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s 	 ABSTRACT
The paper deals with the empirical measurement of capital stocke from

data on gross investment. Two capital concepts are involved: gross capi-
tal - representing the capital's capacity dimension - and net ca2ital - re-
presenting its wealth dimension. Their interpretation is bra...lf_y dis-
cussed.

The data base consists of long series of Norwegian national accounts
data for gross investment at a fairly disaggregate level of sector classi-
fication and for 1-3 capital categories within each sector. Survival func-
tions - representing the process of retirement and decline in effic—Incy ();
capital units over time - with different curvature (concave, convlx) ane
non-zero interest rates for the discounting of future capital servic(! flm
are considered. The effects of these parameters on the calculated gro
and net capital stocks in the years 1956-1982 as well as on the irapiLd
replacement and depreciation rates, measures of capital productivlty, and
rates of return are discussed.
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1. INTRODUCTION

The question of how to measure real capital stocks and flows of

capital services are frequently discussed in economic literature (Johansen

and SOrsveen (1967), Hall (1968), Hicks (1969), and Jorgenson (1974)). The

reason is obvi6usly that estimates of these variables are required in

important fields of economic research, such as studies of productivity and

producer behaviour, analyses of profitability, and national accounting.

Closely related to the estimation of capital stocks are the problems of

measuring capital services, capital value, capital prices, and depreci-

ation. As recognized by several authors, real fixed capital has at least

two ° dimensions. First, it may be interpreted as a capacity measure., i.e.

a representation of the potential volume of capital services which can be

'produced* by the existing capital stock at a given point of time. Second,

it is a wealth ongeot; capital has a value because of its ability to pro-

duce capital services today and in the future. In BiOrn (1983A) a theo-

retical framework is introduced which distinguishes formally between the

two capital concepts: Gross caPj.tal measures the instantaneous productive

capacity of the capital objects, whereas net capital indicates the accumu-

lated prospective capacity of the capital stock. Gross capital can be con-

structed straightforwardly by aggregating data for gross investments, with

the corresponding values of the assumed survival function - representing

the remaining capacity of each capital vintage - used as weights. Figures

for net capital can be calculated from investment data in a similar way,

by applying a different, but related, weighting scheme. The weight attached

to a capital unit of a specific age measures the total, discounted flow of

services over the remaining life time of this capital unit relative to the

corresponding total flow of services provided by a new capital object.

Directly related to the twa capital concepts are the derived vari-

ables retirement - which is related to gross capital and measures physical

wear and tear - and depreciation - which is related to net capital and

measure the rate of decline of the capital value.

In this paper, we present series of gross And net capital stocks

and derived variables calculated by applying the above mentioned

theoretical framework on investment data from the Norwegian national

accounts. These accounts contain rather long series of investment (back to

the nineteenth century for some categories) at a fairly detailed level of

sector classification, distinguishing also between different categories of

capital. In our calculations, we have aggregated the investment data some-

what to obtain consistency with the level of aggregation in the Norwegian



macroeconomic modéls MSG and MODAG, which specify 32 production sectors and

3 (main) capital categories. Here, however, we will only be concerned with

selected capital items in order to demonstrate some main empirical features

and draw some preliminary conclusions. Specifically, we will focus on how

the estimated gross and net capital stocks and related variables, like

rates of retireient and depreciation, vary with the assumption made about

physical wear and tear of the capital units. • For this purpose, we distin-

guish between four different non-exponential survival profiles.

Furthermore, we use the estimated capital data to calculate some

important derived economic measures, such as productivity and rates of re-

turn to capital (profitability). Again, a sain purpose is to investigate

the sensitivity of these measures with respect to the form of the survival

function - a problem that, to our knowledge, has not received much

attention in_the literature.

The discussion in this paper focuses on the distinction between

gross and net capital and related variables. Other difficult problems in

the field of capital measurement, such as problems of aggregation of

different capital categories in different sectors, are not addressed. We

will only be concerned with aggregation across vintages.

One basic point concerning the interpretation of our results in

this paper should be mentioned: Although the distinction between different

capital vintages is of major importance in our theoretical model, this does

by no means imply that the presented formal framework fits into any type of

'vintage production model", e.g. the putty-clay model suggested by Johansen

(1959). A vintage production model is characterized by the fact that there

is (i) a specific technology attached to each vintage of capital goods and

(ii) . limited substitutability between capital goods belonging to different

vintages. The concepts and assumptions in this paper are, on the contrary,

implicitly related to or derived from a neoclassical production framework,

in which (i) only the total, accumulated capital stock is specified as

argument in a production function for the sector as a whole, reflecting the

underlying assumption of perfect substitutability between capital vintages,

and (ii) perfect markets exist for both new and old capital objects.

The paper now proceeds as follows: In the next section, the theo-
retical framework and the basic concepts are established. The four chosen
profiles describing capital outwear are presented in section 3, while sec-
tion 4 gives an overview of the investment data used in the empirical part
of the paper. The empirical results are reported in section 5, and final-

ly, section 6 contains concluding remarks and some suggestions for further
research.



(1) 	0 < B(s) <
dB(s) 

4 0 for all sds

THEORETICAL BACKGROUND

The concept of gross capital can be defined straightforwardly from

a sequence of gross investment figures and assumptions of how the

productive capacities of the capital objects decline over time. In the

following, J(t) denotes the quantity of capital invested at time t,

measured in physical units or as a quantity index so that different

vintages may be compared (cf. the remarks made above). In order to simplify

the presentation, time is throughout this paper treated as continuous.

However, the formulas actually implemented to calculate capital figures

are, of course, converted to the annual periodicity of the investment data.

(Confer section 5.) The physical wear and tear of the capital units is

described in a rather traditional way (see e.g. Johansen and SOrsveen

(1967) and Jorgenson (1974)) by introducing the technical survival function

B(s), expressing the proportion of an investment made s periods ago which

still exists as productive capital. The function B(s) is assumed to

represent both the loss of efficiency of existing capital units and the

physical retirement of old capital goods. The following restrictions are

imposed on this function:

B(0) =
	

lim B(s)•

S-Oes

The volume of capital which is s years of age at time t, K(t,s) , is

now defined by the following relation: ,

(2) K(t, ․ ) 	 = 	 B(s)J(t-s), 	 s

The gross capital stock at time t is obtained simply by aggregating over

capital vintages, i.

