z), where Z is the set of

integers. Since Z is agent specific, this enumeration is agent specific. Thus, agents are

allowed to be heterogeneous with respect to feasible attributes (opportunities). However, for

notational simplicity, the agent's index is suppressed.
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The set Z can also be given an alternative and subjective interpretation that is

consistent with psychophysical theories of perception. Specifically, we may think of Y as a

set of stimuli - or signals, that represent different (latent) qualities or aspects that are relevant

to the agent for evaluating the utility of x. While Y is presented to the agent only the subset

3 is used by the agent in his decision making process. The agent's information set 3 varies

across identical choice experiments due to psychological processes that are not fully

understood. Consequently, 3 in this context is perceived as random to both the agent and the

econometrician. The present paper will, however, focus on the interpretation that 3nD is the

choice set presented to the agent.

Let An: = {xe : x>0). The agent's economic budget constraint conditional on

attribute vector T(z), is given by

(2.3) p'x f(T(z)), xe R 11 ,

where p e ikm, is a vector of prices and f(T(z)) is the agent's income net of fixed cost

associated with attribute vector T(z).

For example, when we consider the joint choice of geographical location and

consumption, x is a vector of goods and T(z) may be the coordinates of location z and f(T(z))

the income minus the fixed cost associated with choosing location z.

In general, the prices may also be attribute specific. We shall, however, not include

this case in the general analysis. We demonstrate in examples below how the analysis can be

modified to account for prices that depend on attributes.

The agent's preferences are represented by a utility function U(x, z) = u(x,T(z), E(z))

where, as above, z indexes the attributes. Here u •) is a (deterministic) function,

u:Rm.i.xYxR-->R, that may depend on observable characteristics of the agent, and E(z) is a

tasteshifter associated with attribute vector T(z). The tasteshifters are also agent-specific so

that if two different agents have a particular T(z) in their choice sets the corresponding

tasteshifters are not necessarily equal. These tasteshifters account for unobserved heterogeneity

in tastes across agents and across different attributes for a given agent.
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As mentioned above, psychologists interpret the tasteshifters as random relative to the

agent in the sense that his preferences for a specific attribute vary from one moment to the

next in an unpredictable manner due to instability in the agent's wims, moods and

perceptions.

The agent's objective is to maximize utility subject to (2.1), (2.2) and (2.3). Let

x*(p, C) and T*(p, C) denote the value of x and the attribute that maximize utility,

respectively, where C=KxD. In general, since there is no guaranty that this utility

maximization problem yields a unique solution, (x*(p, C),T*(p, C)), we need to impose

restrictions on the utility function and the choice set C. The structure of the utility function

will be characterized on the basis of a set of assumptions which we shall introduce below.

ASSUIVIIMON 1: The function u(.) has the structure u(x, t, e) = v(x, t) + e, where v:

R7xY-->1? is jointly measurable.

ASSUMPTION 2: [(T(z), e(z)), zeZ) are the points of a Poisson process on YxR with

intensity measure 1.1.G(dt)•1(de), where 1.1>0 is a constant, G(.) is a cumulative distribution

function,

00

0 < fM(de) < 00, ye R,

and the mapping

y -4 5M(de)

is continuous. The mapping f : Y R. is measurable.

Assumption 2 implies that the attributes of 3 are realizations of a Poisson process.
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The multiplicative form of the intensity measure means that the tasteshifters and the

attributes are independently distributed. In other words, tastes are not correlated with the

attribute values.

Recall that a Poisson process on YxR is completely analogous to a Poisson process

on R. Here the realizations occur independently and have coordinates (T(z), E(z)),

respectively. The probability that there is a point within

(t,t+At) x (e,e +åc)

is equal to

gG(At)M(Ae) + o(tie)

and the expected number of points within an area, B E fr X 3 , is given by

A(B) filG(dt)M(de),
B

where 8 is the Borel field associated with R. The probability that there are exactly n points

within B equals

(2.4) A(B)n exp( -A(B)).
n!

The notion of heterogeneity in opportunities is obtained through the assumption that

different agents face different and independent copies of the Poisson process. Accordingly,

this notion is convenient for modeling choice experiment in which the set of feasible

attributes is not observed and may vary across agents. In other words, the set of feasible

attributes, 3, is perceived as random by the econometrician because he is ignorant about

which values are feasible and which are not.

.	 The density of the attributes in 3 is represented by the intensity measure. Let
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S(t) = {(y,e): e >b,	 ye Y)

and

S(Y) {(y,e): e >b, ye Y)

where t e Y and b is a constant. The expected number of Poisson points in S(t) is given by

00

A (S(t)) = f g,G(dy) M(de ) = 11,G(t)fM(de).
	S(t)	 b

A(S(t)) = G(t)
A(S(Y))

which demonstrates that G(t) is consistent with a frequency type interpretation, namely as the

ratio of the mean number of feasible attributes in S(t) to the mean number of feasible

attributes. Thus, loosely speaking, G(t) is the fraction of feasible attributes that have values

less than or equal to t. We shall call G(t) the opportunity distribution, cf. Ben-Aldva (1985).

Let A e 8* and define U(x,Ø) = -co and

U(x,A) = sup U(x,z) = sup (v (x,T(z)) 4. E (z)) .
	T(z)e A,ze Z	 T(z)e A,ze Z

We may interpret U(x,A) as the utility of the "aggregate alternative" {(x,T):Te ArZ ). Since

there are, with probability one, only denumerably many points in the Poisson process, U(x,A)

is a random variable. It also follows from Assumption 2 that if A1, A2 e 8*, A1 n A2 i= 0,

then U(x,A) and U(x',A2) are stochastically independent for all x, x' e R.T.

Thus

(2.5)
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ASSUMPTION 3 (Independence from irrelevant attributes): Let

PIA;D) = P{U(x,AnD) > U(x,D -(AnD)))

for Ae 8* and non-empty De g, XE R. For A1cA2cD, A1 , A2e 3, the measure M has a

structure that yields

Ppli;D) Plit 1 ;A2)PlA2;D).

Moreover, Px(•;Y) is absolutely continuous with respect to the measure 1.1,G and the

corresponding Radon-Nikodym derivative is independent of RG.

