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1. Introduction 
In the standard textbook setting, consumer preferences are assumed to depend on different types of 

goods solely through their respective quantities. Thus, this theory of consumer behavior has been 

developed under specific and well-known assumptions about preferences and choice restrictions 

(budget constraints), and the Paasche and Laspeyres price indexes, up to a first-order (Taylor) 

approximation, have been derived. For this approximation to be valid, certain conditions need to be 

fulfilled (in addition to standard mathematical regularity conditions). These conditions are: (i) the set 

of goods available in the market does not change over time; (ii) the inherent properties of the goods 

also remain unchanged over time, i.e., the notion of quality changes is absent; and (iii) the goods are 

infinitely divisible. If these conditions are not fulfilled, one cannot use the standard theory of 

consumer behavior to justify the indexes mentioned above without further argument.  

 A typical feature of modern markets is that consumers face a variety of products that are 

differentiated with respect to sets of characteristics, which for convenience we shall call “quality” 

attributes. Some of these attributes are tangible and observable, whereas others are not, and such 

attributes may represent fashion or popularity. In addition, for many products, the product variants are 

chosen mutually exclusively, in the sense that only one is selected from the set of feasible variants.  

 In this paper, we extend the traditional price index theory by allowing for indivisible goods 

(discrete goods) characterized by product-specific attributes. The set of variants that appear in the 

market will typically vary from one period to the next so that, in practice, it is hard to observe the 

prices of the same good over time. What complicates the situation further is that even if observable 

product attributes (assuming these are available) do not varyor change slowly over timethe 

popularity of the product may vary considerably. For example, many products, such as clothes, follow 

popularity cycles of the fashion industry. This variation is a consequence of the fact that the average 

preferences in the population for the product in question vary from one period to the next. 

 Some years ago, the so-called Boskin report (Boskin et al., 1996) focused on the need to take 

“quality” into account in price indexes. However, the notion of quality in this context is not new. In 

the 1960s and 1970s, economists started to consider how the empirically oriented theory of price 

indexes should account for changes in quality for markets with differentiated products. Rosen (1974) 

proposed a method for estimating demand and supply functions in markets with differentiated 

products, which, in principle, can be used to estimate supply and demand relations and subsequently 

derive price indexes. However, Rosen’s method has proven to be intractable for applying in practical 

empirical analysis. Furthermore, this method is based on rather stylistic assumptions. It assumes, for 

example, that the variety of product variants is so rich that practically all (“continuous”) combinations 
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of attributes characterizing the product variants exist in the market simultaneously. Accordingly, the 

choice setting is no longer treated as a discrete one, as, under this presumption, one can acquire a 

product variant with any desired attribute combination. Other contributions in this tradition are Bartik 

(1987) and Epple (1987).1 

 In contrast, Trajtenberg (1990) takes the theory of discrete choice as his point of departure to 

establish a true quality adjusted price index. His approach is based on the multinomial logit discrete 

choice demand model. Our contribution in this paper, is to extend Trajtenberg’s approach by (i) 

allowing for latent quality attributes that may vary over time, (ii) accounting for the possibility that 

prices may be endogenous, and (iii) demonstrating that the fraction of consumers that do not purchase 

a variant of the discrete good is, together with the mean population expenditure of the variants 

purchased, sufficient statistics for the quality adjusted price index (given prices of the outside divisible 

goods and a parameter that characterizes the demand of the differentiated product). The theoretical 

basis assumed for the price-setting regime is the assumption of oligopolistic competition, as adapted to 

the case with probabilistic discrete choice demand by Anderson et al. (1992). Other related works in 

this area include Crawford (1997), Feenstra (1995), Jonker (2002) and Song (2005). However, the 

approaches taken by these authors differ from Trajtenberg (1990) and ours. 

 The empirical application aims at estimating quality adjusted price indexes for new 

automobiles in Norway from 1994 to 2002. The main findings are that the standard Laspeyres index 

underestimates the “true” quality adjusted index for some years and overestimates it in other years. 

Moreover, we find that the conventional hedonic price index more or less yields the same figures as 

the Laspeyres index.  

 The paper is organized as follows. In the next section, we discuss the approach proposed by 

Trajtenberg (1990). In Section 3, we review some problems with the interpretation of the hedonic 

regression method. Finally, in Section 4, we discuss an empirical application in a discrete choice 

setting, namely the market for new automobiles in Norway. To compute the quality adjusted price 

index for new automobiles, it is necessary to estimate a key parameter in the demand relation. Here, 

we apply recent likelihood-based methods (Vitorino, 2004) to estimate an equilibrium model under the 

assumption of oligopolistic competition. 

                                                      
1 There does not seem to be a generally accepted use of the label “hedonic methods”. For example, some authors use the 
terminology hedonic method to mean regression models with prices as the dependent variable and product attributes as 
independent variables (hedonic regression), whereas others use hedonic in a much more general sense. In this paper, we shall 
use the term “hedonic regression” in the same way as Trajtenberg (1990) to mean regression models with log prices as 
dependent variables and product attributes as independent variables. 
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2.  Construction of quality adjusted price indexes for discrete 
goods  

In this section, we discuss the construction of exact quality adjusted price indexes for differentiated 

products. We start by discussing the assumptions about preferences and proceed by investigating their 

implications in the context of price index theory.  

2.1. The case with multinomial logit demand 

We consider a market with a differentiated product (for example, automobiles). Each consumer 

purchases at most one variant of the product in each period, or alternatively, in addition to quantities 

of divisible goods. To make the exposition consistent with the empirical application below, we assume 

that the variants are classified into separate groups indexed by 1,2,..., .g S=  That is, the product 

variants are classified along two dimensions; first they are divided into separate groups, and second 

each group contains different group-specific variants. For example, in the automobile market the 

groups may be different body gr|oups such as Sedan, Station wagon, etc. Let ( )tB g be the set of 

variants within group g that are available in the market at time t. Consumer i has utility function 

)(gU itj of variant j in group g at period t, which is assumed to have the form 

(2.1) 
( )( )

( ) ( ) ( ),
it tj

itj tj itj
t

m w g
U g v g g

p

θ
ε

−
= + +  

where itm represents income, wtj(g) is the price of variant j in group g, vtj(g) is a function of attributes 

of variant j in group g, pt is a price index for the divisible (outside) goods, θ  is a positive constant and 

εitj(g) are random variables that represent unobserved heterogeneity in tastes. The alternative of not 

buying is indexed by 0j g= = , where 0 (0)it it tU m p=θ . The terms ( )tjv g , 1, 2,...t = , 1, 2,...,s S= , 

can be interpreted as a quality indicator that is supposed to capture such effects as the fluctuations in 

average population popularity of variant j in group g. In this paper, we assume that the random error 

terms are i.i.d., independent of the other terms of the utility function and with extreme value c.d.f. 

(2.2) ( ) ( )( ) exp −≤ = − x
itjP g x eε . 