(3) f K(t, ․ )ds 	 f B(s)J(t-s)ds.
0

In accordance with the definition of B(s), gross capital is a

technical concept; K(t) represents the current productive capacity of the



total capital .stock at time t. Thus, gross capital - or the services

.produced by this stock - is the relevant concept to be represented e.g. as

argument in a neoclassical production function. Its age distribution, as

represented by K(t, ․ ), is irrelevant to the description of the technology.

Related to the gross capital stock is the volume of retirement (or

replacement) at time t, D ( t), which by definition is the difference between

gross investment and the rate of increase of the (gross) capital stock. An

expression for D(t) can be found by differentiating (3) with respect to t,

which gives

(4) D(t) J(t) - K(t) = f b(s)J(t-s)ds,

•

where the 'dot' denotes the derivative with respect to time and

dB(s)
- ds

The function b(s) indicates the structure of the scrapping process, and

will be called the retirement (replacement) function in the sequel.

Formulas for gross capital and retirement similar to (3) and (4)

can be found in e.g. Jorgenson (1974) and Hulten and Wykoff (1980). Un-

fortunately, the terminology does not seem to be quite consistent in the

literature. Some authors (e.g. Steele (1980) and Johansen and SOrsveen

(1967)) define gross capital as the cumulated volume of past gross

investment flows, i.e. without adjusting the remaining stock for physical

outwear or efficiency loss. This definition is of course equivalent to (3)

if the survival profile is of the simultaneous retirement (none-horse-

shay') type, i.e. if the productive capacity of the capital units actually

remain constant (and full) over their lifetime (see below). The definition

of gross capital given in (3) is, however, a more general and for empirical

purposes more interesting one, since it may also encompass other structures

of capital retirement.

While gross capital expresses the current productive capacity of

the capital stock, net capital is related to the vAlue dimension of the

capital. The value concep€s to be introduced are implicitly based on the

assumption that there exist well organized markets for capital goods, where

both new and old capital goods may , be bought and sold. The market value of
the capital objects will, in general, reflect the cost of producing new

capital goods on the one hand, and the producers' expectations about

future productivity on the other. For old capital units, it is the service

b(s) 	 =

flow that they are expected to produce during their remaining life time
that matters; thus, it is reasonable to assume that capital prices are



decreasing functions of the age of the capital objects.

The price of a capital unit which is s periods old at time t is in

the following . denoted by q(t, ․ ). For new capital installed at time t the

simplifying notation cl(t) = cl(t,0) is applied. The value of capital of

age s, V(t, ․ ), may then be written as

(5) V(t, ․ ) 	 = 	 q(t, ․ )K(t,s),

and cumulation over all vintages gives the total value of the capital stock

at time t, i.e.

(6) V(t) 	 = 	J V(t, ․ )ds = î q(t, ․ )K(t, ․ )ds = f q(t, ․ )B(s)J(t-s)ds.
o

Equation (6) defines the current value of the capital stock. This 'express-

ion reveals a basic difference between the value dimension and the capacity

dimension, represented by the gross capital concept: while the latter

measures the instantaneous service flow at time t, the market value depends

moreover on the decline in filtug productivity of the capital stock. For

this reason, the prices, Ct, ․ ), will in general decrease with s for every

given t. However, we want to decompose the current market value into a

price and a quantity component in order to obtain a measure for the capital

value that is not influenced by changes in the general price level. For

practical purposes it is then necessary to introduce specific assumptions

of how capital prices vary with age, s, i.e. to eliminate the s index in

the price variable, q(t, ․ ). In this paper, following BiOrn (1983a), the
specific assumption made is that the relative prices of capital units of

- different ages perfectly reflect the differences in their prospective

service flows. • More precisely, the price per unit of the discounted future

flow of capital services is assumed to be the same for all capital vintages

at each given point of time. The discounted future service flow per

capital unit which is s yeP. old, is given by

sa -02-s)
f e 	 B(z)dz 

B(s

where g is the rate of discount.
•••■

Formally, our assumptions regarding relative capital prices can



then be expressed as follows:

(8)
q(t, ․ ) 	 q(t) 

(s) 	f (0)
Q

for all t and all s ) O.

This equation implies a sort of 'law of indifference* to hold between

different capital vintages: since the prices per unit of (discounted)

prospective capital services are the same, a firm will be indifferent bet-
1)

ween investing in new and old equipment.

The common price of per unit of (discounted) capital services is

(9) c(t) q(t) 	 q(t)
s (0)
Q 	 —QS

e 	 Eits)ds

This is a general expression for the user cost of capital in a neoclassical

model of producer behaviour, in the absence of taxes. Traditionally, the

user cost of capital is interpreted as a -shadow price, obtained from the

first-order conditions for maximization of the present value of future cash

flow (see e.g. Jorgenson (1963) or BiOrn (1983b)). The interpretation given

here has a more intuitive basis, since it is derived directly from (8).

Combining (6) and (8), the value of the capital stock may be

written as

(s)B(s
(10) V(t) 	 = 	 g(t) f 	  J(t-s)ds.

+g"))

If we furthermore choose the current investment price, q(t), as the price
component of the market value, the quantity component becomes 2)

(11) 	 KN(t) 	 =
V(t)

q(t)

a.

f G (s)J(t-s)ds,
0 Q

(s) B(s)
where 	 (s) 	 =

(0)

This is the variable which we shall refer to as the pet capital 
stock in the following. It is seen that K

N
(t), like K(t), is constructed -

by aggregating previous investment flows, but the weighting system is
different; the weight assigned to investment made s years ago in KO),
G (s), is the share of the total discounted service flow produced by a ca-



pital unit after it is s Years old, whereas the calculation of K(t) is

based on the technical survival profile, B(s). It is easily seen that

G (s) has the same mathematical properties as B(s), cf. (1).
Q

The conceptual difference between gross and net capital can be

explained in a slightly different way: Let the elements of the net capital

at time t which belongs to vintage t-s be denoted as K (t, ․ ), i.e.

