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1. Introduction 
In the coming decades radical policy interventions are necessary to bring a halt to the continuing 

increase in the atmospheric greenhouse gas concentrations when the aim is to prevent a potentially 

dangerous anthropogenic interference with the global climate system, see, e.g., Stern Review (2007). 

Though most scientists agree on the need for some abatement in the coming decades, there is a debate 

on whether the major share of these efforts should be pursued from the beginning, or whether the 

largest share of abatement efforts should be delayed to the future. Three reasons stand out among 

advocates of delayed action. First, due to the discounting of future costs, saving our abatement efforts 

for the future will allow us to increase our efforts considerably at the same net present costs. Second, 

delaying emission reduction efforts will allow us to emit larger cumulative amounts of greenhouse 

gases, and thus to abate less in total, due to the natural depreciations of the atmospheric greenhouse 

gas concentrations. Third, delaying abatement efforts will allow us to benefit from cheaper abatement 

options that are available in the future, and also to develop these options through innovation. The first 

two arguments have taken firm ground in the literature, thanks to – among others – the analysis by 

Wigley et al. (1996).1 The third argument, however, based on presumed technological advancements 

in abatement options, has raised a lively debate among economists studying technological change in 

relation to environmental policy. 

There are arguments for accelerating abatement efforts rather than delaying them. Energy 

system analyses have clear empirical evidence for so-called experience curves suggesting that new 

low-carbon energy technologies, which will define the major long-term options for carbon dioxide 

emission reduction, need to accumulate experience for costs to come down sufficiently to make these 

technologies competitive.2 Based on these experience curves, the more general argument is made that 

there is a need for up-front investment in abatement technologies to make them available at low prices, 

and thus, technological change would warrant early abatement action rather than a delay (Ha-Duong et 

al., 1997; Grübler and Messner, 1998; van der Zwaan et al., 2002; Kverndokk and Rosendahl, 2006). 

Models exploring the experience curves are typically referred to as learning by doing (LbD) models.3 

Many energy system models add another reason for a smooth transition towards clean energy supply, 

which is that diffusion of new technologies need the turnover of all existing vintages and therefore 

                                                      
1 They used these arguments to make the case that emission paths developed by the IPCC (1995) for ceiling atmospheric 
carbon dioxide concentrations tended to put too much effort up-front, while a delayed abatement response would be more 
cost-efficient. 
2 See Lieberman (1984) for an early contribution focused on the chemical industry, and Isoard and Soria (2001) for a recent 
empirical analysis for energy technologies. 
3 Manne and Richels (2004), however, find that LbD has almost no effect on the efficient timing of abatement. 
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takes a considerable time (Knapp, 1999). A too rapid switch of the capital stock towards an entirely 

new technology is considered unrealistic (Gerlagh and van der Zwaan, 2004; Rivers and Jaccard, 

2006). 

Objections have been raised to these arguments. Though experience and diffusion curves have 

a strong empirical basis, many economists consider it a mechanistic view on technological 

development hiding the incentive-based structures that determine the level of research efforts by 

innovators. They prefer models with an explicit treatment of research and development (R&D) as the 

engine of innovation, and they have found that modelling innovations through R&D can lead to 

potentially very different outcomes on optimal timing of abatement policy. An important difference 

between LbD and R&D models is that the latter category of models does not assume from the outset 

that the technology needs to be used for its costs to fall. Thus, through R&D, future cheap abatement 

options may be made available without the need to use these abatement options while costs are still 

high. In an R&D model, it is then most efficient to focus mainly on R&D in the early stages of 

abatement policy, without employing the technologies, and to apply them only after the costs have 

sufficiently come down. Indeed, Goulder and Mathai (2000) found this pattern as an optimal 

environmental policy and they concluded that whereas LbD may warrant an advance of using 

abatement technologies compared to a situation without technological change, the presence of R&D 

unambiguously implies a delay in the use of such technologies. 

The first objective of this paper is to test the robustness of Goulder and Mathai’s finding in a 

second-best context, i.e., when we have several imperfections, but insufficient policy instruments 

available to correct them all. Caution is needed when results depend on first-best assumptions, since 

such a first-best innovation-abatement solution can be reached only when policy makers have a rich 

instrument set available. If R&D suffers from market imperfections, they need to be able to directly 

target environmental R&D, separately from abatement efforts. That is, policy makers need to have a 

tailored instrument available to bring environmental R&D efforts to their socially optimal level. In 

contrast, we assume that policy makers may use a common R&D instrument such as R&D subsidies 

over all sectors, and a generic environmental instrument such as environmental taxes to target 

environmental goals. Since environmental R&D makes up only a small portion of economy-wide 

R&D expenditures, we next consider the R&D subsidies as exogenous to the environmental policy 

problem, and consequently, the policy maker has to rely on one instrument, say the environmental tax, 

to steer both abatement levels and environment-specific R&D efforts. Since now the environmental 

tax affects both abatement efforts and innovation within the abatement sector, the functioning of the 

innovation market within the environmental sector, i.e., how the gap between private and social 

returns on R&D develops, becomes of crucial importance for determining the efficient level of the 
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environmental tax. If the R&D distortion is largest during the phase of a fast increase in abatement 

efforts, this will have some impact on the efficient path of the environmental tax. 

For our study we develop an R&D model in line with the endogenous growth literature and 

assume that R&D efforts are based on market-based incentives through patents. Patents protect the 

holders from others directly using their innovation in production, but at the same time, patents disclose 

the knowledge base underlying the innovation, which then can be used by rivals to develop substitute 

technologies. Also, patents have a finite lifetime and expire after a certain period. These properties can 

lead to intricate connections between R&D dynamics and environmental policy (cf. Encaoua and 

Ulph, 2004), and we need to see how they alter the first-best timing results. 

We expect that the gap between an LbD model and a second-best R&D model with finite 

lifetime of patents will be considerably narrowed. Whereas in a first-best R&D model it is possible 

that innovators develop new technologies and continually improve these without the need to be used in 

production, in a second-best R&D model with finite patent lifetime, innovations will only occur when 

they are used in production before the patent’s expiration date. This mechanism is similar to the 

mechanism in LbD models, where technology only advances if it is used. Thus, the representation of 

finite lifetime of patents in an R&D model will lead to the required use of abatement technologies in 

earlier periods so that innovators can earn back the costs of R&D. 

The argument above makes clear that a finite patent lifetime creates an appropriation problem 

for innovators who cannot fully capture the social value of their innovations in the long future. Many 

R&D models incorporate the idea that innovators cannot appropriate the full value of their innovations 

– Nordhaus (2002), Popp (2004) and Gerlagh and Lise (2005) make precise assumptions on this. But 

whereas in the broad innovation literature the finite lifetime of patents is a common reason for this 

feature (for an early contribution, see Nordhaus, 1969), in the environmental economics literature, the 

time dimension of the appropriation problem is mostly neglected. If the appropriation gap would be a 

constant fraction of the social value (as assumed in these models), then a constant innovation subsidy 

would be sufficient to correct for this market failure. If, however, patents expire, innovations will be 

biased towards technologies that pay back within the patent’s lifetime, while there is no incentive to 

develop and improve technologies whose value lies in the farther future. A generic R&D subsidy 

cannot correct for this timing dimension of the appropriation problem, and instead, a complementary 

environmental policy may be required for its correction. 

This paper is organised in the following way. In Section 2 we develop a partial model for 

abatement and environmental quality, which for instance can be interpreted as climate change. The 

model has discrete time steps, and technological change is driven by the Romer (1987) type of 
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endogenous growth through increasing varieties, based on the ‘love of variety’ concept (Dixit and 

Stiglitz, 1977). Subsequently, we develop an LbD model. 

We analyse optimal environmental policies in Section 3, starting with a first-best setting as in 

Hartman and Kwon (2005) and Bramoulle and Olson (2005, cf Proposition 8). Then we consider the 

second-best setting, for which we analyse the development over time of efficient environmental taxes 

relative to Pigouvian taxes. As in Hart (2006), our timing analysis focuses on the transition paths for 

both R&D and LbD models, where the abatement sector is rapidly increasing in size, and slowly 

becomes mature characterised by a lower growth rate. Different from Goulder and Mathai (2000), the 

timing analysis is not based on a comparison of multiple scenarios, e.g. one with and another one 

without endogenous technological change.4 Instead, we analyse the development over time of research 

subsidies and the gap between efficient environmental taxes and Pigouvian taxes in the first- and 

second-best setting. The relative gap between the two taxes tells us something about the relative 

stringency of environmental policy compared to the social cost of pollution, and we are particularly 

interested in its development over time.  