The probability P„(A; D) has the interpretation as the probability that for fixed x the

chosen attribute from D belongs to A. Clearly, Assumption 3 is a version of Luce Axiom:

"Independence from irrelevant alternatives" (ILA). Specifically, it states that RA holds for

choice sets of the type (x)xD, where x is fixed. The absolute continuity assumption follows

from the choice theoretic interpretation: Since the intensity measure gG(dt) • M(de) represents

the density of the feasible points then if

ilfG(dt) = O
A

for some Ae 8*, this means that (almost surely 11G) the points with T(z)e A are not feasible.

Consequently, the corresponding probability of choosing a point within A must also be zero.

The intuition behind the assumption about the Radon-Nikodym derivative is the

following: The Radon-Nikodym derivative may be interpreted as a function solely of the

agent's preferences. These preferences should not change when the set of feasible attributes

change.

We can now prove the following result.
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THEOREM 1 : Assume Assumptions I and 2 are satisfied and

(2.6)	 M(de) = ke 'de,

where a and k are arbitrary positive constants. Then the choice probabilities satisfy the

version of IIA stated in Assumption 3.

A proof of Theorem 1 is given in the Appendix.

The result of Theorem 1 is analogous to the result of Holman and Marley (1961)

(cited in Luce and Suppes, (1965), p. 338) where they demonstrate that a random utility

model with independent extreme value distributed utilities satisfy IIA. A natural question to

ask next is whether the structure (2.6) is also a necessary condition for Assumption 3 to hold.

In the context of discrete random utility models this problem has been analyzed by McFadden

(1973) and under more general conditions by Yellott (1977). Specifically, they prove that a

random utility model with independent utilities satisfies RA only if the utilities are extreme

value distributed. In the present setting the question is settled in Theorem 2 below. The case

considered by McFadden and Yellott is a special case within the general framework

considered here and it is obtained by assuming that the measure p.G has all mass on a finite

set of points.

THEOREM 2: Assume Assumptions 1, 2 and 3. Then

M(de) = e"kd e

where a and k are arbitrary positive constants.

A proof of Theorem 2 is given in the appendix.
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REMARK 1 : If the additive separability condition in Assumption 1 is replaced by

multiplicative separability then it can be demonstrated that (2.6) must be replaced by

M(de)=1ce'de, for e>0 and zero otherwise, where a>0, k>0.

REMARK 2: There is no loss of generality by setting a=1 and k=1. It will become clear

below that this corresponds to dividing the utility function by a and subtracting the utility

function by logk. Henceforth, we shall therefore fix a=k=1, unless explicitly stated otherwise.

AssumPrioN 4: Provided the mapping

(2.7)
	

t --> P(p,t,K)=--- sup v(x,t)
pixSi(t),xe K

is measurable for pee., ICE 3, then

l'exp(P(p,t,R:n))G(dt) < co.

de Haan (1984) demonstrates that Assumption 4 is necessary to ensure that the utility

process (U(x,A), xe RT.) remains finite with probability one.

When (2.6) and Assumption 4 hold, and i)(p,t,Rni+) is measurable, it is easy to derive

the finite-dimensional distributions of (U(x,A), xe Ri:), treated as a stochastic process indexed

by x. de Haan (1984), p. 1195, demonstrates how to compute the finite-dimensional

distributions of this process in the case where u(x,t,e) = v(x,t)e. When Assumption 1 holds

the derivation is completely analogous and gives
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(2.8) P (f) (1J (xj , A)	 ep fexp [max(v (xj ,t) - ui)] G(dt))
A

for A e 8*, xj e R, uj e R, j s. Then by de Haan the structure (2.8) implies that f U(x,A),

xe R} is a max-stable process2).

ASSUMPTION 5: For te Y, x—>v(x, t), xelr„ is continuous except possibly on a set of

G measure zero.

ASSUMPTION 6 (Acceptance treshold): The agent only takes into account alternatives

that have utility above some finite treshold, c, (say) which may be agent-specific.

Assumption 6 means that the agent apriori discards alternatives as uninteresting if their

utility values are less than some treshold and it implies that the set of feasible alternatives

above the treshold is a.s. finite, as demonstrated below. The justification for this assumption

is that human beings only seem to have capacity to relate to a finite set of alternatives.

Moreover, in many choice settings there seems to be a level of standards which determines

what is acceptable or not. If there are no feasible alternatives above the acceptance treshold

the experiment is simply terminated with no choice being made.

Assumption 6 is not needed to prove the main results of Section 3. However, it

implies a simplification of proofs and more important, it allows the interpretation that agents

have an a priori level of standards which the alternatives must meet.

Let

(2.9)	 H = {(t,e): i(p,t,K) + e > c, te Y, ce

where c is a constant and i)(p,t,K) is given by (2.7). When Assumptions 1 and 5 hold then

by Lemma 1 in the appendix, t --) i>(p,t,K) is measurable. When the mapping t	 i)(p,t,K)
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is measurable then H is measurable. If c is the treshold that defines the agent's minimum

acceptable utility level then the set H contains all combinations of attributes and tasteshifters

that are of interest to him. Thus if (2.6) and Assumptions 4 and 6 hold we have that the

expected number of acceptable Poisson points is given by

= fe 'Me gG(dt)
H

= el.tfexp((p, t, K))G(dt)
Y

which is finite. Hence, if N, is the number of Poisson points in H then it is easily

demonstrated that P(Nc>n) ---) 0 when n -4 oo. Therefore, since P(N,=00) P(N c>n) for any

finite n we can conclude that N, is finite with probability one.

Let

V(p, K) =	 sup sup	 (v(x,T(z)) +E(z)).
(T(z),E(z))e H,ze Z,pix 5 f(T(z)),xe K

The interpretation of V(p, K) is as the constrained indirect utility (constrained to K). Since

the number of Poisson points in H is a.s. finite and (T(z), E(z)) does not depend on x we get

(2.10)
	

V(p,K) =	 sup	 (i)(p,T(z),K) +E(z)).
(T(z),E(z))e H,ze Z

The interpretation of itr(p,T(z), K) + E(z) is as the constrained conditional indirect

utility given attribute z.