(12) 	 K(t, ․ ) 	 = 	 G
Q
 s J(t-s) K(t, ․ ).

While the gross capital stock is defined by simply adding (integrating over

s) all K(t, ․ ), the net capital stock is calculated in a similar way after

having first multiplied these vintages by the ratio 	 (s)/10 (0), 	 which
Q 	 -

expresses the remaining (discounted) flow of services per unit from 'old"

(age s) capital vintages relative to the correiponding service flow pro-

duced by new capital. When compared with the gros capital, the net capital

is thus adjusted for the fact that old capital objects generally are less

productive in terms of future cumulated services than new ones, even if

they are equivalent in terms of instantaneous service flows.

From these interpretations it may be concluded that estimates of

net capital will normally be lower than corresponding figures for gross
3)

capital (strictly, the inequality K
N
 (t) < K(t) always holds).

Net capital, in contrast to gross capital, is dependent on the rate

of discount, g. This is due to the fact that it reflects prospective

capital service flows. The net capital stock will, in general, increase

with increasing discounting rate. This may be explained intuitively as

follows: The calculation of net capital stock is a way of 'correcting the

gross capital stock for the presence of 'old" capital units when focusing

on its value dimension. When the rate of discount increases, the total

service flows from both "new' and *old' capital units decrease, but the

reduction in 'cumulated future productivity" is relatively strongest for

the former units, i.e. for those which have the longest remaining life

time. Returning to (12), we see that this result is reflected by the

fact that 	 (s) approaches 	 (0) as Q increases, regardless of the form of
Q

the survival function B(s). With a very high rate of discount it does not

matter much whether the capital stock consists of new or old capital units,

since a very small weight is given to the service flows in future periods

by the discounting procedure. For (2.4. we find K(t) K(t).

The final concept to be defined in this section is depreciation.

This variable has the same formal relationship to the net capital stock as

retirement has to the gross capital stock. This means that depreciation in



volume terms is the difference between the gross investment quantity and

the increase in the net capital stock. Proceeding in a similar way as

when deriving retirement (e4. (4) above) depreciation at time t, DN
(t), can

be expressed as follows:

Ile

(13) 	 D
N
(t)

where

J(t) - KN (t) 	 f g (s)J(t-s)ds
Q

d G (s)
g (s),
P 	 ds

The g(s) function indicates the structure of depreciation, in the same way

as the b(s) function represents the retirement process.

Finally, we will call attention to an interesting relationship

between the variables introduced above. It can be shown (cf. BiOrn (1983a,

section 6)) that depreciation, net capital and gross capital satisfy the

following equation identically in g and gross investment:

.K(t) 
(14) 14

(t) + KN (t) 	 =
Q
(0)

Combining (9) and (14), we obtain

(15) q(t)DN(t) 	 gq(t)KN (t) 	 = 	 c(t)K(t).

Recalling the interpretation of c(t) as the user cost (per unit) of

capital, this relation expresses that the current 'user value' of the

capital stock equals the sum of the value of depreciation and a term which

represents interests imposed on the capital value..If we had replaced DN (t) •
and KN (t) in (15) by D(t) and K(t), respectively, the resulting relation

would have been identical to the expression for the user value of capital

found in many textbooks describing static producer behaviour. 	 However,

decomposing the user value additively in this way - on the basis of the

gross capital concept - implicitly presupposes an exponential retirement

•structure of the capital stock (see e.g. BiOrn (1983b, section 7) or HolmOY

and Olsen (1985)). If another type of survival function is in effect, it
is no longer possible to separate the user value additively into an

interest term attached to gross capital and a term which is the product of

the volume of retirement , and the current investment price. Equations (14)

and (15) show that such an additive formula exists as an identity only

between the "value related concepts depreciation and net capital.



The relationships (14) and (15) may be used to support the common

practice applied in many countries when calculating net operating surplus

as a residual, i,e. as what is left from gross factor income when wages and

the value of 'depreciation ° is deducted. When this is done, as e.g. in

national accounting in Norway, the procedure may be said to be consistent

with the framework and concepts presented above, since it is reasonable to

assume that national accounting calculations are intended to represent the

value dimension rather than the capacity dimension of the capital stock '1
)

Equation (14) may also - because of its simple form - be used to

facilitate the computation of gross and net capital figures from investment

data, or to check the consistency of the resulting series. In our

calculations, this relation turned out to be useful both for the latter

type of application and in searching for the 'best° discrete time

approximation to the framework established in continuous time above (see

section 5).

3. • SOME PARAMETRIC SURVIVAL FUNCTIONS

In this section, we present two classes of parametric survival

functions which we consider useful for empirical applications. Each class

is characterized by two parameters; the first representing the maximal life

time of the capital, the second indicating the *curvature' of the survival

profile. When performing the calculations for this paper the latter

parameter was varied in such a.way as to produce four different survival

functions within these broad classes of parametrizations.

Cia .ss -- • Convex

Consider the following parametric form for B(s).

(16) 	 B(s) 	 BI s;N,n) 	 =
(1-g.) n 	for 0 < s 4 N,

for s > N,

where N is the maximal life time of the capital objects and n is a positive
integer constant. The notation B I (s;N,n) is introduced in order to indi-

cate the two-parametric nature of this class of survival functions. •  The

corresponding retirement function is
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(17) 	 b(s) 	 b/

n 	 s n-1

o

(1 74 for 0 4 s 	 N.,

for s > N.

General 	 expressions 	 and a recursive procedure of deriving

numerically the weighting functions for net capital and depreciation from

this class of technical survival functions are presented in BiOrn (1983a,

section 7), and they will not be repeated here. An interesting result for

the case when the interest rate, Q, is zero may, however, be mentioned:

s n+1
(1--) 	 =

r
(s;N,n+1),N

s ng0(s) 	 = 	 n+1 (1-W

When no discounting of future capital services is performed, there is thus

in this case a very simple relationship between the weighting function of

the gross capital and that of the net capital: we only have to replace n by

n+1 to go from the former to the latter.