It is well known (cf. McFadden, 1984) that this implies that  

(2.3) ( ) ( )
( )( )

( )

exp ( ) ( )
( ) max max ( ) ( )

exp ( ) ( ) 1∈

∈

−
= = ≡

− +∑ ∑t

t

tj tj

itj itk tj
r k B r

tk tk
r k B r

v g w g
P U g U r Q g

v r w r

θ
θ
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for ( ),∈ tj B g  whereas for 0j g= = , we have 

(2.4) ( ) ( )0 0
( )

( )

1
(0) max max ( )

exp ( ) ( ) 1∈

∈

= = ≡
− +∑ ∑t

t

it itk t
r k B r

tk tk
r k B r

P U U r Q
v r w r θ

, 

where ( ) ( )tj tj tw g w g p= . As is well known, the model given in (2.3) and (2.4) satisfies the 

Independence from Irrelevant Alternatives (IIA) property, which in some cases is known to be 

restrictive. 

2.2. The Trajtenberg approach 

Now, suppose that the parameters of the demand model given in (2.3) and (2.4) have been estimated. 

Then, one can readily calculate quality adjusted price indexes by means of the expenditure function as 

proposed by Trajtenberg (1990). We shall now explain Trajtenberg’s approach. Assume that the utility 

structure is given by (2.1) and let itV  denote the indirect utility conditional on the choice set, attributes, 

price and income, defined by 

(2.5) ( )0
( )

max max max ( ), )
∈

=
t

it itk it
g k B g

V U g U . 

It is well known (Trajtenberg, 1990) that the assumptions above lead to the following expression for 

the aggregate (mean) indirect utility 

(2.6) ( ) ( )0
( )

1 ( )

max max max ( ), log 1 exp ( ) ( )
t

t

S

t it itk it it tk tk
g k B g

g k B g

V EV E U g U m v g w g
∈ = ∈

  
= = = + + −     

∑ ∑θ θ . 

The interpretation of (2.6) is that it expresses mean indirect utility given the choice set, observed and 

unobserved attributes, prices and income. Let 1 2 1( (1), (1),... (2),...)t t t tv v v=v  and 

1 2 1 2( (1), (1),...., (2), (2),...).t t t t tw w w w=w  From (2.6), it follows that the corresponding aggregate 

(mean) expenditure function, ( ), , , ,t t t te p B uv w , is given by 

(2.7) ( ) ( )1

1 ( )

, , , , log 1 exp ( ) ( )
t

S

t t t t tk tk
g k B g

e p B u u v g w g−

= ∈

  
= − + −     

∑ ∑θ θv w , 

where u is the given utility level divided by θ . We define the quality-adjusted price index 

(Trajtenberg), tδ , as determined by 
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(2.8)  ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , , , , , , ,− − − − − − − − − − −− = −t t t t t t t t t t t t t t t t te p B u e p B u e p B u e p B uδv w v w v w v w , 

which is equivalent to 

(2.9) ( ) ( )1 1 1 1,1, , , / ,1, ,− − − −=t t t t t t t t te , B u e p p B uδv w v w . 

The interpretation of tδ is as follows: from period 1−t  to t, there has been a possible change in the 

choice set, the attributes and the prices of the discrete goods from ( )1 1 1, ,t t tB− − −v w  to ( ), ,t t tBv w . The 

left-hand side of (2.8) expresses the actual change in the mean welfare in a money metric measure. 

The right-hand side represents the change in the mean value given that the choice set is kept fixed and 

equal to the initial choice set with variants that have initial attributes, but where the initial prices are 

rescaled by the same factor tδ . This factor is determined so that the actual change in welfare becomes 

equal to the change in welfare caused solely by the scale transformation of the initial prices 

represented by tδ . Note that tδ  is a conditional index that only captures the welfare change of the 

discrete good. The interpretation of tδ  is as an index that represents the welfare effect of the actual 

change that has taken place in the prices, choice set and attributes from period 1−t  to t. From (2.4), 

(2.7) and (2.9), we find that tδ  is determined by the equation 

(2.10) ( ) ( )
1

1, 1, 1
1 ( ) 1 ( )

exp ( ) ( ) exp ( ) ( ) / .
t t

S S

tk tk t k t t k t t
g k B g g k B g

v g w g v g w g p p
−

− − −
= ∈ = ∈

   
− = −   

   
∑ ∑ ∑ ∑θ θδ  

The right-hand side of (2.10) is strictly decreasing in tδ  and, consequently, equation (2.10) determines 

tδ  uniquely. Once { ( )}tjv g have been specified, andθ and the parameters of { ( )}tjv g have been 

estimated, one can compute the price index by solving for tδ in the nonlinear equation (2.10). 

2.3. Further implications from the multinomial logit demand model 

A serious challenge one faces in the context of empirical application is how to specify the 

terms{ ( )}.tjv g  In general, these terms may vary over time in a way that is not captured by observable 

variant-or group specific attributes. To this end, we shall in this section explore a type of 

“semiparametric” approach, as we shall now explain. Note that it follows from (2.4) that (2.10) can be 

written as 

(2.11) ( )
1

1
0 1, 1, 1

1 ( )

1 exp ( ) ( ) / .
t

S

t t k t t k t t
g k B g

Q v g w g p p
−

−
− − −

= ∈

 
− = − 

 
∑ ∑ θδ  
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Furthermore, (2.4) implies that 

(2.12) ( )
0

( )
exp ( ) ( )= −tj

tj tj
t

Q g
v g w g

Q
θ . 

From (2.12) it follows that  

(2.13) ( ) ( )( )
1 1

1, 1, 1, 1 1,
( ) ( )

exp ( ) ( ) ( )exp 1 ( )
− −

− − − − −
∈ ∈

− = −∑ ∑
t t

t k t k t k t t t t k
k B g k B g

v g w g Q g p p w gθ δ θ . 

As a consequence, (2.11) and (2.13) imply that the price index is determined by 

(2.14) ( )( )
1

1
0 1, 1 1,

( )

1 ( )exp 1 ( )
t

t t k t t t t k
g k B g

Q Q g p p w g
−

−
− − −

∈

− = −∑ ∑ δ θ . 

