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1. Introduction

Multiple imputation is a method specifically designed for variance estimation in the presence of
missing data, developed by Rubin (1987). The basic idea is to create m imputed values for each
missing value and combine the m completed data sets by Rubin’s combination formula for variance
estimation. For the estimator to be valid, the imputations must display an appropriate level of
variability. In Rubin’s term, the imputation method is required to be “proper”. In national statistical
institutes (NSI’s) the methods used for imputing for nonresponse very seldom if ever satisfy the
requirement of being “proper”. However, the idea of creating multiple imputations to measure the
imputation uncertainty and use it for variance estimation and for computing confidence intervals is
still of interest. The problem is then that Rubin’s combination formula is no longer valid with the usual
nonproper imputations used by NSI’s. The reason being that the variability in nonproper imputations
is too little and the between imputation component must be given a larger weight in the variance
estimate. The problem is then to determine what this weight should be to give valid statistical
inference, and also for what kind of nonresponse mechanisms and estimation problems it is possible to
determine a simple combination formula not dependent on unknown parameters. This paper suggests

an approach for studying this problem.

In Section 2 an approach for determining the combination of the imputed completed data sets is
suggested. Section 3 has two applications with random nonresponse, (i) estimating a population
average from simple random samples using hot-deck imputation and (ii) estimating a regression
coefficient using residual regression imputation. Section 4 deals with the general problem of multiple
imputation for stratified samples. In Section 5 we apply the theory in Section 4 to stratified samples
with random nonresponse within strata, covering (i) estimation of population average using stratified
hot-deck imputation and (ii) estimation of log(odds ratios) in logistic regression with missingness both
for the dependent variable and the explanatory variable. Section 6 takes up the problem of using the
same combination rule for all estimation problems with a given imputation method and data &

response model.



2. An approach for determining an alternative combination for-
mula for variance estimation in multiple imputation

Lets=(1,...,n) denote the full sample, with y =(Y,,...., ¥, ) denoting the full sample data, values of
random variable Y,,....,Y, . The objective is to estimate some parameter . Now, let Y, be the
observed part of y, with s, being the response sample of size Ny,

Yons = (Vi 1 €8;).
Let 6 be the estimator based on the full sample data y, with Var(é) estimated by \7(y) .Fories-s,

we impute by some method y; and let y* denote the complete data (Y, Y;,i € S—S,). Based on y*,

we have 6*=6(y*) and V" =V (y").

Multiple imputation of m repeated imputations leads to m completed data-sets with m estimates

A

0 ,i=1,...,m, and related variance estimates \7i*,i =1,...,m. The combined estimate is given by

9_*2 él*/m

M=

i=1

The within-imputation variance is defined as

7k il rEd
V*=SV'/m
i=1

and the between-imputation component is
* 1 m A* kN2
B"=——>(6-07)".
-1ig
The total estimated variance of @ is then proposed to be

W =V "+ (k +1)B* . (1)
m

That is, we need to determine K such that

E(W)=Var(@"). (2)

Rubin (1987) has shown that k = 1 can be used with proper imputations, which essentially means
drawing imputed values from a posterior distribution in a Bayesian framework.
In general, one has to determine the terms in (2). One way to try and do this is to use double

expectation, conditioning on Y , that is,

EW)=E{EW [Y o)}



Var(0")=ENVar(@" | Yops)} +Var{E(@" | Yops )} -
Typically,

E(V ") ~Var(d) 3)

and

E(B* | Yops) =Var(8" | Yops) -

Hence, approximately
E(W)=Var(d) +(E(k) +l)EVar(é* 1Yo0s) - (4)
m

Moreover,

Var(8* | Yops) =Var(8* | yops)/m

and

EO* | Yops) = E(O" | Yaps) -

This implies that

Var(@") =%E{Var<é* Yae)} +Var{E" | Yope)} -

From (3) and (4), the equation (2) becomes

Var(6) + E(k)EVar(d° |Y,,.) = Var{E(0" | Yo )} ,

which gives the following general expression for E(k):

_VarE(" |Y,,) —Var(d)
EVar(0" |Yys)

E(k) )

For this to be of interest, kK must be, at least approximately, determined independent of unknown pa-

rameters. In addition, one needs to check that (3) holds.