Our focus on the gap between efficient environmental and Pigouvian taxes puts our analysis in 

a broad strand of literature. Much of this literature focused on tax interaction effects (c.f. Bovenberg 

and de Mooij, 1994) and it raised lively debates in policy circles when it explored the potential for so-

called double dividends. In addition to tax interaction, reasons for a divergence between efficient 

environmental and Pigouvian taxes include trade effects (Hoel, 1996), scale effects in production 

(Liski, 2002), and, more recently, the processes underlying technological change. Rosendahl (2004) 

shows that in an LbD model, the environmental tax should be higher than a Pigouvian tax, with the 

largest gap for those countries and sectors that generate most of the learning. In a similar fashion, 

Golombek and Hoel (2005, Proposition 9) show that in an environmental treaty the optimal carbon 

price can exceed the Pigouvian level when abatement targets lead to innovation and international 

technology spillovers that are not internalised in domestic policies.5 Our paper studies the dynamics of 

this gap between efficient and Pigouvian environmental taxes, in relation to endogenous technological 

change. 

                                                      
4 As Pade and Greaker (2006) point out, the comparison made by Goulder and Mathai (2000) is problematic in the sense that 
their ETC scenario assumes technological change in addition to the benchmark (no-ETC) scenario. The scenario with ETC 
therefore has a more optimistic path of falling abatement costs compared to the scenario without ETC. Thus, the comparison 
between the two scenarios is mainly driven by the difference in technology paths, and is largely independent of the source of 
technological change, be it endogenous or exogenous. Though our set up is not directly comparable with Goulder and Mathai 
(2000), our broader context is comparable as both study the relation between sources of innovation (R&D vs. LbD) and 
timing of action. 
5 The analysis by Golombek and Hoel (2005) is in a game-theoretic context, and the result depends on the instrument used to 
define the treaty (compare Proposition 9 and 10). 
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After the separate analyses of the R&D and LbD models, in Section 4 we compare the two 

models and present conditions under which the two models have identical efficient policy paths. That 

is, we establish conditions for policy equivalence between the second-best R&D model and the LbD 

model. 

Finally, in Section 5 we carry out some numerical calculations to illustrate the analysis and to 

investigate its substance. Throughout the simulations, the model parameters are chosen to reflect the 

common climate change context. Section 6 concludes. 

2. Model set up 
We consider an economy where there are concerns for the environment due to stock pollution. This 

could for instance be climate change, caused by carbon dioxide emissions following from the 

combustion of fossil fuels. More generally, we assume a benchmark emission path and a demand for 

abatement of emissions because of environmental considerations. 

Let θt and τt reflect the social marginal cost and the policy-induced market cost (e.g., 

environmental tax) of emission at time t, respectively. The social cost and the market cost may differ 

as the first reflects the pure pollution externality problem (and is often referred to as the Pigouvian 

tax), while the second is dependent on the policy measures applied and the structure of the economy. 

In the following, we are interested in studying the dynamic relations between θt and τt in first- and 

second-best settings, i.e., how does the market cost deviate from the social marginal cost under 

different assumptions about knowledge dynamics (R&D vs. LbD) and policy measures available. 

The abatement sector in the R&D model 

The model of research and development (R&D) is based on Romer’s endogenous growth model 

(Romer, 1987, 1990; Barro and Sala-i-Martin, 1995). The model has an infinite horizon with discrete 

time steps, t  = 1,…,∞ . There is one representative abatement sector, which could either be 

interpreted as an alternative, emission-free resource sector (e.g. renewables or fossil fuels 

supplemented with carbon capturing and sequestration), or as abatement of emissions. There are Ht 

producers of abatement equipment at each point of time t, and an R&D sector producing new ideas or 

innovations. Technological progress takes the form of expansion in the number of abatement 

equipment varieties. The producers of the abatement equipment own patents and, therefore, receive 

monopoly profits. However, they have to buy the innovations from the R&D sector, where innovators 

are competitive and use research effort as an input. We assume that patents last for one period, and so 

innovations are public goods thereafter. Hence, there are positive spillovers to innovation from the 

previous-period stock of innovations (standing on shoulders). Also, we assume negative externalities 
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from aggregate current research through crowding out of research effort. Thus, in this model there are 

three imperfections related to innovations; too little production of abatement equipment due to 

monopolistic competition, positive spillovers of the earlier period innovation stock on new 

innovations, and negative spillovers of total research effort on new innovations. Thus, the market 

outcome of innovations may exceed or fall short of the social optimal level. 

 Let E be emissions of the stock pollutant, Y is benchmark emissions without any 

environmental policies, while A is abatement. If we think of energy and CO2 emissions, Y could be 

total energy demand, while A could either be renewable (CO2-free) energy that partly replaces fossil 

fuels in consumption and production, or a reduction in the emissions from fossil fuel combustion, e.g., 

through carbon capture and storage. Thus, total emissions are as follows:6 

 

(1) Et = Yt – At.  

 

Production of abatement requires intermediate flow inputs Zt, and the input xi of abatement 

equipments, where subscript i∈[0,Ht] refers to the variety, and Ht is the number of equipment 

varieties. Ht can be interpreted as the state of knowledge.  

 

(2) At  = B Zt
α(∫

0

H t
x

t

β
, i

di) γ .   

 
B is a constant and 0<β<1, 0<α<1, 0<γ<1. Furthermore, we demand α+βγ 1, where a strict inequality 

implies that there is a fixed factor in production, e.g., due to site scarcity for renewables. The presence 

of a fixed factor implies that the value of output is strictly larger than the value of all variable inputs. 

In that case we can specify B as B=cF1–α–βγ, where F is the fixed factor and c is a constant, such that 

the total value of output is fully attributed to all inputs Z, xi, and F. 

The different abatement equipments are neither direct substitutes nor direct complements to 

other specific equipments. That is, the marginal product of each abatement equipment is independent 

of the quantity of any particular equipment, but depends on the total input of all other equipment 

varieties together. Since all varieties have the same production costs and decreasing marginal product, 

in equilibrium the same quantity will be employed of each equipment. Thus, assuming that the 

equipments can be measured in a common physical unit, we can write xi=X /H , where X is the 

aggregate input of abatement equipment. The production identity then becomes: 

 

                                                      
6 The relation between emissions and benchmark emissions is specified as a linear function for convenience of notation. A 
more general function would give the same qualitative results. In the numerical simulations in Section 5, we use a CES 
aggregation. 
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(3) At  = B Zt
α Xt

β γ  Ht
( 1 –β) γ .   

 

It is clear that the abatement sector has increasing returns to scale when α+γ>1, due to the technology 

H.7 Now consider the case where abatement efforts have to increase over time continually to maintain 

a clean environment jointly with an increasing overall economic activity. For α+γ<1, the abatement 

expenditures will have to increase more than proportionally with the abatement effort. For α+γ=1, the 

costs of abatement rise in proportion with abatement levels. For α+γ>1, the price of abatement 

decreases, and total expenditures increase less then the abatement effort. 

Assume now that the public agent implements an emission tax τt, or more generally an 

environmental policy that induces a market cost of emission, τt. From (1) we see that this translates 

into a market price for abatement At. The abatement producer’s optimisation problem is: 

 

(4) Max τ tAt  –  Zt –   ∫
0

H t
p t , ix t , idi ,   

 

subject to (2). 

The price of Z is set to unity and the price of abatement equipement xt,i is equal to pt,i. Thus, 

the abatement producer maximises the value of abatement minus the abatement costs. 

The first order conditions of this maximisation problem determine the abatement producer’s 

demand for Z and xi: 

 

(5) Zt  = ατ tAt   

 

(6) x t , i  = {[γβτ tBZt
α(∫

0

H t
x

t

β
, k

dk) γ - 1]/pt , i}
1/1-β = {[γβτ tA t (Xt

βHt
( 1 –β) ) - 1] /pt , i}

1/1-β.  