By varying the parameter n, the class of survival functions (16)

generates several specifications discussed in the literature -as special

cases. Three of these will be considered in this paper. We first consider

the case when ;1=0. This is the §imultaneous _retirement case
5)
 in which

the capital objects are assumed to retain their full productive capacity

during N periods and are then completely scrapped. The survival function

(16) then equals unity for all vintages up to the scrapping age. The

retirement function, Ns), is not formally defined in this case. In the

special case of zero interest rate it is easily seen from (18) and (19)

that the weighting functions for net capital and depreciation then are

given by

(20)

(21) N •

When A = '1,, the survival function is a lineariv 4ecrpasIna func-
function of s, i.e.

bi(s-N n+1) •

(22) B(s)

(23) b(s) 	 =

o 	 s 4 N.



Comparing (22), 	 (23) with (20), 	 (21) exemplifies the general property

specified in equations (18) and (19): when the technical survival function.

is of the simultaneous retirement type, the net capital stock in the

zero-interest case is depreciated linearly; the net capital figures

estimated with this structure will thus be identical to figures for gross

capital calculated when the technical survival function is assumed to be

linear. This is the second survival function we shall consider in this

paper.

The reason why we denote this class of survival functions as 'con-

vex" is the fact that for n ) 2 eq. (16) defines a set of strictly convex

functions. Formally this follows from

Ws) 	n(n-1)( s n-2(24) 	
2

	 <o
nds 	 n

whenever n ) 2.

In the calculations presented in this paper for the specific sur-

vival profile denoted as 'convex', which is the third profile we shall

consider, n is set equal to 5, A typical (but arbitrarily drawn) strictly

convex survival profile is depicted in figure 1, where we have also

included the linear profile and the simultaneous retirement profile.

Figure 1 : Three special cases of survival functions within class

no (simultaneous retirement)r.• ....
• .

.
. 	 .. 	 .

..	 .%, n=1 (linear)

••14,,••

•

•

n>2 (strictly) 	 •
... 

convex)

1441%.

N
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As emphasized above, the net capital stock will normally be lower

than the corresponding gross capital, and the weighting function for the

former will lie below that for the latter. With a strictly convex survival

function this property is illustrated in figure 2.

Figure 2: 	 A strictly convex survival function and a corresponding

weighting function for the net capital

N

Class 	 : Concave

The second class of survival functions with which we shall be con-

cerned has the following general form:

(25) 	 B(s)
1-(1)m

s,N,m) 	 = 	 N
for 0 < s 4 N,

for s > N,

where m is .a positive, integer constant and N, as before, is the maximal

life time of the capital units.

Again, the 'curvature" parameter m may be varied in order to

*produce' specific survival profiles. First, it is seen that when m = 1,
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we are back again at the linear survival function. Second, we note that if

rn 	this model degenerates to the simultaneous retirement case, since

lim 	 (s/N)
m 

is zero when s < N and one when s 	 N.
M 4 se

The fourth specific survival function used for empirical investi-

gations in this paper is a strictly concave one, i.e. a specification

within the subset of class II where m ) 2. In our calculations, we have

chosen to illustrate this case by setting m = 5. The survival profile is

seen to he strictly concave in s for m ) 2, since then

(26)
db(s) 	 m(m- 1) s m-
ds 	 2

N
> 0	 (m)2).

The derived weighting function for the net capital, G (s), lies

below the technical survival function, B(s). It should be noted that when

the latter is of the strictly concave type - i.e. when the rate of physical

outwear increases with age - it may very well be the case that the

corresponding decline in the net capital is represented by a convex

function - i.e. that depreciation decreases with age 6) An example of

this type of structure is indicated in figure 3.

Figure 3: A strictly concave survival function and the corresponding

weighting function for the net capital



    

Class:
s n

I:15(s) = (1 -- )N 
II:13(s) = 1-( 1 m

N    

Curvature

parameter:
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pro.file: 	 eous exit

n=
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4. DATA

1 4

As a conclusion, it is useful to 'illustrate the relationship

between the two classes of survival functions, and the specific survival

profiles applied in the present study. This is done in figure 4.

Figure 4: An overview of the two classes of survival functions and the

specific parameter values chosen in this study.

The practical procedure for constructing time series for gross and

net capital stocks, as it follows from sections 2 and 3, consists in cumu-

lating past series for gross investment at constant prices over a period

of length equal to the capital's maximal life time, by application of two

different weighting schemes: The weights are defined once the survival

function, Bls), and the rate of discount,g, have been specified, and once

an algorithm for conversion from continuous to discrete time has been

constructed. The latter problem, which is mainly of a technical nature,

will be discussed briefly in section 5.

Needless to say, this aggregation across vintages places a rather

strong claim on the length of the historic gross investment series: If the

maximal life time of the equipment is assumed to be N years and we want our

capital stock series to start in year T0' then investment series Iv x to at

least year T0 -N should be available. For capital items with long service

lives, notably buildings and structures, this may, in particular, be felt

as a severe limitation.

This problem cannot (or, at least, should not) be considered as

separated from the choice of level of aggregation for the capital items.
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The researcher frequently faces a Conflict between the desire to work with

reasonably homogeneous capital categories - i.e., homogeneous with respect

to normal service lives, assumed retirement patterns, and other technical

characteristics - and the need to have sufficiently long investment series

to make the vintage aggregation approach work. Often, long series exist

only for large categories like machinery and equipment in total manu

faturing, office buildings and structures in private companies, dwellings,

etc.; disaggregation can only be achieved at the expense of shorter time

series.

The data base for the present paper is Norwegian national accounts 

data for gross investment at constant (1975) prices, which permits us to

go longer in the direction of disaggregating capital by sector and kind

than is usually possible. With a few exceptions, our gross investment

series go as tar back in time as to permit - with the values of the maximal

life time specified (see below) - the computation of capital stock series

to start in the year 1956 (at the latest). For our purpose, we have

aggregated the detailed investment data in the national accounts to a

sector classification with 26 sectors - corresponding, with minor

discrepancies, to the one used in the present version of the Norwegian

multi-sectoral growth model MSG (see Longva, Lorentsen and Olsen (1985)).