To illustrate how (5) can be used we shall in the next section consider two special cases with random

nonresponse.



3. Two applications to simple random samples and random non-
response

3.1. Estimating population average with hot-deck imputation

Consider a simple random sample from a finite population of size N, where the aim is to estimate the
population average u of some variable y. We shall assume completely random nonresponse. In
Rubin’s term MCAR (missing completely at random). We note that MCAR means that the response

indicators R,,..., Ry are independent with the same response probability p, =P(R; =1) . The imputation
method is the hot-deck method, where y; is drawn at random from Yops, and the estimate is the
sample mean. Let ¥, be the observed sample mean and 67 = ﬁZies (y; - y,)* the observed

sample variance. Then Y * is the imputation-based sample mean for the completed sample,

and the combined estimator is given by
=, m_
Y * = ZYI* / m.
i=1
Let Y, denote the sample mean based on a full sample. Then,

_ 1 1 1 N
Var(Y.) = 62 (= ——), with 62 = ——S'(yi — )
(=0’ -) 20 A
being the population variance. We have further that

n-n n —
n? o r

ECY™ | Yors) =Y, and Var(Y " |y,.)=

. * — * n _1 A
using that E(Y;" | Yops) = Yrand Var(¥;" | yops) = ———07.

r

In this case,

TS B
V' =0;(——
C N

where

A2 1 v . e

o= n—l(zsr(yi -Y) +zs—s,(yi -y) )
It can be shown that

E(&f | yobs): O,\-rz(l_n%)(l-}-ﬁ)z&?

and (3) holds. We find, from (5),



Var(V,)-o(L - )
E(niznr : nr71)E(0Ar | nr)

n ny

E(k) =

FED) - =" (=)
n-n, n-l1y 2
EC" "o

Ny

_-p)/p_ 1
1_pr P,

which is satisfied approximately by letting

where f= (n—n,)/n is the rate of nonresponse.

3.2. Estimating regression coefficient with residual imputation
We shall assume completely random nonresponse as in Section 3.1. We consider a ratio model, i.e.,

regression through the origin:
Yi = ﬂXi +&, with Val’(&‘i) = O'2Xi 5 i= 1, N IR
It is assumed that all X;’s are known, also in the nonresponse sample. The full data estimator of Sis

given by
. n n
B=2Nl2% .
i=1 =l

The unbiased estimator of o is given by

6’ ZLZn:%(Yi - p)’

n-1i3%
We shall consider residual regression imputation:
Let ﬁr be the ,é - estimate based on observed sample Sy. Define the standardized residuals
e =(y;i—B.%)/[x ,fories,.
For i € s—s,: Draw the value of €] at random from the set of observed residuals €,i € S, , and the

imputed y-value is given by

Yi* = ﬁrxi +ei*\/x_i'



Let X = zin:l X, X, = Zies, X; and X, = Zies—s, X; = X — X, . All considerations from now on are

conditional on n;and X;, and we aim to determine Kk directly from (5). Define the proportion of the X-
total in the nonresponse group to be:
fy=X,/X.

We now have

B = Vi+ e V)X

62 =L Ty - AN+ i - B0

n—-175" s—s,

In order to determine K from (5) we need to check the validity of (3) and derive the following
quantities: Var(A* | Yops), E(B" | Yops) and Var(3). We note that

Var(,ﬁ) =o?/X.
Consider (3) which is equivalent to

E(é‘f) ~o?.