 

From (5) we see that the costs of Z should equal the share α  of the production value, where α  

expresses the relative contribution of Z in production. 

The demand for xt , i  is given by (6). Alternatively, we can also express the demand for 

aggregated input of abatement equipment using xi=X /H,  and pt,i=pt: 

 

ptXt  = βγτ tAt .  (7) 

 

                                                      
7 An interesting case arises when γ=1–α. There are decreasing returns to scale for a given technological level Ht, e.g., due to 
a fixed factor. This can be understood as the short-term feature of the model. At the same time, there are constant returns to 
scale for endogenous level of knowledge. The technology effect precisely balances the fixed factor effect. 
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Thus, the demand for abatement equipment is falling in the own price, but increasing in the 

environmental tax. 

Production of abatement equipment in the R&D model 

The producers of abatement equipment own patents and therefore act as monopolists. Their costs of 

producing intermediates xt,i are set to unity, and they maximise profits (or the value of the patent), π t , i ,  

taking into account the falling demand curves for abatement equipment. For a patent valid for one 

period, we get the following maximisation problem: 

 

(8) Max  π t , i  = x t , i(pt , i–1),    

 

subject to (6). 

The first order condition from maximising (8) with respect to pt , i  determines the price of the 

abatement equipment: 

 

(9) p t , i  =  p =  1/β .    

 

From (7) and (9) we find the market equilibrium of X: 

 

(10) Xt  =  β2γτ tAt .   

 

As all varieties are identical (xi=X /H), and prices are equal across varieties, see (9), the value of a 

patent is also equal for all innovations, i.e., π t , i=π t . Using this in addition to (8), (9), (10) and 

xi=X /H ,  we find the value of all patents: 

 

(11) π tHt  = (1–β)βγτ tAt .   

The innovation process in the R&D sector 

The producers of abatement equipment buy patents from innovators that operate in a competitive 

market.8 Innovators develop new varieties according to the following production function: 

 

(12) h t , j  = r t , j  (Ht – 1/Rt)
1 –ψ ,   

                                                      
8 Alternatively we could assume that the innovators are producing the abatement equipments, such that they own the patents 
and get the monopoly rent. This would not change the arguments or conclusions of the analysis. 
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where rt,j is the research effort of innovator j, ht,j is the number of varieties produced by this innovator, 

and we assume 0<ψ<1. Rt denotes aggregated research efforts by all innovators.  

As seen from the production function in (12), and as explained above, there is a positive 

externality through a spillover from the previous period knowledge stock through Ht–1, and a negative 

externality through crowding out of current research via Rt.
9 We also see that both externalities are 

higher the lower the value of ψ. 

The innovators maximise profit with respect to research effort, where the price of the 

innovation equals the monopoly profit of equipment producers, or equivalently the value of the patent.  

 

(13) Max  π th t , j  –  r t,j,  

 

subject to (12). 

The price of research effort is set equal to one. First order conditions give that the unit cost of 

research (i.e., one) is equal to the value of the patent, π, multiplied by the productivity of r. 

Due to the zero-profit condition, in equilibrium the value of all patents is equal to the value of 

all research effort: 

 

(14) π tHt  = Rt .   

 

Substitution of (14) in (11) and aggregation of (12) give the following two conditions for research 

effort and knowledge dynamics in the economy: 

 

(15) R
t
 = (1–β)βγτ tAt   

(16) H
t
 = R

t

ψH
t

1

–

–

1

ψ .   

Market equilibrium in the R&D model 

The five equations (3), (5), (10), (15) and (16) define a market equilibrium through the variables At, Zt, 

Xt, Rt, Ht, for a given environmental tax policy τt.  

 

                                                      
9 Encaoua and Ulph (2004) distinguish between knowledge and technology information flows. Knowledge flow or knowledge 
diffusion is equal to ςHt-1, which means that a fraction 0<ς<1 of previous knowledge is public information at time t. The 
technology flow is the technology spillover according to which a technology can be imitated by others, such that a patent does 
not offer a perfect protection to its holder. In our model this would mean that χHt will be private property of the patent 
holders, where 0<χ<1, while (1-χ)Ht can be copied by others. In our model we assume that both ς and χ are set to unity. 
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PROPOSITION 1. For given initial state of knowledge, H0, and tax policy defined by τt>0, a unique 

equilibrium path exists if [1–α–βγ–ψγ(1–β)]>0 . 

 

Proof. Substitution of the four equations (5), (10), (15) and (16) into (3) gives: 

 

(17) At
1 –α–β γ–ψγ ( 1 –β )=Bααγβγ+ψ γ ( 1 -β )β 2β γ+ψ γ ( 1 –β ) (1–β)ψ γ ( 1 –β )τt

α+βγ+ψγ(1–β )H (

t

1

–

–

1

ψ ) ( 1 –β ) γ .   

 

If [1–α–βγ–ψγ(1–β)]>0,  the left hand side is increasing in At from zero without bound, and the 

right-hand side is constant at time t. Thus, for given Ht–1 there is a unique At that solves the equation. 

Ht is then defined by (15) and (16). By forward induction, this defines a unique path. Q.E.D. 

 

Note that the unique path essentially requires that there are decreasing returns to scale within a 

period t (i.e., with Ht–1 fixed, but not Ht).  

Model with LbD 

We now present a learning by doing (LbD) model that is comparable to the R&D model. However, in 

this model, technological progress takes form of expansion in knowledge following passively from 

experience with abatement. Thus, there is no separate innovation activity in the model. As in the R&D 

model, there is a positive spillover from the knowledge stock in the previous period, such that 

knowledge is a public good after one period. Because of this externality, the social optimal abatement 

level is higher than abatement in the market equilibrium. 

Market equilibrium in the LbD model 

As before, the model has an infinite horizon with discrete time steps, t=1,…,∞ . Abatement requires 

intermediate inputs Zt for which a competitive market exists, and Ht is the state of technology or 

knowledge. 

 

(18) At  = BZ
t

α H
t

γ,  

 
with 0<γ<1, 0<α<1, and B is a constant. The condition α<1 implies that there is a fixed factor in 

production. Compared to the abatement production in the R&D model (see equation (2)), abatement in 

the LbD model is produced without specific abatement equipments.  

As before, the public agent implements an emission tax τt. The representative abatement 

producer is competitive and maximises (with the price of Zt set to unity): 
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(19) Max τ tAt  –  Z t ,   

 

subject to (18). 

From profit maximisation we derive the first order condition 

 

(20) Zt  = ατ tAt .   

 

Note that the first order condition for the intermediate input is the same as in the R&D model, see (5). 

Under LbD, knowledge dynamics are given by 

 

(21) H
t
 = A

t

ψH
t

1

–

–

1

ψ .   

 

The three equations (18), (20), and (21) define a market equilibrium through the variables At, 

Zt, Ht. 

 

PROPOSITION 2. For given initial state of knowledge, H0, and a tax path τt>0, a unique equilibrium 

path exists if 1–α–ψγ>0. 

 

Proof. Substitution of (20) and (21) in (18) gives 

 

(22) At
1 –α–ψγ = Bαατ t

α H
t

(

–

1

1

–ψ )

 

γ.  

 

The left-hand-side is increasing in At from zero without bound for 1–α–ψγ>0 , the right-hand-side is 

constant at time t. Thus, there is a unique solution At to the equation. For given Ht–1, this solution 

determines At, and Ht through (21), such that the entire equilibrium path can be determined by forward 

induction. Q.E.D. 

3. Efficient Policy Implementations 

First-best policy in the R&D model 

The social planner aims at minimising the present value of abatement costs plus the damage from the 

stock pollutant. This can for instance be interpreted as the damage from the concentration of carbon in 

the atmosphere, i.e., the carbon stock. The minimisation problem becomes (where δ<1 is the social 

discount factor): 
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(23) Min Σ
1

∞
 δ t - 1[Z t  +  R t  +  X t  + D(St)] ,    

 

subject to (1), (3), (16) and stock accumulation dynamics 

 

(24) S
t
 = (1–ε)S

t – 1  + E
t  .   

 

The social abatement costs are the sum of the costs of Z, R and X, which all have price equal to 1. 

D(S) is the damage cost function, where damage depends on the stock of emissions, S. We assume that 

D(S0) 0, D´(St) > 0 and D´´(St)>0, and that the stock depreciates by the rate ε<1.  