For most of the sectors we specify three capital types:

1. Buildings and structures,

2. Transport equipment,

3. Machinery, and other equipment, etc.,

which makes a total of 71 different capital items.

The gross investment concept (gross fixed capital formation) inclu-

des, according to the United Nations' °System of National Accounts" (1968)

(SNA)

'The outlays of industries and general government on additions of

new durable goods to their stocks of fixed assets less their net

sales of similar second-hand and scrapped goods. The item includes

acquisitions of reproducible and non-reproducible durable gcods

except land (but costs in connection with purchases and sales of
land etc. is included), and less mineral deposits, timber tracts

and the like for civilian use. The item also includes work in

progress on construction projects, significant capital repairs,

outlays on land improvement and changes in the stock of breeding

animals, dairy cattle and the like. . OOOOO
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The general rule is that acquisitions of assets with a lifetime of

at .least one year shall be included in gross fixed capital

formation. Repair and maintenance expenses are generally counted

as intermediate consumption, but are considered gross fixed capital

formation if the repairs or maintenance work are so sizeable that

the lifetime of the asset is expected to be extended or result in

higher productivity". (FlOttum (1981), pp. 14 and 65.)

This definition is not ideal for our purpose: 	 In particular, the

recommended treatment of transactions in second-hand goods between sectors

and of repairs and maintenance, may violate our basic assumption that the

form of the survival function is time-invariant and independent of the

composition of the gross investment flow. With respect to repairs, an

additional problem is created by the fact that the time series for gross

investment in the accounts are recalculated according to the new SNA only

back to 1967, which means that earlier figures include repairs and

maintenance to a larger extent than investment figures atter this point of

time. On the other hand, the recommended SNA procedure for treating trans-

actions in second hand markets is not fully adopted in the construction of

the present investment data: For most categories, the figures are not

adjusted for sales and purchases of old capital objects, which implies that

our data actually measure investments in new capital equipment. Unfortu-

nately, we were unable, from the information available, to obtain more

homogenous series.

From the 71 capital items in the data file, we have selected the

following sectors and capital types for empirical investigation in this

paper:

Capital item 	 Maximal life time,
years, N

Manufacture of textiles etc.
Machinery etc. ..... 	 ...... 	 ....... 	 25
Buildings and constructions  	 • . •	 60

Manufacture of metals
Machinery etc.  	 25
Buildings and constructions  	 60

Petroleum sector
Constructions  	 16

Dwellings
Buildings  	 90

The values assumed for the maximal life time, N, are the same as those
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presently used for the calculation of capital stocks and depreciation flows

in the Norwegian national accounts. Confer also OECD (1982, section II).

5. EMPIRICAL RESULTS

The theoretical framework, developed in sections 2 and 3, has, for

matematical convenience, been expressed in continuous time. The conversion

to discrete time required for confrontation with our annual gross

investment data is carried out as follows:

(i) Let year t (with discrete time) be defined as the interval between

time t and time t + I (with continuous time), let Jt be the gross

investment effectuated during year t and K the gross capital stock at

the end of year t. Assuming a maximal life time of N years, we then

have

(27)

where

1
B. 	 f 80.4-11dT
	

(i=0, ,...,N-1).

This formula can be shown to hold exactly from the formula in

continuous time, (3), if • the investment is effectuated at a constant

rate during each year, otherwise, it represents a more or less good

approximation. Retirement in year t is calculated as

(28) J - (K - 	 ).t 	 t t -1

The values of 131. are calculated from the parametric survival functions

given in section 3 by numerical integration.

Net capital and depreciation are similarly trea4ed.

(ii) The rate of . interest, 0, used for the discounting of prospective

service flows expressed in continuous time is specified to be related

to the interest rate on a per annum basis, g', as follows:

log(1+0' ).
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All interest rates reported below are given as annual rates.

(iii) We have tested the accuracy of the approximations (i) and (ii) by

checking - for selected capital items - the definitional consistency

between the annual series for gross capital and replacement on the

one hand, and net capital and depreciation on the other. (Confer eq.

(14).) The largest approximation. errors were found for capital items

with (a) short service lives, (b) very volatile investment series

(e.g. investment in oil production), and/or (c) strongly convex

survival functions. On the whole, however, we judged the accuracy as

satisfactory.

We now want, in particular, to focus on the following issues:

(a)the effects of the assumed form and curvature of the survival pro-

file on gross capital stocks in sectors with different development

of gross investment,

(b)the relationship between gross and net capital stocks, and the

dependence of the net capital stock on the rate of discount of fu-

ture capital services,

(c)the effect of the assumed form and curvature of the survival

profile on the retirement rate,

(d)the relationship between the retirement and depreciation rates, and

finally,

(e ) the effect of the form and curvature of the survival profile on

capital productivity, and the effect of the assumed rate of

discount on the estimated rate of return to capital.

The sensitivity of the gross capital stock to the tom of the sur-

vival function for three selected industries is illustrated in figures 5, 6

and 7. We see that not only the level of the capital stock, but also its

growth profile is strongly dependent on the structure of retirement. There
are, however, notable differences between the production sectors in this

respect: Oil production, which has been the most outstanding growth sector
in Norway . in the last decade, shows a sharply increasing capital stock



1%0 1970

120 -
-----simultaneous retirement, n=00
	concave, m..05

100 ----linear, ne01
n..05

■■■41 •••■•■••00. 	 ••••• —

17.7 1 I 1 . 1 1 1 1 1,1 I 1 1 1 . 1 I I 1 	 I 	 1 	il
1.560

Figure 5 : Gross capital for 4 different survival functions,
in 100 million 1975 kroner.
Minufacture of metals. Machinery etc.
Maximal lifetime 25 years.

Figure 6 : Gross capital for 4 different survival functions,
in 103 million 1975 kroner.
M6nufacture of textiles etc. Machinery etc.
Miximal lifetime 25 years.