1 ZXL(yI* _Bnr X; )2 . Here, npy =n - n.. Then, after some

Let 3, = Zyi*/Xm, and 6. =
Nor -1 5=

s—s,

algebra, one can express 62 inthe following way:

. 1 ) . X X A
O'*2 :_1((nr _l)o-r2 +(nnr _l)ar?r +%(ﬂr _ﬂnr)zj :

In this case,
E(Yi* | YObs) = ﬂrxi +e X where € = Zsr € /nr >

Var(Y" | yops) = XS , where g =13 (& &)

Using this, it can be shown that

G, 4c, n-1
n-1 (n-1)n, n-n,

E(62)=0°(1—

where C;,C,,C; lies in the interval (0,1).

Hence, E(62 )= o? and (3) follows, at least for moderate and large n;.



Next, we look at Var(ﬁ* | Yobs ) and E(ﬁ* | Yobs)

We see that 3" =(8.X, + 8, X,,)/ X , and

E(ﬁnr | yobs) ﬂr +_Z\/_

nrss

Var(ﬁnr | Yons) = Sg [ Ko -

This gives us

E(ﬁ* | Yobs) = :ér +§ Z\/X_I

* an
Var(ﬂ |y0bs): X 2 53

Next, we need to find EVar(8* | yops) and VarE(8* | Yops) :

2
SSV

VarE(S" | Yops ) =Var</§r)+ Zos V5V (e)+2

Using Cauchy-Schwarz inequality,
n n 2 n 2
(Zab)’ <2473
with aj = \/X_, and bj =1, we see that
n
(XAP%)* <nX.
i=1

Now, after some algebra we find that Cov( ,ér ,6)=0 and

Var(g)=—|1-
n

r r

Moreover, from (6),

(Z:S—Sr \/X_I)Z _ dznnrxnr

X2 - x?

Gz (Zsr \/X_I)2 _ 0'2
n X,

Lo
X

Cov(f,,8).

= (1-d)=—, 0<d, <1.
n

(6)



Hence,

2 2

~ o” (-d)d,n X o

VarE =—+ L2 e, —
(ﬂ |yobs) Xr xz nr

Next we find that

2
E(s2)=0%(1--1)-Var(e) = i—(nr +d,-2)

r

which gives us

~ X, o’
Evar(ﬁ |y0bs): anr 'n_(nr +d1 _2)
r
From (5),
0'2 Lz. (l_dl)dznnrxnr _i
k — X7r+ Ny X2 X

o 2w (n +d, -2)

Ne

nrx2 _an i Xr +(1_d1)d2nnrxnrxr
ernr(nr +d1 _2)

X n
~—+(1-d,)d, .
” (I-dp)d, o

r r

We note that if all xj = 1, then d; = d, = 1. Now, with f, = X,/ X being the proportion of the x-total
in the nonresponse goup and f = n.,/n the rate of nonresponse, we finally get, since typically
(1-d)d, =0,

1 f 1
+(1-d)dy——~
1- fy (=d)dx 1 fy

~
~

for usual x-values and nonresponse rates.

10



4. Multiple imputation for stratified samples

4.1. Separate combinations

One way to combine the m completed data sets is to do it separately for each stratum, that is determine
k . The general setup is then as follows: The sample s is divided into H sample strata, S, . . ., Su. Let y,
be the planned full data from sub sample S, of size ny. It is assumed that yy, . . . ,yy are independent.
The observed part of yy, is denoted by Vi, ops With Sy being the response sample from S, of size ny,. The

estimator based on the full sample data is the sum of independent terms:

T

6= éh where éh is based on the yp.
1

=3
Il

Var(9) = ZLVar(éh) is estimated by V () = ZhH:l\ih(yh ) where \7h(yh) is the variance estimate of
éh based on yy. For i €5, —s;,, we impute by some method yi* based on Y s and let yp* denote the
complete data (Y, o, Y; i €S, — S, ). Based on y;, we have 6; =6,(y;) and V" =V, (y;). Then the
imputation based estimator is given by 8" = hié; and V" =YH V" . Multiple imputation of m

=
repeated imputations leads to m completed data-sets with m estimates for each stratum h,
éh,i ,i=1,...,m and related variance estimates \/Ah’ii ,i=1,...,m. The total estimates and related variances

are 67 =3, é;, and V" = 3fL V7, , fori =1, ..., m. The combined estimate for stratum h is given by

6 =>6/m.