Thus, when θ has been estimated, one can use (2.14) to compute the quality-adjusted price index by 

solving for tδ in (2.14) without relying on the specification and estimates of { ( )}.tjv g   

 One can often use a more simple formula derived from an approximation of the left hand 

side of (2.14). This approximation is close when 11 −− t t tp pδ  is small, which is usually the case. If so, 

it follows by a first order Taylor expansion of the left hand side of (2.14) that the approximate solution 

for the price index determined by (2.14) is given by 

(2.15) 1,0 0

1 1

1
1 t tt

t
t t

Q Qp

p y
δ

θ
−

− −

− 
≅ + 

 
, 

where ty  is the mean deflated expenditure of the discrete good in period t given by 

(2.16) 
( )

( ) ( ).
t

t tk tk
g k B g

y w g Q g
∈

=∑ ∑  

The formula in (2.15) is quite interesting because it shows that, in addition to the previous period’s 

expenditure on the discrete good, the change in the relative fraction of consumers who do not purchase 

a variant (or equivalently, the fraction of consumers who do purchase a variant) summarizes the 

welfare price effect of changes in tastes, prices and the choice set. As mentioned above, our approach 

to price index measurement accounts for the fact that people may prefer not to buy a new variant in a 

given period t (say), which implies an increase in 0.tQ This will happen if the unobserved quality 

attributes{ ( )}tjv g decrease in period t. Recall that this effect cannot be captured by the Laspeyres index 

because it gives no weight to individuals who do not purchase a car. Furthermore, recall that the index 

given in (2.15) takes into account that the choice set of available variants may vary from one year to 
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the next. In addition, this effect is not captured by the Laspeyres index. If the latent quality attributes 

{ ( )}tjv g were not changing over time, the Laspeyres index would overestimate the price effect because 

it does not take into account changes in consumers’ choice set and the possibility of no purchase. This 

is because, if the set of feasible variants increases from one period to the next, consumers will have 

more choices than before and therefore will be able to do better than before, and this welfare gain is 

unaccounted for in the Laspeyres index (Pakes et al., 1993). However, as the latent quality attributes 

may change over time, the sign of the difference between the Laspeyres price index and the quality-

adjusted price index developed in this paper is ambiguous. 

2.4. Aggregation of subindexes for discrete goods 

The Laspeyres and Paasche price indexes possess the property that one can conveniently combine 

subindexes to obtain aggregate indexes by adding the respective subindexes multiplied by the relevant 

budget shares. In this section, we shall discuss aggregation of subindexes for discrete goods. 

 Let ( )tV g  be the mean conditional indirect utility at period t given group g. Formally ( )tV g  

is defined by 

(2.17) ( )( )
( ) max ( )

t
t itk

k B g
V g E U g

∈
= . 

Similarly to (2.6), it follows that 

(2.18) ( )
( )

( ) log exp ( ) ( )
t

t it tk tk
k B g

V g m v g w gθ θ
∈

 
= + −  

 
∑ . 

The corresponding conditional mean expenditure function is given by 

(2.19) ( ) ( )1

( )

( ), ( ), , ( ), log exp ( ) ( )
t

t t t t tk tk
k B g

e g g p B g u u v g w g−

∈

 
= − − 

 
∑θ θv w . 

Similarly to (2.9), it follows that the price index for group g is determined by 

(2.20) ( ) ( )1 1 1 1( ), ( ),1, ( ), ( ), ( ) ( ) ,1, ( ),t t t t t t t t te g g B g u e g g w g p p B g u− − − −= δv w v . 

If we combine (2.18) and (2.20) it follows that the price index for group g, ( )t gδ , is determined by 

the equation 

(2.21) ( ) ( )
1

1, 1, 1
( ) ( )

exp ( ) ( ) exp ( ) ( ) ( )
t t

tk tk t k t k t t t
k B g k B g

v g w g v g w g g p pθ θ δ
−

− − −
∈ ∈

− = −∑ ∑ . 



10 

In Appendix B, we prove that, to a first-order Taylor approximation, we have that 

(2.22) 
1

1

( ) ( )

( )

t t
g

t
t

g

g y g

y g

δ
δ

−

−

≅
∑
∑

, 

where ( )ty g is the mean deflated expenditure within group g in period t, defined by 

(2.23) 
( )

( ) ( ) ( )
t

t tk tk
k B g

y g Q g w g
∈

= ∑ . 

Equation (2.22) states that one can obtain the aggregate price index for the differentiated good, say 

cars, in the same way as for the conventional Laspeyres index, namely by adding the subindexes 

weighted by their respective budget shares as of the previous period. 

 Finally, let us derive an approximate closed form expression for ( )t gδ , similarly to (2.15). 

Let ( )tQ g denote the fraction of consumers that purchase a variant within group g in period t. By first-

order Taylor expansion, we find that 

(2.24) 
1

1 1
1,0 0 1 1, 1,

( )

( )
( ) ( ) ( ) 1

t

t t
t t t t t k t k

k B g t

g p
Q Q Q g Q g Q w g

p

δθ
−

− −
− − − −

∈

 
= + − 

 
∑ , 

which implies that 

(2.25) 
( )1

1 1,0 0

1 1

( ) ( )
( ) 1

( )
t t t tt

t
t t

Q g Q g Q Qp
g

p y g

−
− −

− −

 −
 = +
 
 

δ
θ

. 

Similarly to (2.15), the index formula in (2.25) depends crucially on the fraction of consumers that do 

not purchase any variant, and in addition on the fraction of the demand that is allocated to group g. 

Thus, this means that the welfare effect of changes in prices of the respective variants and changes in 

the choice sets are fully captured through these fractional consumption terms, provided the 

approximation based on the first order Taylor expansion is viewed as sufficiently accurate. 

3.  Empirical analysis of the market for new automobiles in 
Norway 

In this section, we report empirical results based on the methods discussed above for index 

construction.  
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3.1. Data 

The automobile sales data are obtained from the Information Council for Road Traffic, Inc. These data 

contain information about prices from each of the individual automobile import firms. The sales data 

on quantities contain information about the number of cars sold in each month, from 1993 until 2001, 

on the following disaggregate level: brand, make, body, number of doors, engine performance, engine 

volume and number of driveshafts. The set of automobile variants are all the combinations of body, 

make, model, engine performance and number of driveshafts. The price data are based on the prices 

set by the firms that import automobiles, and may therefore differ somewhat from the actual market 

prices. The prices include indirect taxes, but do not include the cost associated with registration and 

possible transportation costs associated with delivery. The cost of possible supplementary equipment 

is not included in the price. There are some problems associated with the merging of the price data file 

and the file on quantities. The reason for this is that different definitions of categories have been used 

sometimes for the price data and the quantity data. In addition, the price data and the quantity data are 

given on different aggregation levels. In particular, there seems to be problems with linking quantity 

and price data for those brands for which the demand is low. No information about possible 

supplementary equipment is recorded. We have chosen to estimate yearly prices as the average of the 

prices in January, June and December each year. Data on cars privately imported to Norway are not 

available. Summary statistics of the data are given in Appendix C. 

3.2. Estimation of the multinomial logit demand model with endogenous prices 

As mentioned in Section 2, in many cases, it is not possible to explain fluctuations in { }( )tjv g  by 

observable attributes. As regards automobiles, Table C1 shows that the fractional demand for sedan 

cars decreases from 0.34 in 1994 to 0.13 in 2002, whereas the fractional demand for station wagons 

increases from 0.25 in 1994 to 0.51 in 2002. The prices (Table C3) do not change much during this 

period and Table C2 shows that, for both types of car, the increase in the choice sets of variants is 

large. Thus, neither price changes nor other observable attributes are capable of explaining these 

trends in the demand. In the empirical analysis, the groups of variants are the three body types 

“Combi”, “Sedan” and “Station wagon”. We assume that 

(3.1) ( ) ( ) ( ) ( )= + + +tj tj j t tjv g z g g gβ ξ µ η , 

for ( )∈ tj B g , where the zj-variables we use are fuel consumptions (liters per km) and engine 

performance, and β  is a vector of unknown parameters. The term ( )t gµ  is the mean utility of the 

variants within body group g in period t, whereas ( )j gξ  represents the deviation in mean utility of 
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variant j from the mean utility ( )t gµ  within a given body group g. Note that ( )j gξ is assumed not to 

depend on time. This restriction is a crucial for achieving identification. The terms { }( )tj gη  are zero 

mean disturbances.  