The first order conditions from this minimisation problem are: 

 

(25) Zt  = αθ tA t   

(26) X t  = βγθ tAt   

(27) Rt  = ψη tHt   

(28) η
t
H

t
 = δ(1–ψ)η

t + 1
H

t + 1
+ (1–β)γθ

t
A

t   

(29) θ
t
 =  D´(St)  +  δ(1–ε)θ

t + 1 .   

 

Note that θ
t
=–λ t  

0, where λt is the dual variable for equation (1), and, hence, the current value 

shadow price of emissions. As mentioned before, θt is often referred to as the Pigouvian tax. Note also 

that θt is equal to the social price (or marginal value) of abatement in this model, as Et and At are 

perfect substitutes, and since At has no effects on knowledge (as it has in the LbD model). η
t

0 is the 

dual variable of equation (16) and, therefore, the current value shadow price of knowledge. 

The first order conditions for Z and X defined by (25) and (26), are similar to the 

corresponding conditions for the market equilibrium given by (5) and (7), with the exception that 

market prices are replaced by the corresponding social prices.  

As seen from (27), the value of research should equal the share ψ of the social value of 

knowledge. ψ expresses the relative contribution of R in producing knowledge. Equation (28) shows 

that the shadow price of knowledge is in general positive, but equal to 0 if there is no abatement 

throughout the time horizon. 

According to (29), the social cost of emissions at time t, θt, is the present value of the damages 

caused by one unit of emission emitted at time t. It follows from a comparison of (5) and (25) that in 

the first-best policy, θt is equal to the optimal emission tax τ t  at time t.  
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As there are three types of imperfections in the model; pollution, imperfect competition in the 

market for abatement equipment, and positive and negative externalities of research effort, we would 

need three policy instruments to implement the social optimum: A Pigouvian tax on emissions, a 

subsidy to producers of abatement equipment, and a subsidy or tax on research effort. 

 

PROPOSITION 3. Through a tax on emissions equal to the Pigouvian tax, τ t=θ t , a subsidy on abatement 

equipment equal to sx,t = 1–β, and a subsidy/tax on R&D effort equal to  

sr,t=1–(1–β)γθ
t
A

t
/ψη

t
H

t
, the first best outcome can be implemented. 

 

Proof: We introduce three policy instruments to implement the first-best outcome; an emission tax, τ t ,  

a subsidy on abatement equipment, sx,t, and a subsidy/tax on research, sr,t. We can then write the 

market conditions corresponding to (25), (26) and (27) as 

 

(30) Zt  = ατ tAt   

(31) (1–sx , t)ptXt  =  βγτ tA t   

(32) (1–sr , t)R
t
 = (pt–1)  βγτ tAt /(1–sx , t)pt .   

 

First, equation (30) is equal to the market condition defined in (5). Second, replacing pt  in equation (7) 

with (1–sx , t)pt ,  gives the demand for Xt expressed by (31). Finally, (32) is derived in the same way 

as equation (11) and (15), apart from that we use (31) instead of equation (10). The price innovators 

pay for rt is now set to (1–sr , t)  instead of unity. 

Setting the environmental tax equal to the Pigouvian tax, i.e., τ t=θ t , implements the optimal 

use of Zt, see (25) and (30). 

To find the optimal subsidy rate on abatement equipment, sx,t, we first replace θt for τ t ,  which 

gives the following demand for Xt: 

 

(33) (1–sx , t)ptXt  = βγθ tAt .   

 

From (9) we know that p=1/β. Thus, sx,t=1–β implements the optimal use of X, cf. (26). 

Finally, to find the optimal subsidy/tax on research, sr , t , we insert p=1/β from (9), τ t=θ t  and 

sx,t=1–β in equation (32). The market outcome of R then changes to: 

 

(34) (1–sr , t)R
t
 = (1–β)γθ tAt .   
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Inserting the first-best level of R from (27) gives after some calculation: 

 

(35) sr,t = 1 – (1–β)γθ
t
A

t
/ψη

t
H

t .   

Q.E.D. 

 

The optimal level of sr,t in equation (35) may be positive or negative. This is because research effort 

has both positive and negative external effects.  

 The development of the research subsidy/tax, sr,t, will depend on the development of the 

ratio θ
t
A

t
/η

t
H

t
, i.e., the social value of abatement relative to the social value of knowledge, see 

equation (35). Note that the social value of abatement is proportional to the abatement expenditure 

(i.e., Zt+Xt+Rt), as θ t=τ t . To see how this ratio develops over time, we need some definitions. The 

abatement expenditure growth factor is defined as φ t=τ t + 1At + 1/τ tAt . In a mature abatement sector, 

this growth factor is constant. For an infant industry, growth will exceed the matured growth level. 

When the sector is becoming mature, expenditure growth will gradually fall from its infant level to its 

mature level. We define the abatement sector to be maturing when φ t φ t+1, and constantly maturing 

when this inequality applies for all t 0. We can now state and prove: 

 
PROPOSITION 4. In the R&D model, for a constantly maturing abatement sector, the efficient R&D 

subsidy/tax sr,t will fall over time. 

 

Proof: Given (35), it suffices to prove that η
t
H

t
/τ

t
A

t
 decreases over time. Notice that θ t=τ t . Writing 

out equation (28) for the entire horizon, we have 

 

(36) η
t
H

t
/θ

t
A

t
 = (1–β)γ {1+δ(1–ψ)φ

t
 + [δ(1–ψ)]2φ

t
 φ

t+1 + …}.  

 

It is obvious that when φt is decreasing in t, then when we compare the equation for η
t
H

t
/θ

t
A

t  and 

η
t + 1

H
t + 1

/θ
t + 1

A
t + 1

, in the latter equation, each of the terms on the right-hand side will be smaller, and 

thus, η
t + 1

H
t + 1

/θ
t + 1

A
t + 1

η
t
H

t
/θ

t
A

t
. Q.E.D. 

Second-best policy in the R&D model 

Even if the social optimum in principle may be implemented using the appropriate number of policy 

instruments, it may be hard to target R&D at the firm level (as long as R&D effort is not completely 

undertaken in the public sector). For instance, R&D is not specified as a separate activity or sector in 

most national accounts. Consequently, it is difficult to use instruments such as a subsidy to producers 
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of abatement equipment and a subsidy/tax on research effort. Based on this, we specify a second-best 

optimum, where the social planner has only one policy instrument available, namely the 

environmental tax. 

The second-best optimisation problem of the social planner is, therefore, the minimisation 

problem (23) subject to (1), (3), (16), and (24), but also subject to the market equilibrium for Z, R and 

X given by equations (5), (10) and (15). The social planner now sets the value of τt that minimises 

social costs subject to the functioning of the environmental stock, the technology stock, and the 

different markets.  

We can solve this social optimisation problem by substitution. In combination with (5), 

equations (10) and (15) give 

 

(37) Xt  = (β 2γ /α)Zt   

(38) R
t
 = ((1–β)βγ /α)Zt .   

 

Substitution of (37) and (38) in (23), (3), and (16) give  

 

(39) Min  Σ
1

∞
 δ t - 1[wZt + D(St)] ,    

 

subject to (1), (24), and 

 

(40) At  = CZt
α+ β γHt

( 1 –β) γ
  

(41) H
t
 = K Zt

ψH
t

1

–

–

1

ψ ,   

 

where w=1+β2γ /α+(1–β)βγ /α=1+βγ /α>0 ,  C=B(β 2γ /α)β γ>0 and K=((1–β)βγ /α)ψ>0. 

As before, let θ t be the Pigouvian tax, so that λ t=–θ
t

0 is the dual variable for equation (1). 

Let ηt be the dual variable for equation (41). The first order condition for Zt and the optimal level of Ht 

are given by 

 

(42) wZ
t
 = (α+βγ)θ

t
A

t  +  ψη
t
H

t   

(43) η
t
H

t
 = δ(1–ψ)η

t + 1
H

t + 1
 + (1–β)γθ

t
A

t .   

 

In addition, equation (29) carries over from the first-best solution. While equation (43) is equal to the 

corresponding equation (28) in the first-best solution, the first order condition for Z is different due to 

the restrictions on the use of policy instruments (compare (42) with (25)). 
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From (5) and (42) and inserting for w, we derive 

 

(44) τ
t
/θ

t
 = 1  + [ψ /(α  + βγ)]  η

t
H

t
/θ

t
A

t .   