M=

i=1

The within-imputation variance for stratum h is

— m -

Vi =2Vpi/m

i=1

and the between-imputation component is

By =30, -,

e IR

Following the same idea as in Section 2, formula (1), the total estimated variance of Q_h* is then

proposed to be

— 1
W, =V " +(k. +—)B .
h h (h m) h

11



The combined total estimate is given by

It follows that the total estimated variance of @ *can be expressed as

H 7k H 1 *
Wsep =>W, =V"+3(k,+—)By (7
h=1 h=1 m
where

V' =

IMMs

V" /m= i\?h .
h=1
Provided (3) holds for each stratum h,
E(V,")~Var(6,) ®)
we have from (5) that ky, must satisfy

VarE (6; | Yy,o5) ~Var(6,)
EVar (9:11 Yh,obs )

E(k,) = . )

The combination formula (7) is an alternative to the usual combination formula (1), especially useful
when we get simple expressions for kp, but not for k. The next section developes an expression for K in

this situation.

4.2. An overall combination formula

Now let W be given by (1). We shall determine the between imputation factor k. Since

E(W)=E(Wj,) we have

E{i(kh+i)8;}:E(k +i)B*. (10)
h=1 m m

Here, B*=—— > (6 -0%)* = ﬁi {Zh(é{f’i —-6,)}* . We note that
i -1ia

12



E(B* | yobs) = E(ZL B:; | yobs)'

This follows from the fact that E(B" | Yy, ) =Var(8” | You )= X ,Var(6; | Yo, ) and

E(B; | Vobs) =Var(G; | Yops) -

Hence, the identity (10) becomes
H
E{hZ_lkhE(Bﬁ [ Yops )} = EXKE(B™ | Yops )}
This gives us a solution for K if we want to use the usual combination formula (1):

K = > KnE By | Yons)
E(B™ | Yops)

_ T kVarG Yo _ 4§y Vard; | ys)

~ h ~ , (11)
Var(6" | Yous ) h=t Var(6" | Yous)

a weighted average of ky. We get a simple expression for k only when all k, are equal, say Ky = K.

Then k = k.

5. Four applications to stratified samples and random nonre-
sponse within strata

5.1. Estimating population average from stratified sample with stratified hot-
deck imputation

Consider stratified simple random samples from a finite population of size N, with H strata of sizes Np,
h=1,...,H. The aim is to estimate the population average 1 of some variable y. We assume completely
random nonresponse within each stratum, typically denoted as MAR (missing at random). This means

that the response indicators in stratum h, Ry ,,...,R;, y are independent with the same response

probability py = P(Rh’i =1) . The imputation method is stratified hot-deck. Let Yy ops be the observed

part from the response sample Sy, of size Ny, from stratum h,

Yhobs = (Vi 11 €Sy).

13



Then an imputed value y; in stratum h is drawn at random from Yh ops.

The estimator based on the full sample data is the usual stratified weighted average

14 _ H
Ystrat = N zNhyh = ZVth .
h=1 h=1

Here, v, =N, /N and y, = >y, /n,, where S is the sample from stratum h and n, =|s, |.

ies,

Then
va Hoo o 1 1 : 2
Var(Ystrat) = th Oh(—— ) s with Oh = Z(yl
h=1 N N

h h h — 'eUh

being the population variance in stratum h. Here Uy is stratum population h and z4, is the average in Uy