 Next, consider the estimation procedure. From (2.3) and (3.1), it follows that the probability 

of purchasing variant j in period t, given that variant j and variant 1 belong to body group g, is equal to 

(3.2) 1 1 1
1

( )
log ( ) ( ( ) ( )) ( ( ) ( )) ( ) ( )

( )
tj

j tj t tj t tj t
t

Q g
g z g z g w g w g g g

Q g
ξ β θ η η∗ 

= + − − − + − 
 

 

for ,1 ( )tj B g∈ , where 1( ) ( ) ( ).j jg g gξ ξ ξ∗ = −  

 Next, consider the price-setting rule. We assume that prices are determined according to a 

setting with oligopolistic competition. It is assumed that each “producer” produces only one variant of 

automobile. Let ctj(g) denote the marginal cost of firm j (the firm that produces variant j) of type g in 

period t. Then, the expected profit of firm j of type g, conditional on prices, equals 

(3.3) ( ) ( )( ) ( ) ( )tjg t tj tj tj t tjw g c g Q g M K= − −π w , 

where tM  is the total number of consumers in year t and Kjt represents fixed costs. In the following, 

we assume that the quality indicators { }( )jtv g  are exogenously given to the firms, and that firm j of 

type g maximizes (3.3) with respect to its own price wjt(g), taking the prices of other firms as given. In 

reality this assumption may not hold; it could be that firms take into account the demand for different 

“qualities”when setting prices. The first-order conditions that correspond to this maximization 

problem are given by 

(3.4) 
( )( )

1
( ) ( )

1
tj tj

tj

w g c g
Q g

= +
−θ

, 

for 1,2,...=j , where ( )jtc g ( ) .jt tc g p=  Recall that{ ( )}tjQ g depend on prices, although this is 

suppressed in the notation. Anderson, Palma and Thisse (1992) have shown that there exists a unique 

price equilibrium determined by (3.4). Note that since marginal costs are positive the price equilibrium 

condition in (3.4) implies that ( )( )( ) 1 1.tj tjw g Q gθ − >  As regards the empirical specification of the 

price equation, we assume that  

(3.5) ( ) ( ) ( ) ( )= + +tj j t tjc g b g d g gκ , 
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with the normalization ( ) 0,jj
b g =∑ where ( )jb g  and ( )td g  are unknown parameters and { ( )}tj gκ  

are random error terms. Note that similarly to the specification of the latent quality attribute above, 

{ ( )}jb g  does not depend on time. Next, we assume that the random error terms { }( )tj gη are 

independent and normally distributed with zero mean and variance 2 ( ),s g depending on g, and 

{ }( )tj gκ  are independent and normally distributed with zero mean and variance 2 ( ),r g depending on 

g. Moreover, ( )tj gκ  and ( )k gτη  are independent for all j, k, t and τ. In addition, the error terms in 

different body groups are assumed to be independent. Note that { ( )}tjw g  are endogenous because they 

depend on the endogenous fractional demands, { ( )},tjQ g  through (3.4). Consequently, we cannot 

estimate θ  by OLS. For the same reason we cannot estimate the price relations in (3.4) by OLS. In 

Appendix B, we demonstrate that the likelihood function is given by 

 

(3.6)

{ }
( ) ( )

( )

2

*
1 1 2

( )\ 1 1

2

2
( )

( ) 1
log log ( ) ( ) ( ) ( ) ( ) log ( )

( ) 2 ( )

1 1
( ) ( ) ( ) log ( ) log | |,

2 ( )1 ( )

t

t

tj
j tj t tj t

g t j B g t

tj j t
g t j B g tj

Q g
L g z g z g w g w g s g

Q g s g

w g c g b g r g J
r gQ g

ξ β θ

θ

∈

∈

    = − − − − + − +       

  
  − − − − + +
  −   

∑ ∑ ∑

∑ ∑ ∑

 

 

where J is the Jacobian associated with the transformation of the disturbances to the dependent 

variables, when the disturbances are viewed as functions of the dependent variables (prices and 

quantities sold) given by (3.2), (3.4) and (3.5). It turns out that this Jacobian does not depend on any of 

the unknown parameters of the model (Vitorino, 2004). In the actual estimation procedure, { }( )tjQ g  

are replaced by their corresponding observed frequencies { }ˆ ( )tjQ g . However, the errors 

{ }ˆ ( ) ( )−tj tjQ g Q g  are negligible. The loglikelihood function in (3.6) takes into account the fact that 

prices and fractional demands are endogenous variables. The estimation procedure now goes as 

follows. First, we maximize logL with respect to the parameters { * ( )j gξ }, { ( )}jc g  and { ( )}.tb g The 

corresponding first-order conditions for this problem can be readily solved for these parameters. 

Second, we insert the formulas for the parameters { * ( )j gξ }, { ( )}jc g  and { ( )},tb g  obtained from the 

first-order conditions, into the loglikelihood function in (3.6) and we subsequently maximize the 

resulting loglikelihood function (given in (B.13) in Appendix B) with respect to the remaining 
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parameters β, θ, { ( )}r g  and { ( )}.r g  More precise details of this procedure are given in Appendix B. 

The estimates of θ  and the variances r(g) and ( ), 1,2,3=s g g , are given in Table 1 above.  

 From Table 1, we see that the observable attributes “fuel consumption” and “engine 

performance” are not significant. Thus, “price” is the only observable attribute that correlates 

significantly with demand. 

 

Table 1. Estimates of structural parameters 

Variable Parameter Estimate t-statistics 

Fuel consumption β1         0.2019 × 10–2   1.4 

Engine performance (kW) β2         0.2018 × 10–2   1.4 

Price 510−×  θ         1.4985 16.9 

Standard errors of tastes:    

    Combi s(1) 0.952 54.9 

    Sedan s(2) 1.270 60.6 

    Station wagon s(3) 1.009 61.4 

Standard errors of marginal costs:    

    Combi r(1) 0.112 55.5 

    Sedan r(2) 0.284 60.7 

    Station wagon r(4) 0.218 62.1 

 

 We also carried out an estimation based solely on the demand relation in (3.2) and found that 

the parameters β1, β2, r(1), r(2), r(3) and θ are practically equal to the estimates reported in Table 1. 