AssummoN 7: For fixed te Y, x--)v(x, t) is strictly quasi-concave and increasing in

X except possibly for t element of a set of G measure zero.
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Assumptions 1, 5 and 7 imply that there exists a unique ii(p, t, K) such that

v(5t(p, t, K), t) =	 t, K)

provided K is a closed and convex set. If Assumptions 5 and 7 hold then if x is not at the

boundary of K (corner solution) it has the standard regularity properties (cf. Diewert, 1982).

The unconstrained conditional indirect utility, t, also has the standard indirect utility

properties.

3. CHOICE PROBABILMES

We are now ready to study the properties of the probability distribution of x*(p,C) and

'T*(p,C). Recall that C = KxD represents the observable choice constraints. Let A =

(XE K,T(z)€.5nD: (x,T(z)) maximizes utility s.t. the budget constraint (2.3)). Thus A is the

set of solutions to the agent's decision problem.

THEOREM 3: Assume Assumptions 1, 2, 4, 5, 6 and 7 hold and that K is a closed and

convex set. Then A is a.s. a measurable singleton.

The proof of Theorem 3 is given in the appendix.

Thus by Theorem 3 the solution to the utility maximization problem is a.s. unique.

The structure of the problem may be interpreted as a two stage procedure: In stage one

the agent maximizes v(x, t) with respect to x for fixed t subject to the budget constraints. The

solution is ii(p, t, K). In stage two itr(p, T(z), K) + E(z) is maximized subject to (2.2) which

yields the solution T*(p, C).
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THEOREM 4: Assume Assumptions 1 to 6. Let

G (t C) = P(T*(p,C) tiThere is a point of the

Poisson process in Hn(DxR)).

exp(P(p,u,K))G(du)

G*(t,C) = "5"ED 

fexp(P(p,u,K))G(du)
D

If the density, g(.), of G(.) exists then the density, g*( ,), of G*( ,) exists and is given by

g *(t C) 	 exp(P(p,t,K))g(t), 
fexp(9(p,u,K))g(u)du
D

A proof of Theorem 4 is given in the appendix.

Eq. (3.1) expresses the c.d.f. of the chosen attribute. It is interesting to note that (3.1)

allows an interpretation as the mean value (with respect to G) of the feasible attributes with

attribute (vector) less than or equal to t relative to the mean value of the feasible attributes.

THEOREM 5: Assume Assumptions I to 7. Let BcK, B, Keg:, B is compact and K is

convex and closed. Define

413(B,C)

= P(x*(p,C)e BIThere is a point of the Poisson process in Hn(DxR)).

Then

Then

(3.1)

(3.2)
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J' exp(V(p,t,K))G(dt)

41)(B, Cs) = ("1WD 

fexp(V(p,t,K))G(dt)
D

where

2(B, K) 	P(p,t,B)>v(x,t), V xe K -B,p x -1(t)).

PROOF: Observe first that

0(8, K) = {t: 5t(p, t, K)e 13}.

Since t--(p,t,K) is measurable it follows that 0(B,K) is measurable when B, Ke

Since x*(p, C) = ii(p,T*(p, C), K) we obtain from Theorem 4 that

(3.4) (1)(B, C) = f G *(dt, C)
DruB,10

which yields (3.3).	 Q.E.D.

Similarly to (3.1), (3.3) can also be interpreted as the mean value of feasible attributes,

T(z) e D, for which i(p,T(z),K) e B, relative to the mean value of feasible attributes in D.

REMARK: Resnick and Roy (1991), p. 287, prove Theorem 3 and that (3.3) holds

without Assumption 6. However, recall that our motivation for introducing Assumption 6 is,

in addition to mathematical convenience, to demonstrate that the choice probabilities given

by (3.3) are consistent with choice from a finite set of acceptable and feasible attributes.

The next Corollary is immediate.

(3 3)
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COROLLARY 1: Under the assumptions of Theorem 5 the demand function, x*(p, C),

can be expressed as

(3.5)	 x*(p,C) = 2(p,T*(p,C),K),

where for fixed t, (p, K)-41(p, t, K) is a constrained Marshallian demand function and r is

a random variable with c.d.f.	 C).

We shall now see that the general framework developed above contains conventional

Marshallian demand functions as special cases. To realize this consider the utility specification

(3.6)	 v (x, T(z))/a + E (z)

where a>0 is a parameter that determines the significance of the tasteshifter E(z) relative to

the structural part, v(x,T(z)). Consider first the case when a-÷0. Then by means of Theorem

4 it is easily demonstrated that CO converges to a degenerate density, i.e., r(p,C)

converges to a deterministic variable that equals argmax.Diqp,t,K) for given (p,K).

Consequently, by Corollary 1, xa(p,C) reduces to a deterministic demand function. The

intuition is that when a is small then the influence of [E(z)) becomes negligible and the

decision problem therefore reduces to solving the maximization problem

sup v (x, T(z)).

s.t. p	 f(T(z))

Consider next the case when a-400 and D.Y. Then, according to intuition the

tasteshifter E(z) becomes very large relative to the structural term v(x,T(z))/a. Therefore, the

chosen attribute vector will be determined by the maximization of E(z) s.t. T(z) e ZS which

implies that T*(p,KxY) tends weakly towards a random variable with c.d.f. G(t).

We prove this result formally in Corollary 2 below.
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COROLLARY 2: Assume that the utility function has the form (3.6), D=Y and that the

assumptions of Theorem 6 hold. When a—>00 then the demand function, x*(p,KxY), tends to

a Marshallian type demand function conditional on a random variable, t, that has c.d.f. G(•).

PROOF: Replace çv(p,u,K) by (p,u,K)/a in (3.1). Then it follows immediately from

(3.1) and the Lebesgue Dominating Convergence Theorem that

lim G * (t, K x Y) = G(t) .

By Corollary 1 we thus obtain the desired result. 	 Q.E.D.

Corollary 2 demonstrates that the conventional econometric formulation (cf. Varian,

(1984), p.p. 181-187) of Marshallian demand functions in the presence of unobserved

heterogeneity in preferences formally has the same structure as the special case considered

in Corollary 2. However, while t would be interpreted as a tasteshifter in the conventional

formulation it is here interpreted as an exogenously determined choice variable.