 

This formula calculates the efficient second-best environmental tax relative to the Pigouvian tax on 

basis of the constant parameters α, β, γ, ψ, w, and the ratio of the value of knowledge over the value of 

abatement, η
t
H

t
/θ

t
A

t
. As we see from (44), τ

t
/θ

t
>1, which means that the efficient environmental tax 

will be higher than the Pigouvian tax. This is stated in the following proposition: 

 

PROPOSITION 5. In the second-best R&D model, the efficient environmental tax, τt, will always be 

higher than the Pigouvian tax, θt, as long as abatement is positive. 

 

Will τ
t
/θ

t
 rise or fall over time? As seen from (44), this depends on the development in the 

ratio of the value of knowledge over the value of abatement, i.e., η
t
H

t
/θ

t
A

t
. This means that the 

development in τ
t
/θ

t
 follows a similar path as the development in the optimal subsidy/tax on research, 

see (35). Thus, without the possibility to target research effort, the difference between the efficient 

emission tax and the Pigouvian tax should mimic the development in the optimal research subsidy/tax. 

This gives the following proposition. 

 

PROPOSITION 6. In the second-best R&D model, for a constantly maturing abatement sector, the 

relative difference between the efficient environmental tax, τt, and the Pigouvian tax, θt, will 

fall over time. 

 

Proof. From (5) and (42), we calculate a slight deviation from (44), 

 

(45) θ
t
/τ

t  = 1  – [ψ /(α  + βγ)]η
t
H

t
/τ

t
A

t
] .   

 

It suffices to prove that η
t
H

t
/τ

t
A

t
 decreases over time, which follows the same argument as the proof 

of Proposition 4. Q.E.D. 

Optimal policy in the LbD model 

The social planner aims at minimising the present value of abatement costs plus the damage from the 

stock pollution, where δ<1  is the social discount factor:  
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(46) Min Σ
1

∞
 δ t - 1[Zt +  D(St)] ,   

 

subject to (1), (18), (21) and (24). The first order conditions from this minimisation problem are: 

 

(47) Zt  = αθ tA t  + αψη tHt   

(48) η
t
H

t
 = [δ(1–ψ)/ (1–ψγ)]η

t + 1
H

t + 1
+ [γ /(1–ψγ)]θ

t
A

t   

(49) θ
t
 =  D´(St)  + δ(1–ε)θ

t + 1 .   

 

As before, θ
t

0 is the Pigouvian tax or the current value shadow cost of emissions, and η
t

0 is the 

current value shadow price on knowledge. The dynamics of the Pigouvian tax is the same in the two 

different models, as the dynamics of the pollutant is the same. Also, even if the value of knowledge 

does not have the same dynamics in the two models, it follows a similar pattern, see (28) and (48). 

While research effort creates knowledge in the R&D model, the use of the input Z creates 

learning and, therefore, knowledge in the LbD model. As opposed to the first order condition for Z in 

the R&D model, see (25), we see that in the LbD model, the value of knowledge has an impact on the 

optimal use of Z. 

There are two imperfections in the LbD model: pollution and spillovers from knowledge. As 

knowledge follows from abatement, and abatement affects pollution, only one policy instrument is 

needed to implement the social optimum, i.e., a tax on emissions (or alternatively a subsidy on 

abatement). Therefore, the first-best solution and the second-best solution (with only one instrument) 

will be equivalent in the LbD model. The optimal policy is to choose the tax level τ
t  that minimises 

the present value of abatement costs plus damage costs. This tax will in general be different from the 

Pigouvian tax as the latter only reflects the shadow cost of emissions. 

As the abatement firm sets the optimal level of abatement according to (20), the optimal 

environmental tax level τ
t
 follows from equalising equations (20) and (47). Thus, we find: 

 

(50) τ
t
 = θ

t
 +  ψη

t
H

t
/A

t ,   

 

where η
t
H

t
follows the development described by (48). 

From (50) we can derive the following relationship between the environmental tax and the 

Pigouvian tax: 

 

(51) τ
t
/θ

t
 = 1 + ψη

t
H

t
/θ

t
A

t .   
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As in the second-best R&D model, see (44), the environmental tax will always be higher than the 

Pigouvian tax as long as abatement is positive. This result is in accordance with Rosendahl (2004), 

who finds that the optimal tax rate should be higher than the shadow cost of emissions when there are 

spillover effects from learning by doing. We then have the following proposition: 

 

PROPOSITION 7. In the LbD model, the efficient environmental tax, τt, will always be higher than the 

Pigouvian tax, θt, as long as abatement is positive. 

 

Comparing (44) with (51), we see that the development of the environmental tax relative to the 

Pigouvian tax follows a similar pattern in the LbD model as in the R&D model. This leads us to the 

following proposition: 

 

PROPOSITION 8. In the LbD model, for a constantly maturing abatement sector, the relative difference 

between the efficient environmental tax, τt, and the Pigouvian tax, θt, will fall over time. 

 

Proof. The proof follows exactly the same line of argument as Propositions 4 and 6. 

4. Model Equivalence 
As mentioned in the introduction, we expected the gap between an LbD model and a second-best 

R&D model with finite patent’s lifetime to be considerably narrowed. This is partly confirmed by 

Propositions 6 and 8, which show that the R&D model share similarities with the LbD model in the 

second-best optimum. To study this further, we would like to see if equivalence between the two 

models can be shown to hold more generally. If so, this would mean that the choice of knowledge 

dynamics would not matter for policy implications, given the second-best setting. 

To study the possible equivalence between the two models, we need to define equivalence. 

Assume now that the social welfare program for the second-best R&D model defined by (39), and the 

similar program for the LbD model defined by (46), both give well defined paths for the abatement 

effort, A, efficient environmental tax, τ, and the Pigouvian tax, θ. We define the two models to be 

equivalent if they give the same outcomes of these three variables for the same environmental 

preferences captured by D(St) .  

First, we would like the models to produce the same market equilibrium, i.e., the same 

abatement level for a given tax on emissions. Second, we would like the second-best social optimum 

to be the same, which means that the efficient environmental tax should be the same in both models. 

The second condition is equivalent to the condition that the relative difference between the efficient 
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tax and the Pigouvian tax should be equal in the two models. The reason is that the Pigouvian tax is 

equal across models as long as the abatement paths are equal (cf. (29) and (49)). Thus, if (τ t)t is the 

efficient tax for one model, it produces the same abatement path and hence the same Pigouvian tax 

path for both models. Therefore, if the ratio (τt/θt)t is the same, (τ t)t is the efficient tax for the other 

model as well. 

Based on these requirements, we can define equivalence in the second-best setting if the R&D 

model and the LbD model  

 

(i) produce the same abatement path, (At)t, resulting from an arbitrary tax path, (τ t)t (equivalence of 

the market equilibrium).  

(ii) give the same ratio between the efficient and the Pigouvian tax (τt/θt)t for any abatement path, 

(At)t (equivalence of the social optimum). 

 

Thus equivalence means that for any second-best R&D model, an LbD model can be made that has 

exactly the same dynamic response function in the market equilibrium, and produces exactly the same 

socially optimal tax and abatement paths (and vice versa).  

To continue, we need to set up both models on the same format. Consider, therefore, the 

reduced form specifications of the market equilibrium for the second-best R&D model and the LbD 

model, where the subscript R denotes the R&D model and L denotes the LbD model. 

Based on (5), (40), and (41), the reduced form specification for the R&D model is: 

 

(52) A
R , t

 = B
R
Z

R , t

αR H
R , t

γR
  

(53) Z
R , t

 = G
R
τ

t
A

R , t   

(54) H
R , t

 = K
R
Z

R , t

ψR H
R , t

1

–

–

1

ψR,  

 

where B
R
=B (β2γ /α)β γ ,  G

R
=α, K

R
=((1–β)βγ /α)ψ , α

R
=α+βγ , γ

R
=(1–β)γ  and ψR

=ψ .  