This means that OLS estimation based on (3.3) can be applied in this case. Therefore, we conclude 

that, without further knowledge or assumptions about marginal costs, the prices set by the firms in 

such a way that they are only weakly correlated with the disturbances, { }( ) .tj gη  Alternatively, prices 

may be determined by some mechanism other than the simple oligopolistic price setting theory 

suggested above. Hence, the assumption of normally distributed error terms is not needed. However, 

an obvious weakness with our price-setting model in (3.4) is that only new cars are taken into account; 

the market for used cars is neglected. 

3.3. Calculation of a quality adjusted price index for the nested multinomial logit model 

In this section, we consider the calculation of price indexes based on the nested multinomial logit 

demand model for new automobiles. Let ( )tjN g  denote the number of variants of type j within body 

type g sold in year t. From (2.14) it follows that 
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(3.7) ( )( )
1

1
1, 0

1 1, 1
( ) 1 1,0

ˆ( ) 1
exp 1 ( )

ˆ 1−

−
−

− − −
∈ − −

−
− =

−∑ ∑
t

t k t
t t t t k

g k B g t t

N g Q
p p w g

N Q
δ θ . 

The fraction 1−t tp p  is estimated by the conventional Laspeyres index for the goods other than new 

cars. A simple version of the conventional Laspeyres index for new cars, L
tδ , is calculated as 

 

Table 2. Different of price indexes for all new automobiles (percent), multinomial logit model 

All automobiles 1994 1995 1996 1997 1998 1999 2000 2001 2002 

The Laspeyres 
index for new 
automobiles 

100 102.5 98.2 100.8 102.2 101.9 103.1 106.5 108.2 

The Laspeyres 
index for other 
goods (pt) 

100 103.6 104.4 107.1 109.7 112.6 116.4 119.9 121.4 

Hedonic 
regression 

100 102.1 96.3 98.6 98.7 97.8 97.8 104.3 106.0 

Quality adjusted 
index, 1.5θ =  
(estimated value) 

100 101.4 94.1 97.7 97.9 106.0 111,2 115.2 116.2 

First-order 
approximation of 
the quality 
adjusted index, 
(eq. 2.15), θ = 1.5 

100 101.5 93.1 97.1 97.8 105.9 111.7 116.3 117.8 

Quality adjusted 
index with other 
values of θ  

         

θ = 2.1 100 102.0 97.0 100.4 101.2 108.0 112.8 116.6 117.8 

θ = 1.9 100 101.9 96.2 99.7 100.3 107.5 112.4 116.3 117.4 

θ = 1.7 100 101.7 95.3 98.8 99.2 106.9 111.9 115.8 116.8 

θ = 1.3 100 101.1 92.5 96.2 96.1 105.0 110.4 114.3 115.3 

θ = 1.1 100 100.6 90.4 94.3 93.7 103.5 109.1 113.2 114.0 

θ = 0.9 100 99.9 87.4 91.4 90.3 101.3 107.3 111.4 112.1 

Fraction of 
persons 16–66 
years of age that 
buy a new car 

0.030 0.032 0.041 0.039 0.041 0.034 0.032 0.031 0.031 

 



16 

(3.8) 
1,

( )

1, 1,
( )

( ) ( )

( ) ( )

−
∈

− −
∈

=
∑ ∑
∑ ∑

t

t

tj t j
g j C gL

t
t j t j

g j C g

w g N g

w g N g
δ , 

where 1( ) ( ) ( )−= ∩t t tC g B g B g . In Table 2, we report the calculation of different price indexes. We see 

that the Laspeyres index is higher than the quality adjusted price index up to 1997, whereas, from 

1998 onwards, it yields lower figures than the quality adjusted index. The quality adjusted index drops 

from 101.4 percent to 94.1 percent from 1995 to 1996, and increases rapidly from 97.9 percent in 1998 

to 111.2 percent in 2000. One important reason why the increase in the demand from 1995 to 1996 is 

so high is that the condemnation deposit was increased in 1996 in order to increase condemnation and 

stimulate the purchase of new and more environmentally efficient cars.  

 We have also used the approximation formula given in (2.15) to calculate the quality 

adjusted price index. From Table 2 we see that the figures produced by (2.15) are close to the exact 

index figures determined by (3.7). 

 Moreover, we have applied the hedonic regression method to calculate a hedonic price index. 

We refer to Appendix A for an explanation and critique of the hedonic method. The hedonic 

regression estimates are given in Table C7 in Appendix C. We note that from 1999 the hedonic index 

yields considerably lower figures than the quality adjusted price index and it is also somewhat lower 

than the Laspeyres price index.  

 Further down in Table 2, we have calculated the quality adjusted index for different values 

of θ. From the results, we can conclude that the index changes little when θ  varies from 1.3 to 1.7. 

Even when θ  varies from 1.1 to 1.9, the changes in the index are moderate in most cases.  

 From Table 2 we note that the fluctuations in the quality adjusted price index follow closely 

the fluctuations in the fraction of consumers that purchase (do not purchase) a car (last row in the 

table). The reason for this is apparent when we look at the index formula (2.15). Recall that this does 

not mean that the effects of changes in prices, choice sets and latent quality attributes are ignored, but 

simply that, under the assumptions of our demand model, these effects are captured by the fraction of 

consumers that do not purchase a variant (in the respective periods). 

4. Conclusion 
In this paper, we have developed a particular approach for calculating quality adjusted price indexes in 

markets with differentiated products. We have discussed how one can use the theory of discrete choice 

to derive exact price indexes that account for quality changes. Our approach is an extension of 

Trajtenberg’s method that explicitly takes into account the discrete choice setting, allowing for 
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endogenous time-varying latent quality attributes and the option of not purchasing any variant of the 

discrete good. A key result established is that the fraction of consumers that do not purchase a variant 

of the differentiated product, and the mean population expenditure on the variants purchased, 

constitute sufficient statistics for the calculation of the quality adjusted price index, given the prices of 

the outside divisible goods and the price parameter θ  in the demand function. 

 Our empirical application is based on data on sales of new automobiles in Norway. The results 

show that adjusting for quality implies a decrease in the corresponding price index until 1998 

compared with the Laspeyres price index for automobiles, and an increase from 1999 to 2002. In parti 

cular, the fluctuation of the quality adjusted index parallels the fluctuations in the fraction of 

consumers that do not purchase a car (or equivalently, the fraction or persons that purchase a car). For 

example, from the last row in Table 2 we note that the fraction of persons that purchase a car increases 

a lot from 1995 to 1996 and decreases rapidly from 1998 to 1999. The corresponding quality adjusted 

price index decreases sharply from 1995 to 1996 and increases sharply from 1998 to 1999. This is due 

to the fact that, in addition to the mean population expenditure on the discrete product, changes in the 

fraction of consumers that do not purchase a car fully captures the cost of living effects of changes in 

choice sets, prices and latent quality.  

We have also applied the hedonic regression method. The results show that the hedonic 

regression method produces lower estimated than the quality adjusted price index from 1999. 