--simultaneous retirement ne00
----concave, mi.05

250
	

-linear, n•01
--convex, ni.05

19

150

.0.1

4ms....tas■ awl.. 	 salsa ammo • sail,

I II
	 I 	 I 	 I 	 I 	 I 	i 	I	 I 	 I 	 I 	 I 	 I

.1•1111

1950 1960 1970 1980 1990



--simultaneous retirement, n-00
	concave, mag05
— inew, ne01

---r---comex, n-05

150

•1950 	 1960
	

1970	 1%0

OM»
	

20

Figure 7 : Gross capital for 4 different survival functions,
In 100 million 1975 kroner.
Petroleum sector. Buildings and constructions.
Mitximal lifetime 16 years.

during the entire period in the case of a one horse -shay retirement

pattern, whereas capital stock attains a peak in 1977 and then decreases if

a convex profile is assumed. (Figure 7.) Production of textiles etc.,

which exemplifies a sector with stagnation in investment activity, gives a

markedly different picture, gross capital stock (machinery) is nearly

constant in the convex case, moderately increasing in the linear case, and

exhibiting a pattern of cyclical growth in the one horse shay case. (Figure

6.) To a large extent, these differences, of course, reflect the different

age distribution of the capital stock 'implied by the four survival

functions considered. The more convex the survival profile, the relatively

larger are the weights given to investments in the current and recent

vintages as compared with older vintages. Regarding the oil industry, it

should be recalled that a major part of the production cafity in Norway

was built up during the 1970's. A closer look at the investment data

reveals that gross investment increased strongly from 1973 to 1977, but

decreased thereafter until 1981, when a new peak in investment was

attained. This investment path explains the development of the gross

capital stock in the convex case, with an observed peak in 1977. When the

survival profile is assumed to be of the simultaneous exit type, the gross

capital stock increases throughout the period, because this assumption
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implies that no 'heavy' vintages have been scrapped during the present

period of observation.

Figures 8 and 9 serve to illustrate the difference between the

gross and net capital concepts. Here we consider a capital category with a

long service life (dwellings, N=90 years), which explains the smoothness of

the growth curves in these figures. We see that net capital is close to

gross capital if the retirement and decline in efficiency follows a convex

pattern (B(s) convex). (Figure 8.) As noted in section 3, the weighting

function for net capital, G(s), is in this case also convex. If, on the

other hand, the survival function is specified to be concave, we find at

least when a zero rate of discount is applied - a substantial difference

between the numerical values of the two capital measures. (Figure 9.)

This reflects the basically different curvature of their weighting

functions - gross capital is constructed from a concave function, net

capital from a convex function (cf. figure 3) - which implies that new and

old capital vintages are given widely different weights in the two capital

measures in this case.

Figure 	 Gross and net capital stock in billion 1975 kroner.
Dwellings. Buildings and constructions.
Survival function: Convex, n=05. Interest rate 00 per cent.
Maximal life time 90 years.
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The sensitivity of the net capital Stock to variations in the rate

of discount, Q, is illustrated in figure 10. A change in this parameter

alters the relative weights of different vintages because it affects the

agents' relative evaluation of tuture flows of capital services under

perfect market conditions. As noted in section 2, the larger the rate of

discount, the closer is net capital to gross capital, and in the degenerate

case when g goes to infinity, they coincide. An increase in Q from 0 to 5

Per cent leads to a substantial rise in the net capital stock; for

instance, the estimates are increased by about 25 per cent for the capital

item dwellings, which is illustrated in figure 10. At higher levels of the

interest rate, changes in this parameter have a far less impact on the net

capital stock; its values for Q = 20 per cent only slightly exceed those

for g = 10 per cent. In fact, the net capital stock for e .1 20 per cent is
very close to the gross capital stock, as can be seen by comparing figures

9 and 10.

Figures 11 and 12 illustrate the effect of changing the form of the

survival profile on the implied Ivtirement rate, defined as the ratio
between retirement and gross capital stock, i.

We find, not surprisingly, th&t the level of this rate strongly depends on

the curvature of the survival profile, taking its lowest average value in

the one horse shay case, and its highest value in the convex case. It can

be shown (cf. BiOrn (1983a, section 7)) that in a situation with 'constant

gross investment, we get the following expressions for the retirement rates

(based, for simplicity, on the formulae in continuous time):

Class : convex: 	
n+1

=

Class IT: concave: , 2+1
siti

where n • and m are the curvature parameters of the two classes of survival

functions (confer section 3 above). This would imply the following retire-

ment rates for the four cases illustrated in figures 11 and 12:
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Figure 12 : Retirement rate. Retirement in per cent
of gross capital stock.
Mantrf acture of textiles etc. Machinery etc.
Maximal lifetime 25 years.
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1. simultaneous retirement: ô . 1/N,

2. concave: 	 = 1.2/N,

(30)

3. linear: 	 6 = 2/N,

4. convex: 	 o = 6/N.

The departure of the actual retirement rates from these 'theoretical*

values reflects the growth and cyclical variations in gross investment and

the resulting variations in the age distribution of the capital stock over

the period of observation.

The relative fluctuations of the retirement rates about their

average values are widely different in the _four cases. Statistically

interpreted, the retirement rates are ratios of two moving average

processes in gross investment, their length and weighting system reflecting

the maximal life time and the form of the survival function (cf. (3) and

(4)). Both these lag distributions imply a high degree of smoothing of the

investment profiles in the linear and convex case, which explains the

smoothness of their retirement rates. In the simultaneous retirement case,

however, retirement coincides with gross investment lagged a number of

years equal to the (constant) life time N, i.e. the moving average process

in the numerator of 6 degenerates to a process with a constant lag. Its

denominator is simply the cumulated flow of investment effectuated during

the past N years. This explains the volatility of the retirement rate in

this case.

Next we define the deprvciation rate as the ratio between

depreciation and net capital stock, i.é.,

(31)

An illustration of the difference between the retirement and depreciation

rates for buildings and structures in Production of textiles and wearing
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apparels, is given in figure 13. Here a simultaneous exit survival profile

is assumed, and the calculations are performed with a zero discount rate. •

With these assumptions it was shown in section 3 that depreciation follows

a linear profile. Combining this fact with the results shown in (30), it

follows that if investment were constant, the retirement rate would be half

the depreciation rate. From figure 13 it is confirmed that the retirement

rate is far smaller than the depreciation rate. The latter is fairly stable

about 2.5-3 per cent, while the former shows considerable fluctuations,

reflecting primarily the cyclical variations in past gross investment.