In the next corollary we shall consider the case where x*(p, C) is observed and

components of the vector T*(p, C) also are observed. Thus, we suppose now that

T *(p, = (17(1), C), TAP, C))

where the subvector T*1 is observed while T*2 is unobserved. Let Y=Y 1xY2 be the

corresponding decomposition of Y i.e., ri takes values in Y, j = 1, 2. If the mapping

t2 	i(p,t1,t2,K), tie Y i, te Y2

is invertible for fixed t1 , let
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X 	XE K, tie Y i

be the inverse mapping.

For notational simplicity we only state the next corollary for the case when D=Y.

COROLLARY 3: Assume that x-4(p, x, t, K) exists and is continuously differentiable

for x belonging to the interior of K. Then if the density, g, of G exists the density, (p1 (., K),

of (x*(p, KxY), 711*(p, KxY)) exists and is given by

91(x,ti,K) =

(3.7)
	 exp(v(x,t1 ,i2(p,x,t1 ,K)))g(t1 ,12(p,x,t1 ,1C))

fexp(i)(p,t,K))g(t)dt
Y

where x lies in the interior of K and .1(p,x,t1 ,K) is the Jacobian of the mapping

PROOF: Obviously, we have

(pi (x,ti ,K) = g *(t1 ,12(p,x,t1 ,K),Y) I J(p,x,ti,K) I.

The result now follows directly from (3.2).	 Q.E.D.

An important problem is to obtain non-parametrically testable properties for the

demand probabilities. The next theorem proposes such a test.
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THEOREM 6: Let K1, K2e 3: be convex closed sets and let A1, A2e 3: be disjoint

compact convex sets that belong to the interior of K1nK2. Under Assumptions I to 7 the

choice probability measure (3.3) satisfies

(1)(A I ,KixD)	 cb(A1 ,K2><D)
4)(A2 , KixD) 40(A2,K2><D)

for D e g.

PROOF: From Assumption 5 and 7 it is clear that the conditional demand functions,

j=1,2, are determined by the usual first order conditions. This means that when

X(p,t,KJ) lies in the interior of ICJ then it coincides with ii(p, t, R.T) (interior solution). But this

means that since Ai belongs to the interior of Ki then te S/(Ai, ICJ) implies that

11(p, t, KJ) = 5t(p, t,

and

t, KJ) =

Accordingly, by Theorem 5 we realize that

(1)(A 1 ,KjxD)
(1)(A2,1CixD)

is independent of 14 This completes the proof.	 Q.E.D.

A moment's reflection reveals that for IIA to hold at the corners there must be a one-

to-one correspondance between points in R and points in Y. Since this is not the case under

the present assumptions, 1./(A, K) will depend on K when A contains elements of the

boundary of K and thus the IIA property may be violated.
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EXAMPLE 1 (Demand for housing and consumption): In the present example we

assume that the agent faces the choice between different housing opportunities where house

z is characterized by two attributes T(z)=(T 1 (z),T2(z)). Here T2(z) denotes the minimum

energy use for heating, while T 1 (z) denotes the annual user cost. T1 (z) is observable while

T2(z) is unobservable. The agent's utility function is given by a Stone-Geary type utility;

(3.8)
	

U(x, z) = ailog(xi -13) + a2log(x2-T2(z)) + E (z)

where ai>0, j = 1, 2, and B are unknown parameters, E(z) is a tasteshifter, x2 is the

consumption of energy related to heating and cooking and x1 is consumption of other goods.

The budget constraint is given by (conditional on house z)

(3.9)	 pixi + p2x2 y - Ti(z),

where p i , p2 are the prices respectively, and y is the agent's income.

The agent's set of feasible housing opportunities is not observable to the analyst and

therefore we assume that { (T(z), E(z)), z = 1, 2,...) are generated by a Poisson law with

intensity measure

g(ti, t2)dt1dt2 • e 'de.

The interpretation of g(ti , t2)dt1dt2 is as the fraction of houses with attributes Ti(z)e (t1 , ti+dti),

T2(z)e (t2, t2+dt2) that are feasible to the agent. If, for example, statistics on the aggregate

number of houses that have attributes satisfying T 1(z)t1 , T2(z)t2, exists this could be applied

to obtain auxiliary estimates of the opportunity distribution, G(t l , t2).

The utility index (3.8) implies the following demand, X(p, t) conditional on t:

(3.10a) a2	 ait25t2(1),t) = -(y-1)10-t1)
ŒP2	a

and
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(3.10b)
	

it1p1 = y - t1 - p2k2.

where oc1 i-a2=a. Thus the demand is given by (cf. Corollary 1)

(3.11a) a2	 al
xi(P) .=	 Cy -03 -Ti)	

T;

aP2	 a

and

(3.11b)	 x(p)p1 = Y - T: - P24(P).

For simplicity, assume that T1(z) and T2(z), z=1,2,..., are independently distributed, i.e.,

g(ti , t2) = g1(t)g2(t2). From (3.10) and (3.8) it follow that the function t, takes the

form

(3.12) ai
+ a2log_ .

	

(_	 a2V(p, t, Rb = a log(y -t 1 -p 1  -p2t2) + ailog __	 ..,...,. 

	

api	 "P2

The density of (11,1) is then obtained from (3.2) and equals

(3.13)
Or -41 -PiP-P2t2rgi(t)g2(2)g *(ti , t2)	 r r 

jp -ui-plß-P2u2)agl(u)g2(u2)duldu2

In particular, the conditional density of the unobservable T*2 given 11 is equal to

(3.14) g;(t2 i ti)
Cy -t1 -03 -p2t2rg202) =

5(y-t1 -03-P2u2rg2(u2Au2

Thus (3.14) implies a simultaneous equation bias problem that is similar to the

selectivity bias problem (see Heckman, (1979)) because the unobservable T*2 is the outcome

of a choice variable which is correlated with the other choice variable T*1 and (y, p).



Œ1P2

where

(3.16) x2oc P2-0c2(Y —P10 — t1)
i2(1), x2, t1) =

22

From Corollary 3 we obtain that the joint density of (x2*,Tis) is given by

(3.15) 91 (x2, t1) = 	
(y -p2x2 -p 1t1 	t2(p, x2, t1))

ff(y -p2u2 -p iu i -p i fIrg(u i , i2(p i , u2, u i))duiclu2

It;

EXAMPLE 2 (Choice and frequency of restaurant visits): In this example the agent's

choice set of available restaurants depends on his geographical location.