In the same way, we specify the reduced form of the LbD model based on (18), (20) and (21): 

 

(55) A
L , t

 = B
L
Z

L , t

αL H
L , t

γL
  

(56) Z
L , t

 = G
L
τ

t
A

L , t   

(57) H
L , t

 = A
L , t

ψL H
L , t

1

–

–

1

ψL,  

 

where B
L
=B, G

L
=α , α

L
=α , γ

L
=γ  and ψ

L
=ψ .   
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 Both reduced form versions of the models have three parameters, α, γ and ψ, which, as we 

will show, completely determine the dynamic behaviour of the model and the optimality conditions.  

To see if the reduced form models are equivalent, we first introduce three intuitive 

requirements, which we use to derive relationships between the three parameters in the two models. 

Then we use these relationships to prove equivalence between the models. 

The three requirements are that the short-term scale elasticities, the long-term scale elasticities, 

and the discount factor of the value of knowledge should be equal across models. Let us denote by µ 

the short-term returns to scale of production, i.e., µ=(dAt /dZt)/(At /Zt)  with fixed Ht–1. Let ν denote 

the long-term (steady state) returns to scale of production, i.e., ν=(dA /dZ)/(A /Z) , with H=Z for the 

R&D model10 and H=A for the LbD model11. Let ρ be the discount factor of the value of knowledge, 

i.e., the factor before η
t + 1

H
t + 1

 in (43) and (48). We find that: 

 

(58) µ
R
 = α

R  + γ
R
ψ

R   

(59) ν
R
 =  α

R  + γ
R   

(60) ρ
R
 = δ(1–ψ

R
)   

(61) µ
L
 =  α

L  /(1–γ
L
ψ

L
)   

(62) ν
L
 = α

L  /(1–γ
L
)   

(63) ρ
L
 =  δ(1–ψ

L
)/(1–γ

L
ψ

L
) .   

 

Now, we can prove full dynamic equivalence of the market equilibrium between the two models, cf. 

(i) in the definition of equivalence above.  

 

PROPOSITION 9. The market equilibrium: When the second-best R&D model and the LbD model have 

the same characteristics, µ
R
=µ

L
, ν

R
=ν

L
 and ρ

R
=ρ

L
, and have parameters BR, BL, GR, GL and KR, 

(in notation of (52)-(57)) and initial knowledge stocks H
R
=H*

R
 and H

L
=H*

L
 that support the 

same steady state, τ*
R
=τ*

L
 and A*

R
=A*

L
, then the two models have exactly the same dynamic 

behaviour. Formally, for given exogenous tax path (τ t)t, both models produce the same 

equilibrium abatement path (At)t. 

 

Proof. See the Appendix. 

                                                      
10 This follows from inserting Ht=Ht-1 in equation (54). 
11 This follows from inserting Ht=Ht-1 in equation (57). 
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Whereas Proposition 9 states the dynamic equivalence of the market equilibrium between the second-

best R&D model and the LbD model, we also have to prove that both models generate the same 

optimal policy, cf. (ii) in the definition of equivalence above. The following proposition states the 

equivalence of the social optimum: 

 

PROPOSITION 10. Social optimum: When the second-best R&D model and the LbD model have the 

same characteristics, µ
R
=µ

L
, ν

R
=ν

L
 and ρ

R
=ρ

L
, and follow the same abatement path (At)t for a 

given tax path (τ t )t, then both models have the same ratio between the efficient and the 

Pigouvian tax (τt/θt)t. Thus, the R&D and LbD models produce exactly identical optimal tax 

paths. 

 

Proof. See the Appendix. 

 

The two propositions together make the proposition of full equivalence between the second-best R&D 

and the LbD model: 

 

PROPOSITION 11. When the second-best R&D model and the LbD model have the same characteristics, 

µ
R
=µ

L
, ν

R
=ν

L
 and ρ

R
=ρ

L
, and have parameters and initial stock levels that support the same 

steady state, the R&D and LbD models are equivalent if only one policy instrument, i.e., a tax 

on emissions, is available. 

 

Proof. The proof follows directly from Proposition 9 and 10. Q.E.D. 

Simulations 
In this section we want to illustrate the theory by developing and simulating a numerical model that 

mimics a transition from a fossil fuel based to a carbon free energy system. The speed of transition is 

determined by technological progress, driven by policies and market forces. The numerical model 

gives insight into development over time of the relationship between the optimal environmental tax 

and the Pigouvian tax in a situation where research policies are not available, cf. Proposition 8. We 

will also use the model to get confirmation on equivalence between the LbD model and the second-

best R&D model, cf. Proposition 11. 
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Calibration 

We set out to calibrate a model that reproduces key characteristics of the climate change debate in a 

stylised manner. The starting point is a business as usual scenario of a LbD model with the following 

characteristics: 

 

(i) Global emissions of CO2 are 6 Gigatons carbon per year in the base year 2000. 

(ii) Fossil fuel production costs grow (exogenously) from 200 per ton carbon in 2000 to 600 in 

2200. 200 per ton carbon corresponds approximately to the average international market price of 

fossil fuels in 2004 and 2005 (BP, 2006). The rising unit costs over time reflect the exhaustion of 

easy-to-recover reserves. 

(iii) CO2-free energy amounts to 0.5 per cent of fossil energy in the base year. This is the share of 

commercial non-hydro, non-bio renewables in global energy supply (see IEA, 2005). Moreover, 

the annual growth in CO2-free energy in 2000 is set to 4.5 per cent, which is consistent with actual 

growth rates in the 1990's for those renewables (cf. IEA, 2002, p. 27). 

(iv) The long-term returns to scale in CO2-free energy (ν)  is 1.2. This is consistent with an initial 

learning rate of 15-20 per cent, which is often seen in studies of CO2-free energy (e.g., IEA, 

2000).12 

(v) CO2-free energy constitutes 50 per cent of total energy use in 2250 in a benchmark BaU scenario. 

This benchmark scenario assumes that the spillover effects from learning are internalised, but not 

the damages from CO2 emissions. 

(vi) In the benchmark scenario, the marginal damages of CO2 emissions (the equivalent of the 

Pigouvian tax on CO2 emissions if it were levied) in 2000 are 100 per ton carbon, or 28 per ton 

CO2. As a comparison, the price of allowances in the EU’s Emission Trading Scheme has hovered 

between 7 and 30 per ton CO2 since the scheme was initiated in 2005. On the other hand, the 

Stern Review (2007) suggests that the social cost of carbon today is around $85 per ton CO2, if 

the world continues on the BaU path, and $25-30 if the concentration of CO2-equivalents is 

stabilised between 450-550 ppm CO2e. 

 

Production of energy is modelled slightly differently in the simulation model compared to the 

theoretical model (cf. equation (1)): 

 

                                                      
12 In an initial steady state, we have Z/A = A(1/α)-1B-(1/α)H

γ/α=C·A(1/α)-1+γ/α, where C is a constant, and we have assumed fixed 
growth rate in abatement. The learning rate is then given by 1-2(1-α-γ)/α, which varies between 0.13 and 0.24 when α varies 
between 0.5 and 1 (and ν=1.2). 
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(64) ( ) /( 1)( 1) / ( 1) /Y E A
σ σ−σ− σ σ− σ= + .  

 

This CES-aggregate is used to give the simulation model more realism. It means that CO2-free energy 

is an imperfect substitute to fossil fuels, so that the prices of fossil and CO2-free energy may differ 

(whereas in the theoretical analyses abatement is a perfect substitute for emissions with identical 

price). Still, we assume that both E and A are measured in the same units. In energy system analysis, 

this would typically be in primary energy equivalents (EJ), but for convenience of our presentation, we 

present energy in Gigaton carbon equivalents, using the average carbon content of fossil fuels for 

conversion. The substitution parameter σ is set to 2, which implies that the price of A is 14 times 

higher than the price of E initially. Note that with σ=∞, equation (64) reduces to equation (1). 

In addition to the calibration data, the following assumptions are made. The length of the 

simulation periods, and thus the lifetime of patents, is set to ten years.13 Future costs and benefits are 

discounted at a rate of 5 per cent per year. This is a compromise between typical market rates and 

social discount rates used in e.g. Stern Review (2007). Concentration of CO2 in the atmosphere above 

the pre-industrial level decays by 1 per cent annually.14 Energy use per capita grows by 1 per cent per 

year, whereas population grows by 1.2 per cent initially, but levels off at around 11 billion people 

during the first century. Marginal damage costs grow with economic growth per capita, for which we 

take 2 per cent per year. The assumptions about growth in population, economy and energy use seem 

to be in between the A1 and the A2 scenarios put forward by the IPCC's Special Report on Emission 

Scenarios (IPCC, 2000). 