Figure 13: Wtirent rate and depreciation rate. Per cent.
Minufacture of textiles etc. Wildings and constructions.
SUrvival function: Sim. retirement, n.,00: Rate of interest-.
Miximal lifetime 60 years.

--Retirement rate
	Depreciation rate

al.......00..••••■■•■••••..... •

1950 1%0 1970 1%0 1993

As mentioned in the introduction to this paper, an interesting

application of the presented framework is to investigate the impact of

changes in the form and curvature of the survival function on the implied

measures of caPitaj. productivity, e.g. gross production at constant prices
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per unit of gross capital. 	 Examples of such calculations are given in

figures 14 to 16. 	 The differences in productivity for an arbitrary

sector/category of course simply reflect the differences - both with

respect to level and growth profile - in the corresponding gross capital

stock. Thus, productivity is highest in the convex case, in which the most

rapid deterioration of the capital stock takes place. In the sector Manu-

facture of metals, rather strong fluctuations in productivity for machinery

are observed in the convex case (figure 14). These variations reflect s to a

large extent, the fact that output in this industry has varied considerably

over time; the estimated capital stock has been rather stable (cf. figure

5). Calculations based on the three other survival profiles lead to higher

estimates of gross capital stocks, lower average productivity and dampened

relative fluctuations.

The estimated time profiles for capital productivity in the oil

sector also deserve attention. Recalling the highly different,

s outwear-dependents development of the capital stock shown in figure 7, we

find that the various time paths for productivity depicted in figure 1 5 .

constitutes a consistent picture: In the simultaneous exit and the concave

cases, the productivity figures are relatively low and almost identical.

Figure 14 : Capital productivity. Gross production in
per cent of gross capital.
Manufacture of metals. Machinery etc.
IIlaximal lifetime 25 years.
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Minufacture of textiles etc. Machinery etc.
Maximal lifetime 25 years.
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Changing to a linear structure decreases the gross capital stock and there-

fore increases productivity somewhat In the convex case, productivity is

still higher, and furthermore it increases strongly from 1977 which

reflects the peak in the gross capital stock observed in figure 7.

Finally, let us examine how our choice of capital measure affects

the implied estimate's of sates of return to capital. The formula used tor

calculating this variable is

E -
(32)  ONO 

where E is the gross capital income, i.e. the gross operating surplus

(exluding remuneration to self-employed persons) as recorded in the

national accounts, before deduction of the value of depreciation. The other

symbols have the same meaning as before. Since the numerical values of D N
and KN depend on the assumed survival function B(s) and the rate of dis-

count Q f the value of r will also depend on these parameters. We will'not

discuss and interpret these relationships in depth here. What we shall- do

is to select one single survival profile and try to shed some light on the

numerical relationship between r and Gi for this profile only The survival

profile selected for this investigation is profile 2, i.e. concave with

m=5. Numerical results for the sectors Manufacture of metals and

Manufacture of textiles etc., with all capital types taken together, are

given in figures 17 and 18, respectively.

It should be admitted that the interpretation of rates of return

calculated in this way is not obvious. The resulting figures may be

characterized as ex post rates of return, in the sense that they are ratios

between observed capital revenues and the computed sarkpt value of the

capital stock. This may be a natural procedure for calculating rates of

return for e.g. national accounting purposes. There is, however, a theo-

retical inconsistency between this approach and the traditional

neo-classical theory of producers' market behaviour. This basically stems

from the fact that we take g as an exogenous and time invariant parameter

and estimate cto • • t • t ts u *„.ons conditional

on this parameter value. In principle, g and r should have been considered

as simultaneouslv determipe4, as market egiiiiihrium interest rates within

the framework of a multi-sectoral model of market behaviour.

The nature of this problem is, perhaps, best explained with

reference to the following simple case: If all production functions were

linearly homogeneous, if perfect market conditions with no uncertainty

prevailed in all markets (including the credit market), and if all errors
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of measurement in our data on E and q could be disregarded, then th .e'theory

would predict equality between the observed rate of return and the interest

rate applied by market agents when discounting prospective incomes and

costs *in the long run', i.e. we would have r=g. If we had chosen to stick

entirely to these neo-classical assumptions, then we should have estimated

net capital, depreciation, and the rate of return simultaneously by setting

r=g in , the equations from the outset for each sector under consideration. A

partial sector, ,specific . *equilibrium value* for the rate of return,

Q , could then, in principle, have been obtained from

(33) 	 E 	 g qKN 	qD
N

with all variables interpreted as time functions, when we-recall that KN

and DN are functions of g . From (15) and (33) it. then follows that in

such an equilibrium situation we would have E = cK, i.e. the gross

capital 	 income would be equal to the current user value of the capital

stock.

I Figure 17 and 18 show the variations in the rate of return in the

two sectors by successively choosing 0, 5, 1,Q, and 20 per cent as

discounting rates. In all cases, the rates of return show strong

fluctations over time. This is caused mainly by the variations in the

observed operating surplus. In the sector *Manufacture of textiles*, the

rates of return decrease sharply over time, reflecting the stagnation in

the activity and profitability in this industry in Norway during the last

15 years. For *Manufacture of metals* there is also a downward trend in

the estimated rates of return, but this tendency is not as clear as for the

*textile industry*. With respect to the question of how variations in the

discount rate influence the rate of return, we can make the following

observations from the two figures.

- In both sectors, there seems to exist a level at which the rate of

return is independent of variations in the interest rate, in the

sense that all graphs intersect for this value. Furthermore, this

level seems to be rather stable over +. 4 w-le. (The 'intersection

levels' for the rate of return differ however between the two

sectors.