Let T2(z) be an attribute that characterizes restaurant z, such as location and category,

and let exp (T1 (z)) be an indicator of the price level (composite price). Let x1 be the agent's

restaurant consumption and let x2 be the remaining consumption. We assume that the agent

only visits one restaurant. Assume that utility has the form

	(3.17)
	

U(x, z) = u(xi exp(T2(z)), x2) + E (z)

with budget constraint

xiexp(Ti(z)) + x2 5 y,

where x2 is taken as the numeraire. The indirect utility that correponds to (3.17) conditional

on (T(z), E(z)) has the form

	(3.18)
	

(z) E v *(T i(z) T2(z), y) + E (z) ,

where v*(.,.) is a function that is decreasing and convex in it's first argument and increasing

in the second.
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Suppose v* has the form

(3.19) e	 _o	 e -"Y	 n,,nn „ii.nv *(p, y) —	 (1 P	 ,
d-1

where d, O and Ti are parameters (cf. Haneman, 1984, eq. (3.16)). Then expenditure

conditional on restaurant z equals

(3.20)
	

ki(T(z))exp(Ti(z)) = eexpql -d)(T 1 (z)-T2(z))

By (3.2) the density of the chosen attributes, (11,T*2), is given by

(3.21)
exp(b exp((1 -d)(t i -t2)))g(ti , t2)

g *(t1 , t2) = 	
fiexp(b expql -d)(u i -u2)))g(u 1 , u2)du1du2

R2

where b=0/(d4). By applying (3.7) the density of (log(x;exp(T)),11) is readily demonstrated

to be

(3.22) 91(s,ti) =
exp(ce -11Y +s)g(ti , i2(s, t1))

ffexp(ce -nY+w)g(u,i2(w, u))dudw

where s is the logarithm of the level of restaurant expenditure,

(3.23)

and c = b/O.

12(s,t) = t1 	s
	 -loge

d -1

EXAMPLE 3 (Haneman's perfect substitutes model, Haneman, op cit. p.p. 548-552):

Assume that there are m different substitutes of a good. The consumption of substitute j is

xj. The remaining consumption of other goods is denoted w. The utility function is
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(3.24)	 U(x, w, z) = U *(E xjXj(T(z))exp(E(z)), w),
JR'

x >0 ‘74/0, where tr is a conventional utility function,

(t) = 
t(t) for te D

0 otherwise,

for some positive function X,(') and (Di ) is a partition of Y, Die 8*. This means that the

functions t—Aj(t), j=1,2,...,m, have disjoint supports. The budget constraint is given by

w + p y

and the variables ((T(z), E(z)), z = 1, 2,...) are the points of the Poisson process as described

above.

We may interpret the set Di as the set of j-specific quality attributes. The function

Xj(T(z)) modifies the utility of xj according to unobservable quality aspects. The term

exp(E(z)) represents, as above, the influence of heterogeneity in tastes relative to the

"objective" quality attributes.

Following Haneman (1984) the utility structure above implies that, conditional on z,

the consumer will choose a "corner solution" in that for some j, xj>0 and xi=0 for all i*j. The

corresponding indirect utility conditional on z and xj>0 equals

	(3.25)	 v *(piexp( -E(z))Ai(T(z)), y), T(z)e D,

where va is a function that is decreasing and convex in its first argument and increasing in

the second. Therefore the indirect utility conditional on xj>0 is given by

	(3.26)	 v	 w)

where
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(3.27)
	 = sup X(T(z))exp(E(z)).

T(z)e Di

Since Di, j=1,2,...,m, are disjoint it follows that vj, j=1,2,...,m, are independent.

Moreover, by (2.8), logivi is type III extreme value distributed so that we can write

	(3.28)	 = exp(ai + Et) ,

where Ej, j=1,2,...,m, are i.i.d. with distribution function exp(-e-ei) and aj is a parameter.

Similarly the demand function given xj>0 can be expressed as

	

(3.29)	 E 11(p jAVi, W)Vj

where h is the demand function that corresponds to maximizing Ue(xj, y) subject to pjxj-ilSw.

Thus we have obtained the same model as Haneman, op.cit. (cf. Haneman, eqs. (3.5) and

(3.6)).

EXAMPLE 4 (Consumer demand where the products have different qualities): This

example is similar to example 2 and 3. The agent's choice problem is to choose between

different qualities of a differentiated product and how much to consume. There are two

products (goods). The quality of the j-th good is measured by Ti(z), j=1,2, where z indexes

the different variants. The utility function is

	(3.30)
	

U (x,z) = a l log (x1 T1(z) 13 1) ;log (x2 T2(z) f32) + E(z)

where xi denotes the consumption of good j and al, a2, [31 , 132 are positive parameters. We

assume that the consumer only buy one quality variant at a time. A justification for this may

be that the consumer only shops at one market place at a time.

The budget constraint is given by



(3.34a)

and

(3.34b)

177v 1 (r)r1 = ki (t,q)ch = f3 1 r1 +
a
--0-: Cy	 02r2)

a
w2(r)r2 )12 (t,q)q2 = [32r2 +	 (y -131 ri -f32r2),
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(3.31)	 xiQi(z) + x2Q2(z) 5 y

where Q(z) is the price of good j with quality Ti(z).

The set of feasible quality attributes, prices and tasteshifters, {(Ti(z), T2(z), (21(z),

Q2(z), E(z)), z=1,2,...) is generated by a Poisson law with intensity measure

11. g (t, q) dt dq • e -I de	 g	 t2, q2) dti dt2 dch dq2 • e	 ,

where g(t,q) is a probability density. The interpretation of g(t,q) is as the density of variants

in the market with given levels of price and quality.

Let Ri(z) = Qi(z)/Ti(z). Then the consumer's maximization problem is equivalent to

maximizing

	(3.32)	 (w, z) = al log (w 1 - 0 1) + a2 log (w2 -132) + E(z) ,

	

(3.33)	 s.t.	 w 1 R1(z) + w2 R2(z) y.