Table 1 shows the remaining (endogenous) model parameters in the LbD model that agree 

with the calibration requirements above. The table also shows the equivalent parameters in the second-

best R&D model, which are calculated based on the equations in Section 4.  

 

Table 1. Parameters in LbD model and equivalent second-best R&D model 

 LbD model R&D model 

α 0.85 0.69 

β  - 0.3 

γ 0.30 0.51 

ψ  0.19 0.14 

                                                      
13 Ten years may seem a bit short for the lifetime of patents. Note, however, that the main results regarding the ratio of 
efficient tax over Pigouvian tax (cf. Figure 6) are quite similar when we e.g. double the length of the simulation periods. 
14 This is of course a simplification of the carbon cycle, i.e., the interaction between CO2 in the atmosphere and CO2 in the 
land and in the ocean (see e.g. IPCC, 2001, Chapter 3.5). In particular, it may overestimate the decay of CO2 when the 
concentration level gets higher. 
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Scenarios 

We run four alternative scenarios, see Table 2. All scenarios have the same stock levels in 2000, and 

environmental policy is introduced in 2010 in all scenarios except S0 (the BaU scenario). S1 and S2 

denote the first- and second-best R&D scenarios, whereas the S3 scenario is based on a cost 

minimisation instead of a cost-benefit optimisation. That is, the first-best R&D model is used to 

minimise: 

 

(65) Min  Σ
0

∞
 δ t[Z t  + Rt + Xt] ,    

 

with the additional constraint: 

 

(66) Σ
0

∞
 δ tD(St)  Σ

0

∞
 δ tD(S*t),   

 

where S*
t is the concentration level in the S2 solution. The purpose of introducing this scenario is to 

examine the timing of abatement within a first- and second-best R&D model, where the discounted 

environmental damage costs are equal.  

 

Table 2. Model scenarios 

 Scenarios 

S0 Business as Usual (BaU) 

S1 First-best R&D 

S2 Second-best R&D (=LbD) 

S3 First-best R&D with same damage as in S2 
 

Numerical results 

First of all, the simulations clearly confirm Proposition 11, i.e., that the second-best R&D model and 

the LbD model are equivalent. The models produce the same optimal tax and abatement paths. Thus, 

the difference between the R&D and the LbD model can be interpreted along the lines of differences 

in access to policy instruments, at least within our model framework. Our conclusions about the S2 

scenario therefore relate to both the second-best R&D model and the LbD model. 

Figures 1 and 2 show the development of fossil (Et) and CO2-free (At) energy over the next 

two centuries, measured in Gigaton carbon per year (on a logarithmic scale). In the policy scenarios, 

we see from Figure 1 that fossil energy reaches a top in the middle of this century, and falls below 

CO2-free energy just before 2100 (only shown for S2). From Figure 2 we note that all policy scenarios 



27 

produce very similar energy paths. Differences between first-best and second-best scenarios are small 

compared to overall policy effects. CO2-free energy rises more rapidly in the first-best scenario (S1) 

than in the second-best scenario (S2), despite a higher environmental tax in the latter scenario (see 

below). The reason for this is that a first-best policy can stimulate abatement more cost-effectively 

through appropriate taxes and subsidies, compared to a second-best policy that only can stimulate 

CO2-free energy through taxes on fossil fuels. Costs of abatement are thus lower in scenario S1, 

compared to S2. 

In the cost-effective scenario (S3), CO2-free energy is initially used slightly less than in the 

second-best policy scenario (S2), but catches up around 2040. The smaller market share in scenario S3 

in the beginning is due to the fact that innovation for and deployment of CO2-free energy can be 

targeted separately by appropriate subsidies or taxes. Thus, with all policy instruments available, R&D 

is shifted upfront, whereas abatement is delayed. 

 

Figure 1. Fossil and CO2-free energy in the S0 and S2 scenarios 
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Figure 2. CO2 free energy in the different scenarios 
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The timing issue is better seen in Figure 3, which shows the annual growth rate in CO2-free energy 

expenditures (i.e., growth in Zt+Xt). We notice that in all scenarios the growth rate falls, that is, the 

abatement sector is maturing as defined above Proposition 4. The transition from an infant industry 

into a matured industry is most pronounced in the policy scenarios. Also, we notice that growth rates 

in the scenarios S1 and S3 virtually coincide. Obviously, climate change policy increases abatement 

growth substantially over the first century, but eventually, the CO2-free energy sector matures around 

the middle of the next century, as it takes over the energy market almost completely. From that time 

onwards, CO2-free energy expenditures grow at the same rate as total energy use, i.e., by 1 per cent per 

year. When comparing the first-best and second-best scenarios, we find that expenditures start at a 

lower level in the first-best R&D model (S3), and grow slightly faster throughout the simulation period 

compared to the second-best R&D model (S2).  
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Figure 3. Growth in CO2-free energy expenditures in the different scenarios 
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Figure 4. Concentration level of CO2 in the different scenarios 
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Though we apply only a simple one-box resource model, still it can produce qualitative insights in the 

concentration level of CO2 in the atmosphere (St). The concentration peaks around 2100 in the policy 

scenarios at a stock level equivalent to about 475 ppmv. Under the first-best R&D policy, S1, more 

action is taken and thus the concentration level peaks at a slightly lower level than with a second-best 

R&D policy S2. The two scenarios with equal net present value of damages, S2 and S3, are very 

similar. 
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In Figure 5 we show how the Pigouvian tax (θ
t
) and the efficient tax (τ) develop in the three 

policy scenarios. In the first-best R&D scenario (S1), these two taxes are equal (cf. Proposition 3). In 

the second-best R&D scenario (S2) they are generally not (cf. equation (44)), and in our numerical 

simulations the efficient tax is well above the Pigouvian tax. The figure further shows that the 

Pigouvian tax is higher in the second-best scenario (S2) and the cost-effective scenario (S3) than in the 

first-best scenario (S1), which reflects the higher concentration level, and thus higher marginal 

environmental damages, in these scenarios. Consequently, in the cost-effectiveness scenario (S3), the 

efficient tax lies below the Pigouvian tax, as less abatement is needed compared to the first-best (S1) 

(cost-benefit) scenario. Note that in the cost-effective scenario, abatement levels are less than optimal 

(given the environmental damage function), as the objective is to minimise abatement costs for a fixed 

present value of future environmental damages (based on S2). Remember that environmental damages 

are higher in S2 than in the first-best outcome S1. That is why marginal abatement costs (τ t)  are below 

marginal damage costs (θ
t
) in this scenario. 

 

Figure 5. Efficient tax and Pigouvian tax in the different scenarios 
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The ratio between the efficient and the Pigouvian taxes in the second-best scenario S2 is displayed in 

Figure 6, showing that the ratio exceeds unity and is falling monotonically over time. This confirms 

Proposition 5 and Proposition 6. The latter proposition states that the relative difference between the 

efficient and the Pigouvian tax will fall over time in the case with a maturing abatement sector (see 

Figure 3). We notice that the initial tax in this scenario exceeds the Pigouvian tax by factor 2. 
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Figure 6. Ratio of Efficient tax over Pigouvian tax in second-best R&D 
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6. Conclusion  
In the climate change literature a pressing question is whether currently it is sufficient to stimulate the 

development of clean technologies for future use (technology push), or alternatively, that we need to 

start emission abatement sooner rather than later. Some take the technology push perspective even one 

step further, and assume that the foresight of a future need for abatement is sufficient to lead private 

firms to develop clean technologies. Within this optimistic perspective, it is unwarranted to start with 

abatement activities too hastily, as these early abatement efforts are unnecessarily costly compared to 

the cheaper options that will become available in the future. In the literature on technology 

development and climate change, the proponents of delayed and early action have often been divided 

along the lines of users of R&D models versus users of LbD models. Our analysis suggests that this 

distinction in perspective arising from the two types of models is not justified (Proposition 11). 