- The cyclical movements of the rate of return about this *inter-

section level' are dampened when the interest rate increases.
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In order to get a further understanding of these findings, it is

convenient, by using (31), to rewrite (32) as

E 
(34)	 r qKN ( )

where we have indicated explicitly the functional dependence of K and
N	 N

on g. Mathematically, r is a linear function of E (gross capital revenue)

with slope a = 1/K(g). For two interest rates, g l and g 2 , where g 1 <.g 2

we know that a l = a(g i ) > a 2 = a(g2 ), since an increase in the discount

rate will increase the net capital stock. (Cf. section 2.) Furthermore,

the depreciation rate will typically decrease with increasing interest

rate, so that 6 14 (g 1
 ) > 6N°2•) 8)

In figure 19 we have, for illustrative purposes, depicted r as a

function of E for the two arbitrarily chosen interest rates.

. Figure 19: Rate of return functions indicated for two different interest

rates.

The intersection point corresponds to a specific level of gross

capital revenue, denoted by I. 4inen E > then r 1 > r2 , while the inequa-

lity is reversed when E (

The intersection point indicated in figure 19 is, in general,

dependent on the two chosen interest rates. Still, we find that the four
graphs in figure 17 and in figure 18 all intersect at about the same value
of the rate of return.

Figure 19 also serves to visualize that an increase in the discount

rate will dampen the fluctuations in the estimated rate of return caused by
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varations the gross capital revenue around the 'stationary level" 	 E. 	 As

mentioned above this is "confirmed" empirically by the results in figure 17

and 18.

The intersection point in tigure 19 and the corresponding values of

and r will in general depend on the time path of gross investment. From

figures 17 and 18, we observe that the intersection points are rather

stable over time within each of the two sectors, hut there is a con-

siderable difference between these levels, reflecting primarily the

different development of past investment in the two sectors.

The relationship between the level of the intersection points and

the pattern of past investments can be examined formally if we assume gross

investment to grow exponentially over time at an arbitrary rate a < 0; so

that

(35) J(t) 	 = 	 J(0)ectt 	for all t.

Then (34) can be rewritten as 4)

(36) r(t) 	 = 	 A,G (a,c)
E(t) 	 1

•CiTi--)77(t)

where A a,Q) =
-asf G s)e 	 so g

From (36) we see that r(t) is independent of g if E(t) = q(t)J(t),

L .e. if gross operating surplus equals the current investment outlay. At

this intersection point, we have r(t) = m, i.e. the rate of return equals

the rate of investment growth.  • Since

(36) confirms that if

<E(t) 	 q(t)J(t), then 8r(t)
80 5

It is rewarding to reexamine figures 17 and 18 with this inequality in

mind.
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6. CONCLUDING REMARKS

From the empirical results presented above, two main conclusions

emerge: First, the distinction between the capacity dimension and the

wealth dimension of the capital stock - i.e. between the gross and the net

capital - is not only of theoretical interest; it may be empirically very

important. How important it is, depends on the form of the survival pro-

file. The difference between the two capital measures. is larger for

strongly concave profiles than for strongly convex ones, and is larger the

smaller is the interest rate at which the future flow of capital services

is discounted when constructing net capital stock. Second, the chosen form

of the survival profile say have a strong influence on derived

macro-economic variables like retirement rates, depreciation rates, and

measures of capital productivity. This is the case not only for the level

of these variables; their cyclical behaviour may also be strongly affected.

These results have obvious implications for the specification of capital

accumulation in macro-econometric models.

The four survival functions used as illustrations throughout this

paper, represent possible ways in which we could imagine the retirement of

capital units or decline in technical efficiency with age to take place.

Probably, the onè horse shay profile and the convex profile should be

regarded as extreme cases from this point of view. Needless to say, we

strongly need empirical evidence on survival profiles from which we could

further constrain the class of specifications relevant to empirical work.

Such information couldbe obtained along two directions of research: by

observing the actual age distribution of the capital stock and the firms'
actual scraimina behaviour, or by observing the development of viptacre 
prices for sufficiently homogeneous capital units and exploiting the
assumed law of indifference between vintages, eq. (8), which underlies the
construction of the net capital stock. A closer examination of the
econometric implications of these research strategies is outside the scope
of the present paper.
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FOOTNOTES

1) This assumption is, of course, also related to our neoclassical model

specification, in which we do not distinguish between different vintages

of capital when describing the technology.

2) This is a convenient normalization for the present purpose, but this

choice is, strictly speaking, arbitrary.

3) For the commonly applied exponentially declining survival function,

B(s) = e' 6 , it can easily be shown that net capital equals gross capi-

tal for all parameter values. (Confer BiOrn (1983a), section 7.)

4) However, in that case an inconsistepcv , of the accounting practice in

Norway is that the same (linear) survival function is used both for the

estimation of depreciation and the construction of capital figures

presented and used as if they were gross capital stocks.

5) In the literature this survival profile is also denoted as 'one-horse-

shay' or 'sudden death'.

6) Note that for other constellations of the parameters affecting net capi-

tal - the 'curvature parametee(m) and the interest rate (0) - the G (s)

tunction may 	 be concave. This tunction .increases with both m and Q.

However, with an interest rate equal to zero the weighting function for

the 	 net capital is convex for all values of m (degenerating to a

linear function in the simultaneous exit case).

7) Solwing (33) for g is basically the same procedure for calculating

rates of return to capital • as the method applied in HolmOy and Olsen

(1985).

8) This will certainly be the case if gross investment has been growing at

a constant rate, a, over time. Then we will have

m
J(t) 	 = 	 J(0)et for all t,

and the formula for net capital 1) ,..:omes

KN ( t) 	 fG s)e-asJ(t)ds = 	J(t) 

Q 	 AG(c"

where A a,g)
	

>O.

G(s)e-usds
O g
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By using (13), the formula for the depreciation rate can be rewritten as

D (t) 	 K (t)
j(t) 

6
N
(t) =

KN(t) 
= 

KN (t) 	 KN
 (t) 	 G

(a
1
g) - a 	 for all t.

BG (s)
We know that ,Q, 	 ) 0 	 for all s. 	 This implies

OQ

aX (a,Q)

ag
	 4 O.

The result holds regardless of the value of m.

9) Confer footnote 8.

a 
6N

a Q
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