 The methodology applied in this paper depends crucially on the specification of the demand 

model. In our model, the utility function is linear in income, and this property implies that the demand 

model does not depend on income. Researchers such as Pakes et al. (1993), Berry et al. (1995), Nevo 

(2003) and Vitorino (2004) have carried out empirical demand analyses based on a more general 

structure of the demand model with time-constant latent quality attributes. However, only Pakes et al. 

(1993) have calculated quality adjusted price indexes, under the restriction that the latent quality 

attributes are constant over time. Third, the modeling framework discussed in this paper is purely 

static, whereas automobiles are important durables that cannot be satisfactorily analyzed without an 

intertemporal modeling framework that incorporates consumers’ expectations and uncertainties. 

Unfortunately, however, this is a very demanding task and is far beyond the scope of the present 

analysis. 
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Appendix A 

The hedonic regression approach 
For the sake of relating the theoretical development above to the conventional literature on hedonic 

price regressions, we now consider the deterministic case with no random error term in the utility 

function given in (2.1). In this case, we shall review a possible theoretical motivation for the hedonic 

regression approach. The discussion is similar to Trajtenberg (1990, pp. 35–37). Let 

 0 ,
 
 
 

∑ k tk
k

U x x µ  

be the utility function of the consumers where xk is the quantity of product variant 0k > , 0x  represents 

the quantity of other goods, U is a quasi-concave and increasing function and 0tkµ >  are weights that 

are supposed to represent “quality”. The form of the utility function means that there is perfect 

substitution between quality and quantity. The utility function above is equal for all consumers. In this 

case, it follows that only a single variant will be demanded unless the quality-adjusted prices are equal 

(A.1) 1

1

tj t

tj t

w w

µ µ
= . 

The quality price index in this case can thus be expressed as 

(A.2) 1 1

1,1 1,1

t t
t

t t

w

w

µδ
µ− −

= . 

Assume now that 

(A.3) log
 

= 
 

tj
tj

t

z
p

µ
β , 

where ztj is a vector of suitable observed attributes of variant j. Then, we can write (3.1) as 

(A.4) ln log= + +tj t tj tw z pα β , 

where 

 1 1lnt t twα µ= − . 

Hence, the period specific intercept αt can be used to compute δt because (A.2) implies that 
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(A.5) 
( )1

1

exp −

−

−
= t t t

t
t

p

p

α α
δ . 

 There are several shortcomings with the conventional hedonic regression approach outlined 

here. First, as population heterogeneity is ignored, eq. (A.1) must hold in order to be consistent with 

the observed fact that there is positive demand for each variant in the market. However, this implies 

that consumers will be indifferent with respect to the different variants, which seems rather unrealistic. 

Second, the hedonic approach ignores the effect of variations in the choice set. Specifically, in a 

dynamic market, some variants disappear whereas others emerge as a result of innovations. The 

quality adjusted index approaches discussed in Section 2 explicitly take the choice set Bt into account, 

whereas the hedonic approach fails in this respect. We refer readers to Hulten (2003) and the 

references therein for a critical review of additional aspects of the hedonic regression method. 

Computed from Estimated Demand Systems.  
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Appendix B 
 

Aggregation of subindexes; proof of eq. (2.22): 

Let 

 
( )

( ) ( ).
t

t tk
k B g

Q g Q g
∈

= ∑  

The left hand side of (2.21) is equal to 0( )t tQ g Q  so that (2.21) can be expressed as 
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We immediately note that when (B.1) is aggregated over g the left hand side of (B.1) becomes equal to 

1
0 1tQ− − . Hence (2.11) and (B.1) imply that 

(B.2) 
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Similarly to (2.14) it follows that (B.1) can be written as 

(B.3) ( )( )
1

1 1
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and furthermore 
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A first order Taylor expansion of both sides of (B.4) yields 

(B.5) 
1

1

1
1, 1,

( )

1
1, 1,

( )

( ) 1 1 ( ) ( )

( ) 1 1 ( )

t

t

t
t k t t k

g k B g t

t
t k t t k

g k B g t

p
Q g g w g

p

p
Q g w g

p

−

−

−
− −

∈

−
− −

∈

  
+ −     

  
≅ + −     

∑ ∑

∑ ∑

δ θ

δ θ

 

which implies that 
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(B.6) 1
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 This completes the proof. 

  Q.E.D. 

 

Maximum likelilhood estimation; proof of the claim that the likelihood function has the 
form given in (3.6): 

Consider first the demand relations in (3.2). The part of the likelihood function that corresponds to 

(3.2) for body group g at time t (disregarding the Jacobian) equals 

(B.7)
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where the expectation is taken with respect to { }1( )t gη . Let 
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Then one can express (B.7) as 
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Now observe that (3.2) implies that ( ) 0,tR g⋅ ≈  so that (B.8) reduces to 

 
{ }

( )2 2 2 2
1

( )\ 1

exp ( ( ) 2 ( ) log ( )) exp ( ) ( ) 2 ( )
t

tj t t
j B g

R g s g s g E g n g s g
∈

 
− − ⋅ −  
 

∑ η  

where ( )tn g  is the number of variants in { }( ) \ 1tB g . 
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 Furthermore, we have that 
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By change of variable; 1 ( ) ( )ty x n g s g= +  we obtain that the last integral reduces to 
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Thus, we have proved that (B.8) equals 
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Hence, we have proved that (B.7) can be written as 
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Consequently, it follows from (3.4), (3.5) and (B.9) that the loglikelihood function is given by  
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where J is the Jacobian associated with the transformation of variables, from 
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and 

(B.12) ( )
1
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κ
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It can be readily demonstrated (see Dagsvik and Liu, 2002) that the Jacobian J is independent of the 

unknown parameters of the model. See also Vitorino (2004) who has demonstrated this for the case 

with few variants. The Jacobian is therefore irrelevant for the solution of the maximization problem 

above, and it can be removed from the likelihood function. Let ( )tjN g  be the number of variants sold 

of type j within body type g, Nt(g) the number of variants within Bt(g), and Nt the total number of 

variants sold. For notational convenience let us now introduce the notation 
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where 0tQ  denotes an estimate of 0tQ  and T is the number of years we have observations for. If we 

use the first order conditions and solve for the intercepts and subsequently insert into the likelihood 

function we obtain that the remaining parameters θ, 2 ( )s g , 2 ( )r g , 1,2,3=g , can be estimated by 

maximizing 
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Appendix C 
 

Summary statistics 

Table C 1. Number of new cars sold by year and body of car 

 Body of car 

Year Combi Sedan Station wagon Other carmakers 

 Fractions Levels Fractions Levels Fractions Levels Fractions Levels 

Total 
sales 

1994 0.41 32 226 0.34 26 406 0.25 19 605 0.003    246   78 483 

1995 0.43 36 043 0.33 28 307 0.23 19 790 0.004    369   84 509 

1996 0.46 49 794 0.27 29 810 0.25 27 672 0.012 1 276 108 552 

1997 0.40 40 983 0.28 28 495 0.31 32 465 0.014 1 414 103 357 

1998 0.39 41 608 0.22 23 568 0.38 40 677 0.016 1 667 107 520 

1999 0.36 32 229 0.20 18 064 0.42 37 736 0.015 1 354   89 383 

2000 0.37 31 336 0.18 15 005 0.44 37 828 0.015 1 323   85 492 

2001 0.35 29 496 0.17 14 514 0.46 38 583 0.013 1 081   83 674 

2002 0.35 29 312 0.13 10 927 0.51 42 815 0.013 1 086   84 140 

 