Conditional on quality, the expenditure functions are given by

where ri = qi/ti and r = (r1 ,r2). The corresponding indirect utility is given by

(3.35)	 (t,q, R:1) = a log (y - [31 r1 -132r2) - a1 logr1 - a2logr2 + k

where k is a constant and a = a1 + a2. Let g*(r,q) be the joint density of the choosen



(y r1 f3i - r2 f32)ari-alr2-a' g(r,q)
g *(r,q) =(3.36)

ff(y - u 13 1 - v [32)a u v g(u,v) du dv
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attributes, (R;,RD, and prices. From Theorem 4 we get

where u = (u1 ,u2), v = (v1 ,v2) and ag(r,q) is the density of the attributes and prices, (Ri(z),

R2(z), Qi(z), Q2(z)), and it is given by

(3.37)
(

.	 C11 142	 r -2 r -2
g (r,q) - g ___., _......, qi , q2 	 it q2 J. 1 JIL 2 .

r1 r2

4. A PURE CHOICE-OF-ATTRIBUTE MODEL WITH RANDOM CHOICE SETS

In this section we consider choice settings that consist of only qualitative alternatives with

attributes T(z)e 3nD, De 8*. Thus the set of feasible attributes is associated with realizations

of a Poisson process that have points with utility

(4.1)	 U(z) u(T(z)) + E(z),

where {T(z), E(z)) are the points of the Poisson process on YxR with intensity measure

11G(dt) • e

The choice probability measure is now defined by
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(4.2)

v(B,D)

= (	 sup	 (u(T(z))+E(z))>	 sup	 (u(T(z))+E(z))
T(z)e B,(T(z),E(z))e H,ze Z	 T(z)e D,(T(z),E(zpe H,ze Z

There is a point of the Poisson process in Hn(DxR))

where BcD, B, De 8* and H = ((t, e): u(t) -I- e > c, te Y, ce R).

THEOREM 7: Assume that the utility function has the structure (4.1) and that

Assumption 6 holds. Assume also that

fexp(u(t))G(dt) <
Y

Then the choice probability measure is given by

(43)

where BcD, D, Belt .

fexp(u(t))G(dt)

v(B,D) B 

fexp(u(t))G(dt)
D

PROOF: Since the points of the Poisson process are independently distributed it follows

that

sup	 U(z) and	 sup	 U(x)
T(z)e B,(T(z),E(z))e H,ze Z 	 T(z)e D-B,(T(z),E(z))e H,ze Z

are independently distributed. Similarly to the proof of Theorem 4 it follows that for any

Ae 8*
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(4.4) exp ( -e fexp (u(t)) gG(dt)) for u c,
P(	 sup	 U(z)	 = I	 A

1T(z)e A,(T(z),E(z))e H,ze Z
for u<c .

From (4.4), (4.3) now follows by straight forward calculus. 	 Q.E.D.

The next corollary follows immediately.

COROLLARY 4: The choice probability measure (4.3) satisfies IIA, i.e.,

v(131 ,1)1)	 v(131 ,D2)

v(B2,1)1) v(B2,D2)

for I31 , B2 e DinD2, 1)1, 131 e g,	 1, 2.

The model v(B, D) may be called the continuous Luce model because it is consistent

with IIA for continuous choice sets (see McFadden, (1976)). It allows, however, a more

general interpretation of the choice environment than the Luce model in that it explicitly

accounts for latent opportunity sets that vary across agents. Alternatively, as discussed in

Section 2, the choice set, 3(1), may be interpreted as random to the agent himself.

Ben-Akiva et al. (1985) have also developed a continuous Luce (logit) model with

latent opportunities of the same form as v(13, D). Their model is obtained by starting from

a discrete choice set model and letting the set of feasible attributes converge to a continuous

set. Our results demonstrate that the limiting continuous model is in fact consistent with a

particular representation of the preferences.

EXAMPLE 5 (A disequilibrium model for labor supply): A simplified version of this

model assumes that the agent chooses from a latent set of feasible hours-wage packages,
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T(z)=(H(z),W(z)), where H(z) and W(z) are the hours and wage of job z. It is also assumed

that given a job then hours of work associated with the job is given. For simplicity we only

consider the choice of job given that the agent wishes to work and jobs are available. The

utility function has the structure

(4.5)	 U(h, C, z) = v *(h, C) + E(z) ,

where h denotes hours and C is disposable income. The variable E(z) is a tasteshifter that

accounts for non-pecuniary aspects of job z and v* is a function that is concave, increasing

in C and decreasing in h. For a given job, z, (say) the budget constraints are

h = H(z)

(4.6)	 C = C(z) = W(z)H(z) + I - y(W(z)H(z),I)

where y(.) is the tax function and I is non-labor income.

The set of hours-wage packages that are feasible to the agent is not observed and thus

{(H(z), W(z), E(z)), z 1, 2,... ) are assumed to be the points of a Poisson process with

intensity measure

11. g(h,w)dhdw • ede,

where g(h,w) corresponds to the density of G(t) in Theorem 7.

The interpretation of g(h,w)dhdw is as the fraction of jobs with H(z)e (h, h -i-dh),

W(z)e (w,w+dw) that are feasible to the agent. Let

(4.7)	 v(h,w) = v *(h, hw +I - y(hw, I)).

When the budget constraints are inserted in (4.5) we get
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(4.8)	 U(H(z),W(z), z) = v(H(z),W(z)) + E(z).

Let (11*,W) be the hours and wage of the chosen job. From (4.3) we get the density,

V(h,w), of (1.1*,W*):

(4.9)
	 vh,w)	 exp(v(h,w))g(h,w)

ffexp(v(x,y))g(x,y)dxdy

Dagsvik and StrOm (1992) have applied this approach in empirical analyses of labor

supply with taxes in Norway.

5. DISCRETE CHOICE

The type of generalized extreme value models (GEV) that have been applied in empirical

work in discrete choice problems are mostly the logit and the nested logit model. McFadden

(1981) demonstrates how GEV choice probabilities can be expressed by means of the social

surplus function. Apart from the logit and nested logit case it is not obvious how to specify

empirically tractable and theoretically justified specifications of the social surplus function.

As is wellknown, the nested logit model is, as pointed out by several authors, not always ideal

(see McFadden, 1981). The nested logit model pressumes that the choice set can be organized

according to a tree-structure which is not always a natural a priori assumption.