If the public authority can directly steer the development of environmental technology, either 

through public environmental R&D or through targeted private environmental R&D, then it is efficient 

to spend much of the initial effort on this technological development. In both cases it is to be noted 

that in the phase of an emerging environmental problem, substantial public funds are to be directed to 

developing environmentally friendly technologies, either through public R&D or through high 

subsidies on private R&D (Proposition 4). 

 However, if the public authority cannot directly determine the development of an 

environmentally friendly technology, then efficiency considerations suggest that the clean technology 

should be extra stimulated through an increased demand for its produced goods. The technology pull 

policy should be relatively strong during the emerging phase of the environmental problem, when the 
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abatement technologies still have to mature. Notably, this result is found in both the R&D and the LbD 

model (Proposition 6, Proposition 8). The major feature responsible for this equivalence between the 

R&D and the LbD models is an assumed finite lifetime of patents in the R&D model, a credible 

assumption we think. 

 As a final comment, we notice that the theoretical analysis we carried out has been fairly 

general, so that our findings may imply more generally that infant industries should be stimulated to a 

larger degree than mature industries. This topic may be worked out in future research. 
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Appendix 
 

For the proofs of Proposition 9 and Proposition 10, we have to do some preliminary work. Assume 

that µ
R
=µ

L
=µ , ν

R
=ν

L
=ν  and ρ

R
=ρ

L
=ρ . We can then invert the equations (58)-(63), which enables us 

to calculate the parameters α
R
,  γ

R
,  ψ

R  
and α

L
,  γ

L
,  ψ

L
 as functions of µ, ν and ρ: 

 

(67) α
R
 = ν(1–δ /ρ)+µδ /ρ   

(68) γ
R
 = (ν–µ)δ /ρ   

(69) ψ
R
 = 1–δ /ρ   

(70) α
L
 = ν(1–δ /ρ)+µδ /ρ   

(71) γ
L
 = (1–µ /ν)δ /ρ   

(72) ψ
L
 =  (1–δ /ρ)ν /µ .   

 

It follows that when the two models have the same characteristics µ , ν  and ρ , then the following 

relations hold between the two sets of model parameters: 

 

(73) α
R
 = α

L   

(74) γ
R
 = ν  γ

L   

(75) ψ
R
 = (µ /ν)  ψ

L
 or (1–ψ

R
)  = (µ /α

L
)(1–ψ

L
).   

 

Proof of Proposition 9: Let us denote by a tilde on top of a variable the log-difference compared to the 

steady state, e.g., τ
~

t
=ln(τ

t
)–ln(τ*). Since (52)-(57) hold in steady state, we can now log-linearize them: 

 

(76) A
~

R , t
 = α

R
 Z

~

R , t
 + γ

R
H
~

R , t  

(77) Z
~

R , t
 = τ

~

t  + A
~

R , t   

(78) H
~

R , t
 = ψ

R
 Z

~

R , t
 + (1–ψ

R
)H

~

R,t–1
.  

 

Similarly, for the LbD model, we take the log-linearization 

 
(79) A

~

L , t
 = α

L
 Z

~

L , t
 + γ

L
H
~

L , t 
 

(80) Z
~

L , t
 = τ

~

t  + A
~

L , t   

(81) H
~

L , t
 = ψ

L
 A

~

L , t
 + (1–ψ

L
)H

~

L,t–1
.  
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For the R&D model, substituting Z

~

R , t
 out of (76)-(78), we derive 

 

(82) A
~

R , t
 = α

R
 τ

~

t  + α
R
 A

~

R , t
 + γ

R
H
~

R , t  

(83) H
~

R , t
 = ψ

R
 τ

~

t  + ψ
R
 A

~

R , t
 + (1–ψ

R
)H

~

R,t–1
.  

 
Substituting (83) in (82) and using (58) we derive 

 

(84) A
~

R , t
 =  [µ /(1–µ)]  τ

~

t
 + [γ

R
(1–ψ

R
)/(1–µ)]H

~

R ,  t–1.  

 

Further, deriving τ
~

t
 from (82), substituting in (83) and using (58), we find 

 

(85) H
~

R , t
 =  [ψ

R
 /µ]A

~

R , t
 + (1–ψ

R
)[1–γ

R
ψ

R
/µ]H

~

R ,  t–1.  

 

And similarly, for the LbD model we derive 

 
(86) A

~

L , t
 =  [µ /(1–µ)]  τ

~

t
 + [γ

L
(1–ψ

L
)µ /α

L
(1–µ)]H

~

L , t–1  

(87) H
~

L , t
 = ψ

L
 A
~

L , t
 + (1–ψ

L
)  H

~

L ,  t–1.  

 
Evaluating the equations for the first period t=1, we have H

~

R , 0
=H

~

L , 0
=0 as we assume an initial steady 

state, and thus A
~

R , 1
=A

~

L 1
 from (84) and (86). Also, from (85),(87) and (75), we find 

H
~

R , 1
/H

~

L , 1
=ψ

R
/µψ

L
=1/ν . By forward induction, we can show that A

~

R , t
=A

~

L , t
 and H

~

R , t
/H

~

L , t
=1/ν for all t. 

Assume that the equalities hold for t (and they do for t=1). Then, for t+1 it follows from (73), (74) and 

(75) that 

 
(88) γ

R
(1–ψ

R
)/(1–µ)  = ν[γ

L
(1–ψ

L
)µ /α

L
(1–µ)] .   

 
If we substitute this equality in (84) and (86), we find 

 
A
~

R , t+1 = A
~

L , t+1. 
 

Furthermore, it follows from (58) and (75) that 

 

(89)  (1–ψ
R
)[1–γ

R
ψ

R
/µ]  = (1–ψ

L
) ,   

 

which, after substitution in (85) and (87), yields H
~

R , t + 1
/H

~

L , t + 1
=1/ν. 
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To conclude, for all t we have established that A
~

R , t
=A

~

L , t
 and consequently, A

R , t
=A

L , t
 as we assume that 

A*
R
=A*

L
 . Q.E.D. 

 

Proof of Proposition 10: The optimal policy is determined by (43) and (44) for the R&D model and by 

(48) and (51) for the LbD model. Rewriting (43) and (44), using (60) and the parameter adjustments 

immediately below equation (54), we find for the R&D model: 

 

(90) η
t
H

t
 = ρ

R
η

t + 1
H

t + 1
 + γ

R
θ

t
A

t   

(91) τ
t
/θ

t
 = 1 + ψ

R
/α

R
 η

t
H

t
/θ

t
A

t .   

 

In the same way we can rewrite the optimal policy conditions for the LbD model: 

 
(92) η

t
H

t
 = ρ

L
η

t + 1
H

t + 1
+ [γ

L
/(1–ψ

L
γ

L
)]θ

t
A

t   

(93) τ
t
/θ

t
 = 1 + ψ

L
η

t
H

t
/θ

t
A

t .   

 

Now, using (90), (91) can be rewritten as 

 

(94) τ
t
/θ

t
 = 1  + [ψ

R
γ

R
/α

R
](1+ρ

R
θ

t + 1
A

t + 1
/θ

t
A

t
+(ρ

R
) 2θ

t + 2
A

t + 2
/θ

t
A

t
+…).   

 

Also, using (92), (93) can be rewritten as 

 

(95) τ
t
/θ

t
=1+[ψ

L
γ

L
/(1–ψ

L
γ

L
) ](1+ρ

L
θ

t + 1
A

t + 1
/θ

t
A

t
+(ρ

L
)2θ

t + 2
A

t + 2
/θ

t
A

t
+..) .   

 

Assume that τ t is the efficient tax in one of the models. Then we know from Proposition 9 that it 

produces the same abatement path At, and hence the same Pigouvian tax θ t  in both models. 

Furthermore, we have by assumption ρ
R
=ρ

L
. Therefore, in order to prove that τ t is the efficient tax in 

the other model as well, we only need to prove that  

 

(96) ψ
R
γ

R
/α

R  
=ψ

L
γ

L
/(1–ψ

L
γ

L
) .   

 

Using (58) for the left-hand side and (61) for the right-hand side, (96) can be rewritten as 

 

(97) µ
R
/α

R
–1

 
=  µ

L
/α

L
–1,  
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which holds by assumption, see (73). Thus, we have established that the paths for the efficient tax τ t 

are identical for the R&D and LbD models. Q.E.D. 

 