Table C 2. Number of variants of cars in the market each year 

Type of body 

Year 
Combi Variants 

entering 

Variants 
dis-

appearing 
Sedan Variants 

entering 

Variants 
dis-

appearing 

Station 
wagon 

Variants 
entering 

Variants 
dis-

appearing 

1994 149   177   129   

1995 153   174   124   

1996 186   214   170   

1997 162   188   194   

1998 173   195   226   

1999 158   205   244   

2000 182   221   271   

2001 184   237   277   

2002 203   239   303   
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Table C 3. Mean deflated prices across cars within type of body. NOK 

Type of body/Year min. max. mean st.dev. 

Combi     

1994 89 450 637 600 219 286 90 705 

1995 84 336 583 398 215 598 85 218 

1996 85 462 488 506 198 353 70 468 

1997 92 904 463 658 193 107 66 530 

1998 89 304 446 126 189 628 64 004 

1999 95 826 468 561 187 250 56 987 

2000 95 132 453 265 183 292 55 149 

2001 97 262 453 628 194 480 60 224 

2002 102 883 445 634 194 556 59 859 

Sedan     

1994 110 533 1 267 650 327 336 179 339 

1995 112 058 1 423 745 329 694 201 014 

1996 109 642 1 577 267 323 329 213 100 

1997 111 173 1 554 622 328 238 207 109 

1998 101 094 1 312 671 330 469 190 127 

1999 98 490 1 171 942 316 451 167 568 

2000 127 513 1 262 887 323 045 176 836 

2001 130 901 2 551 376 371 085 256 676 

2002 133 773 2 606 575 371 043 244 822 

Station wagon     

1994 117 756   765 800 342 997 140 346 

1995 114 431 1 008 340 347 671 158 999 

1996 125 239   871 648 319 025 127 045 

1997 128 758 1 101 774 328 810 149 672 

1998 121 263   935 886 302 236 140 331 

1999 117 022   882 179 273 770 115 359 

2000 107 732   932 131 291 965 143 046 

2001 107 812   929 358 309 760 144 710 

2002 112 109 1 093 081 320 761 156 064 
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Table C 4. Number of new combi cars sold by year and make of car 

Make of car 
Year 

Alfa Romeo Audi BMW Citroen Daewoo Daihatsu 

1994 -  -  134  2370  -  219  

1995 -  -  150  1817  130  58  

1996 -  273  282  2035  251  19  

1997 -  1142  228  1426  257  278  

1998 -  948  106  1440  178  111  

1999 -  853  47  929  72  229  

2000 -  922  13  541  219  367  

2001 113  731  100  935  262  180  

2002 93  697  128  1125  58  204  

Make of car 
Year 

Fiat Ford Honda Hyundai Kia Lada 

1994 637  3142  354  516  -  94  

1995 1022  3465  695  2209  -  231  

1996 651  4159  1259  3546  372  136  

1997 871  4378  1236  2196  680  85  

1998 715  3146  630  1866  716  57  

1999 273  2973  205  1327  601  12  

2000 306  2885  120  1336  274  -  

2001 507  2476  407  933  308  -  

2002 469  2477  639  844  632  -  

Make of car 
Year 

Mazda Mitsubishi Nissan Opel Peugoet Renault 

1994 1947  928  2336  3611  2715  2117  

1995 1334  741  2244  3495  2161  2446  

1996 2849  1959  3091  4549  2528  2939  

1997 2649  984  3538  3859  1872  2191  

1998 1582  990  2763  4780  1176  1634  

1999 1407  728  1657  3396  2282  1197  

2000 1129  562  2076  2125  2345  900  

2001 792  441  1309  2546  3027  1371  

2002 701  381  1166  1697  3403  920  
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Table C 4 (cont.). Number of new combi cars sold by year and make of car 

Make of car 
Year 

Rover Saab Seat Skoda Subaru 

1994 -  949  402  288  133  

1995 -  1844  637  724  135  

1996 386  2209  621  844  560  

1997 245  1959  739  977  848  

1998 245  1568  765  1548  214  

1999 213  1689  660  1265  159  

2000 102  1436  655  1570  100  

2001 42  1122  578  906  118  

2002 29  963  441  722  119  

Make of car 
Year 

Suzuki Toyota Volkswagen Volvo 

1994 237  3797  5299  208  

1995 248  3099  7199  100  

1996 351  4806  9259  58  

1997 305  5094  7382  -  

1998 324  4661  10039  -  

1999 188  4670  7019  -  

2000 348  5443  6711  -  

2001 754  5066  4543  -  

2002 823  5373  5324  -  
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Table C 5. Number of new sedan cars sold by year and make of car 

Make of car 
Year 

Alfa Romeo Audi BMW Bentley Buick Cadillac 

1994 -  1008  265  -  2  10  

1995 -  1712  145  -  -  4  

1996 -  2128  891  -  -  -  

1997 -  2298  1561  -  -  -  

1998 218  1772  1845  -  -  -  

1999 341  1305  1560  -  -  -  

2000 169  950  1355  -  -  -  

2001 96  1735  1114  2  -  -  

2002 42  944  979  1  -  -  

Make of car 
Year 

Chevrolet Chrysler Daewoo Daihatsu Fiat Ford 

1994 5  230  -  3  34  1351  

1995 -  2090  348  -  38  1018  

1996 8  1730  408  -  5  1169  

1997 17  1136  412  -  62  1280  

1998 -  783  219  -  37  669  

1999 57  755  90  -  17  603  

2000 49  387  109  -  -  450  

2001 12  97  121  -  -  878  

2002 4  100  3  -  -  373  

Make of car 
Year 

Honda Hyundai Jaguar Kia Lada Lancia 

1994 1180  2026  -  130  186  -  

1995 727  1981  -  998  84  -  

1996 1090  1658  -  787  33  1  

1997 953  1374  -  577  10  11  

1998 499  709  61  233  7  2  

1999 490  576  54  57  1  10  

2000 464  527  24  144  -  8  

2001 365  287  19  33  -  -  

2002 56  120  36  18  -  -  
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Table C 5 (cont.). Number of new sedan cars sold by year and make of car 