The formulation by means of the max-spectral representation offers an appealing

alternative approach for the specification of flexible parametric forms of choice probabilities

within the GEV class. Furthermore, in many applications the spectral representation may be

a plausible formulation for theoretical reasons, cf. the discussion in Section 2. Let us briefly

consider this alternative below. Let

(5.1)	 U(j,z) = v(j,T(z)) + E(z)
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where j = 1, 2,...,m, is an indexation of the discrete alternatives and z indexes a countable set

of unobservable alternatives characterized by attribute T(z). Thus the setup is completely

analogous to the one in Section 2 with x replaced by a discrete index, j. The budget constraint

is replaced by

(5.2)	 j e K

where K is a subset of (1,2,...,m ) . For simplicity we only consider the case where the chosen

attribute, T., is unobservable. As above { (T(z), E(z)), z = 1, 2,...) are the points of the

Poisson process on YxR with intensity measure

AG(dt)e

Let

U = supU(j, z).
zeZ

Then (U1 , U2,...,Um) is multivariate extreme value distributed (type III) and accordingly

the choice model belongs to McFadden's GEV class (cf. McFadden, (1981)).

Of course, it is not necessary to require that the coordinates (T(z)) of the Poisson

points can be interpreted as attributes of latent choice alternatives to apply the spectral

representation framework. However, if such an interpretation applies then it provides a natural

justification for the max-stable framework.

In many empirical analyses of discrete choice there are observable attributes associated

with the discrete alternatives and observable variables that characterize the agent. Thus a

typical characterization of the spectral function, v(j,t), may be

(5.3)	 v(j, t) = h(Qi , s, 0, t) ,

where Q is a vector of observed variables that characterizes alternative j, O is an unknown

parameter vector and h() is a suitably chosen function.
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As before define

(5.4)
	

(t, K) = max v(j, t).
jeK

Let J(K) denote the selected discrete alternative from K determined by utility

miudmazation and let 9(j, K) be the corresponding choice probability, i.e.,

(5.5)	 sup(v(J(K),T(z)) +E(z)) sa" sup(V(K,T(z)) +E(z))
zeZ	 ze Z

and

(5.6)
	

cp(j,K) P(J(K)=j) = P(supU(j,z) = max supU(i,z)).
zeZ	 ieK zeZ

Then, similarly to (3.3)  

(5.7)	 (p(j,K
j,K)exp(v(j, t))G(dt)

, jeK,
t»G(dt)Lix)eXp(v

where K c {1, 2,...,m) and

il(i,K) = (t:v(i,t) > v(lc,t),Vke K- (i ), ie K).

The proof of (5.7) is completely analogous to the proof of (3.3).

As in the continuous case we realize that the choice probability (5.7) will not in

general satisfy 11A. A sufficient condition for IIA to hold is that the spectral functions have

disjoint supports because then the utilities become independent, cf. de Haan

(1984). However, this condition is not necessary. Strauss (1979) has demonstrated that it is

possible to specify GEV models with interdependent utility functions that satisfy HA.
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EXAMPLE 6 (Discrete choice): Let Y=R and

v(j, t) = cxQ 1 + atQ2i ,	 ,

where (Qu , Q2j) are observable attributes of alternative j and a and a are parameters. Then

0(j,K) =	 + atQ2j > max (aQii + atQ2i), je K1.
ieK-(j)

If g is the standard normal density it follows from (5.7) that the choice probability

density is given by

(5.8)
9(j, K

1 2)dtexp(aQ4 + aQ2,t - —tL,K)	 j 2 

E r exp (aQii + 0Q2it —1
t2)dt

ieK	
2 •Ja(i,K)

6. CONCLUSIONS

The main focus in the present paper has been to develop a theoretical foundation for

consumer demand when the choice variables are partly qualitative and belong to a latent

choice set. Specifically, the point of departure is a choice setting where the agent is assumed

to have preferences over choice alternatives where each alternative is identified by a

consumption bundle and a vector of (qualitative) variables called attributes. The main axiom

that is postulated states that, conditional on alternatives with a given level of the consumption

bundle, the preferences over attributes are distributed so as to yield corresponding

(conditional) choice probabilities that satisfy a continuous version of IIA. It follows that under

suitable regularity conditions this axiom implies that the agent's utility function of the

consumption bundle belongs to the class of max-stable stochastic processes. The

corresponding distribution function for the demand is derived and a non-parametrically

testable property is obtained. Furthermore, a continuous version of the Luce model is obtained
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as a special case.

Several examples are discussed in order to clarify the interpretation and the potential

of the framework for applications within different fields.

Finally, we discuss discrete choice models with reference to de Haan's (1984) spectral

representation result for max-stable processes.
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Appendix

PROOF OF THEOREM 1: Let A e 3 and M(de) = kede. From Assumptions 1 and 2

we get

(A.1) P (U(x, A) u)

= P (There are no points of the Poisson process in the set {(t,e):(t,e)e A x R,v(x,t) + e >u»

= exp (-re -au exp (av(x,t)) G (dt)),
te A

where r=kg/a. But (A.1) demonstrates that U(x,A) is type III extreme value distributed.

Moreover, since the Poisson points are independently distributed U(x,D) and U(x,D-A) are

independent for AcD, A,De 8*. Thus

exp (av(x,t)) G (dt)
1€ APx (A;D) = P(U(x,A) > U(x,D-A)) = 

exp (av(x,t)) G (dt)
LE D

which we realize is a continuous version of the Luce model. From (A.2) it follows

immediately that Assumption 3 holds. 	 Q.E.D.

PROOF OF THEOREM 2: Let DE 8* and choose a finite partition {Di ) of Y such that

either DinD=0 or DinD=Di, i.e., the Di 's are either within D or outside D. By Assumption

3

Px(Di; Y) Px(Dj; D
E Px(Di; Y)

(A.2)
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By Assumption 2 and from Yellott (1977), p.p. 134-135, it follows that

(A.3) d
U(x, Di) = log P.(Di; Y) +

dwhere = means equality in distribution and î = 1(x, Di), j=1,2,..., are independent random

variables with distribution

P(1S1) exp(-e -a") ,

where a>0 is a constant. Without loss of generality we may choose a=1.