Make of car 
Year 

Lexus Maserati Mazda Mercedes 
Benz 

Mitsubishi Nissan 

1994 -  -  941  -  2176  1828  

1995 -  -  938  -  2639  2172  

1996 -  -  1544  -  2383  2650  

1997 -  -  1074  -  3109  2485  

1998 -  -  1021  -  2706  1831  

1999 82  -  709  -  1520  975  

2000 129  1  731  -  929  986  

2001 74  -  565  1231  509  623  

2002 43  -  530  1378  536  238  

Make of car 
Year 

Opel Peugeot Renault Rover Saab Seat 

1994 4111  1371  286  -  180  222  

1995 3375  1156  129  -  230  525  

1996 4686  2376  28  219  147  346  

1997 2988  1449  488  248  174  330  

1998 1868  684  220  254  674  187  

1999 2102  667  21  441  434  136  

2000 1378  809  17  311  247  182  

2001 874  770  27  149  277  159  

2002 1064  352  2  94  506  104  

Make of car 
Year 

Skoda Subaru Suzuki Toyota Volkswagen Volvo 

1994 -  326  95  3552  1734  3292  

1995 -  256  222  3396  1417  2897  

1996 -  310  551  3995  1329  1254  

1997 -  249  225  3628  4709  1654  

1998 -  120  133  3278  2033  1620  

1999 -  120  153  2022  2290  1401  

2000 -  223  4  1871  1909  896  

2001 -  199  -  1388  1612  1315  

2002 134  227  -  1223  945  879  
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Table C 6. Number of new station wagons sold by year and make of car 

Make of car 
Year 

Audi BMW Chevrolet Chrysler Citroen Daewoo 

1994 1292  31  -  106  360  -  

1995 541  11  7  125  689  -  

1996 1935  207  2  76  1465  -  

1997 2028  629  3  473  1465  33  

1998 2623  663  4  186  1196  6  

1999 1951  697  2  97  1336  3  

2000 1714  1052  2  326  1476  118  

2001 1676  1017  1  122  1407  206  

2002 2184  953  -  35  1615  15  

Make of car 
Year 

Daihatsu Dodge Fiat Ford Ford USA Honda 

1994 -  -  44  5252  -  1  

1995 -  -  36  5429  -  28  

1996 -  6  16  3217  -  68  

1997 -  2  189  4586  27  1137  

1998 205  -  267  3275  25  2032  

1999 213  1  104  3120  -  1809  

2000 147  -  74  3077  -  1559  

2001 95  -  76  4596  -  927  

2002 148  -  1  3585  -  1486  

Make of car 
Year 

Hyundai Jeep Kia Lada Land Rover Lexus 

1994 -  51  7  -  -  -  

1995 -  59  38  17  -  -  

1996 1  42  30  11  -  -  

1997 28  29  19  2  48  -  

1998 68  18  28  2  158  -  

1999 1137  70  197  -  752  -  

2000 2032  31  206  -  602  16  

2001 1809  7  158  -  271  17  

2002 1559  37  91  -  438  20  
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Table  C 6 (cont.). Number of new station wagons sold by year and make of car 

Make of car 
Year 

Mazda Mercedes 
Benz 

Mitsubishi Nissan Opel Peugeot 

1994 299  -  1044  843  3032  736  

1995 68  -  1088  114  3201  719  

1996 20  -  1394  220  3132  441  

1997 1  -  2206  589  5410  1542  

1998 1669  -  2005  1034  4385  1917  

1999 1735  -  2453  1015  5260  2033  

2000 1283  -  2040  894  4801  2400  

2001 866  890  510  581  4303  1957  

2002 833  786  1232  2160  2899  2921  

Make of car 
Year 

Pontiac Renault Rover Saab Seat Skoda 

1994 10  10  -  -  -  88  

1995 4  273  -  -  -  61  

1996 3  1679  -  -  -  847  

1997 -  2472  -  -  11  597  

1998 -  2225  -  -  315  652  

1999 -  1868  -  696  276  1617  

2000 -  2246  -  479  156  1729  

2001 -  1914  37  616  119  1949  

2002 -  1812  41  756  94  1551  

Make of car 
Year 

Sangyong Subaru Suzuki Toyota Volkswagen Volvo 

1994 1  134  20  1036  3629  2155  

1995 4  130  43  1026  3199  3012  

1996 1  207  649  3997  5964  2361  

1997 1  409  602  4373  3277  3666  

1998 1  1605  2439  3909  5105  3917  

1999 8  1466  1690  3304  4591  1542  

2000 1  1248  1350  4840  4610  1310  

2001 3  990  994  5666  5615  1358  

2002 1  1214  806  6986  4826  2519  
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Table C 7. Hedonic regression for new cars wagon1) 

Variable 
Parameter 
estimate 

t-value 

Intercept 11.5331  756.6  

Fuel consumption×10-4 0.37  0.4  

Performance kw 0.0102  119.6  

1994 0.1600  16.6  

1995 0.1536  15.9  

1996 0.0987  11.0  

1997 0.0870  9.5  

1998 0.0544  6.1  

1999 0.0214  2.4  

2000 -0.0045  -0.5  

2001 0.0019  0.2  

Alfa Romeo 0.0097  0.4  

Audi 0.1708  14.0  

BMW 0.1443  10.9  

Bentley 0.2557  2.3  

Cadillac -0.0142  -0.1  

Chevrolet 0.2440  3.1  

Chrysler -0.0009  -0.0  

Citroen -0.0020  -0.1  

Daewoo -0.2297  -10.1  

Daihatsu -0.1466  -4.9  

Dodge 0.2076  2.6  

Fiat -0.1422  -6.5  

Ford -0.0272  -2.0  

Ford USA 0.3675  3.3  

Honda -0.0298  -1.7  

Hyundai -0.1959  -10.3  

Jaguar 0.0163  0.5  

Jeep 0.3651  13.1  

Kia -0.1310  -5.1  

Lada -0.4280  -11.8  

Lancia 0.0141  0.2  

Land Rover 0.3767  12.7  

Lexus 0.1761  3.3  

Maserati -0.1592  -1.0  

Mazda -0.0333  -2.2  
1) Reference year: 2002. Reference make is Volvo and reference body group  
is Station wagon. 
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Table C 7 (cont.) 

Variable 
Parameter 
estimate 

t-value 

Mercedes Benz 0.2842  14.3  

Mistubishi 0.0375  2.6  

Nissan 0.0151  1.0  

Opel -0.0237  -1.9  

Peugeot -0.0091  -0.7  

Pontiac 0.2011  2.8  

Renault -0.0614  -3.8  

Rover -0.0376  -1.6  

Saab 0.0491  2.9  

Seat -0.0890  -5.6  

Skoda -0.1297  -7.8  

Ssangyong 0.4815  6.7  

Subaru -0.0233  -1.4  

Suzuki -0.1775  -8.7  

Toyota -0.0269  -1.9  

Volkswagen 0.0316  2.6  

Combi -0.1859  -32.2  

Sedan -0.0642  -11.7  

# Observations  

R2  
1) Reference year: 2002. Reference make is Volvo and reference body group is Station wagon. 
 