Now since 13„(•;Y) is absolutely continuous with respect to j.tGr we have that

Px(Dj ; Y) = Lv *(x, t)i,G(dt)

for some t-measurable function v* : (x, t)—mr*(x, t)>0. Thus (A.3) implies that for Ae 8*

(A.4) P(U(x, A) u) = exp( -e -ufAv *(x, t)gG(dt)).

But from Assumptions 1 and 2 we get

P(U(x,A)u) = P(There are no points of the process in the set

(A.5) = exp(-11 f M(u-v(x,t))G(dt)),

{(t, e):(t, e)e AxR, v(x, t) + e>

te A

where

-
g1(y) = 5M(de).

Y
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Thus (A.4) and (A.5) imply that

(A.6) e u f R(u-v(x,t))G(dt) = 5v *(x,t)G(dt)
te A	 te A

for all AG 
3*

Let x be fixed and choose

A = it e Y:d1 v(x,t$d2),

where di d2 are constants. Evidently A e 8* • Since 1■4- (y) is continuous and decreasing,

(A.6) implies that

(A.7) e u .1■71(u 	 L	 d2) e u/T4(u -d2) ,

where

v *(x,t)G (dt)

	

L (di , d2) = tE A
 

0(A)

Note that L(cl1 ,d2) does not depend on u. Now let di --) d2. Then by (A.7) and the

continuity property

lim e u .1■71(u -d1) e u "1■11(u -d2) L (d2, d2) e u -11-4(u -d2) .
dr4c12

Hence, since L(d2,d2) is independent of u we get

iI(y) = L (d2, d2) e	 = k e -Y

for some constant k. This completes the proof.	 Q.E.D.
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LEMMA 1: Assume Assumptions I and 5 . Then for fixed peii: and Ke 81:, the mapping

t --+ (p , t,K)	 sup v(x,t) ,
pix4f(t),2:6K

for te Y, is measurable.

PROOF: Since R.: is separable there exists a countable space S that is dense in Kciri..

As a consequence the mapping

t —+ sup v(x,t)
p ixSf(t),xe S

is measurable. Moreover, Assumption 5 implies that for each te Y

sup v(x,t) t)(p,t,K)
IA SR», xe S

which proves measurability.	 Q.E.D.

LEMMA 2: Assume Assumptions 1, 5 and 7. Let peA': and Keg be given where K is

closed and convex. Then the mapping t—,,f(p,t,K) defined by

v (1(p , t, K), t)	 (p,t,K) E sup v(x,t)
Pix41(t),xek

is measurable.
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PROOF: By Lemma 7.3 in Barten and Böhm (1982), p. 397, it follows that the demand

function that corresponds to the maximization problem

sup v(x,t),
pixsf(t),xeK

for given t, exists. Since the mappings t-->v(x,t) and t--)i'l(p,t,K) are measurable (Lemma 1)

it follows that t-->i(p,t,K) is measurable since

	it(p,t,K) = {xe K:v(x,t)=V(p,t,K)).
	 Q.E.D.

PROOF OF THEOREM 3: By Lemma 2 the mapping t—h(p, t, K) is well defined and

measurable. Since the mapping y-47M(de) is continuous it follows that for zoz'

P(V(p,T(z),K) + E(z) = if4 (p,T(z i),K) + E(z i)) = 0.

Moreover, H a.s. contains a finite number of Poisson points and consequently there is a.s. a

unique attribute, T*(p, C), that maximizes itr(p,T(z), K) + E(z), s.t. T(z)ED and (T(z),

E(z))e H. Then obviously the demand for the continuous commodity, x*(p, C), is given by

x*(p, C) X(p,T*(p,C), K) which means that x*(p, C) is unique. Q.E.D.
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PROOF OF THEOREM 4: By Lemma 1, t-0(p, t, K) is measurable. Let A =

Te DcY). By definition:

G *(t, C)

sup	 (i)(p,T(z),K)+E(z))>	 sup	 Mp,T(z),K)
T(z) e A, (T(z),E(zpe H,ze Z	 T(z)e D -A, (T(z),E(zpe H,ze Z

+ E(z)) 'There is a Poisson point in Hn(D xR)).

Since (T: Tt) and (T: T>t) are disjoint sets it follows that

sup	 Mp,T(z),K) +E(z))
T(z) e A, (T(z),E(zpe H,ze Z

and

sup	 Mp,T(z),K) +E(z))
T(z) e D-A, (T(z), E(z))e H,ze Z

are independent. Similarly to the proof of Theorem 2 it follows that for any A e 8*

P(	 sup	 ((p,T(z),K) +E(z))y)
VT(z)e A, (T(z), E(z))e H,ze Z

expf -e -Ylifexp(c(p,t,K))G(dt)) for	 ,
A

	0 	 for y<c.

From (A.8) we get

P(	 sup	 Mp,T(z),K) +E(z))>	 sup	 Mp,T(z),K)
	T(z) e A,(T(z),E(z))e H,ze Z	 T(z) e D -A,(T(z), E(z))e H,ze Z

(A.9)	 expMp, u, KDG(du)

+ E(z))) "t'uE D 	 • (1 -exp( -k))
fexp (0(p, u, K))G(du)
D

(A.8)

where
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Pii, = pc -cfexp(i)(p, u, K))G(du).
D

Since A, is the expected number of Poisson points in H n (DxR) the probability that

H r) (DxR) is non-empty equals

(A.10)	 1 - exp(-A ) .

Hence, the conclusion of the Theorem follows.	 Q.E.D.
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Footnotes 

1) I thank A. Skoglund for an excellent job typing the manuscript and J. Rust, A.R.
Swensen, S. Bartlett, L. Andreassen, R. Aaberge and T. Kornstad for valuable
comments which has improved the exposition of the paper. I am particularly greatful
to two anonymous referees for their comments and correction of errors that appeared
in earlier versions of the paper.

2) A stochastic process, {U(x), xe X), is called a max-stable process (type III) if the
following property holds:
If {Ui(x), xe X), i=1,2,...,s, are independent copies of the process,

imaxU i(x), x e
is	

X} has the same distribution as (logs + U i(x), xe X).
s

The finite-dimensional distributions of a max-stable process is of the multivariate
extreme value type.
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