Let y,, be the observed sample mean from stratum h and &7, = T Zies, (Vi — Yir)® the observed

sample variance. The irnputation—based estimator is given by

Yotrat = z N,Vn

where

Vo= (St Zyr)—n (M T+ TV0).-

hoiesy ieSy =Sy, ies—Shr

Let the m imputation replicates of Y. be denoted by Y ... fori=1, ..., m. The combined estimator

strat strat,i

is given by

strat ZYstrat ie

5.1.1. Separate strata combinations

It follows from Section 3.1 that

where f, =(n, —n,)/n, is the rate of nonresponse in stratum h. The combination formula for the

variance estimate of Y becomes, from (7),

strat

W —\7*+§:( ! +l)B*
P h=1 1_ fh m h-

14



., H_ _
Here, V" =YV, and V,;" is the average of the m values of the imputation based variance estimate
hl

IS 1 1
Vi = V2GR (———
h h h(n Nh)

where

oo - ‘g
Ohs = ﬁ(zsh, (yl - yh)2 +25h*5hr (y' ~Yn )2)
h

5.1.2. Overall combination formula. Determination of k in (1)
From (11) we need to determine Var(v,Y," | Yops) and Var(Yg | Yous) = S, Var(vy Yy | Yops) - Then we
have that

k= i 1 .Var(v_hY_h* | yobs) .
h=11— fh Var(Ys:rat | yobs)

Now, for i & Sp - Spr:
E(Y = V. and Var(Y," _ M =1
(Y | Ynons) = Ve and Var(Y; [ Yy gps) = o O

hr

This gives the following results:

a2
v+ v v Ny My =142 Oh
E(Yh | Yhoos F Vi @and Var(Yy | Yy gps) =——"——0 =~ f —*
Ny Nhy ny,
Hence we can determine K as
Hoo] f.vede /n,

k=2 2 22

nhThe T
- f, S f V26 I,

If the stratum sizes Ny, are large then we can let V (v, Y, ) = V267, /n,, . Let also

by = £V (Vi) / 2 fV (%Y, ). Then

S 1

z;':lv(thh)fhﬁ H 1

k= T L :th-l -
2V (VY fy " oo
h=1

(12)

Since Y} b, =1, we see that k is a weighted average of the inverse of the response rates. If all f, =f,

the overall nonresponse rate, we get as for simple random sample that k = 1/(1-f ). Otherwise, a

15



stratum response rate 1- f, has large weight if either the nonresponse rate is large and/or the estimated

variance of Vv,Y,, is large.

5.1.3. An alternative expression for k in (1)

By directly applying (5) we can get an alternative expression for k. Given Yops, the imputed sample
means Y, are independent which implies that

Ny =Ny Ny — 1
2 h h A2
h Yhr ystrat r and Var(Ystrat | yobs) ZV P r.. —br Oy -

E(Y_s’frat | yobs) - n n
h hr

T MI
|

L
N
It follows that

f .
Var(Ystrat | yobs) th nh 2
h

Just like in Section 3.1, (3) holds. From (5) we get

Var(Vya,) - Var<Y‘strat>

strat r

E(th n“ Snr)

h
:Zhlvhah(E(nh) )~ S Va0 )
%Vh'E{#:E(O'hr [ M)}

E(k) ~

_ i 1VhC7h[E(nh )= 7]

2 E(h)
zvh nhh
1-p 1 or - f,
V2 217 Mhr | 2 “h
z P 0 T)hr Py nhr E(f) = —— E(l—f ) -
H - - H 2 :
Sviop - P > v ZRE(f)(1- 1)
=1 h h=1 Ny,

Now, Var(Y, )= EVar(Y,, |n, )=c2E(/n, ). Let V(V,Y;, )= V267 /n,, . Then we see that the

expression for E(K) is satisfied approximately, if the stratum sizes N;, are large, by letting

1S =)V (v Ye)
k 2:111 fV (Vv Yy)

hizlah(l— ) (14)

16



where the weights a, = fh\i (VY )/ th'zl fk\i (v Y,,) . Since ZL a, =1, we see that 1/K is a weighted
average of the response rates. If all f, = f, the overall nonresponse rate, we have, as shown in Section
5.1.2, that k = 1/(1-f). As seen in Section 5.1.2, we note also in expression (14) that a stratum response
rate 1- f, has large weight if either the nonresponse rate is large and/or the estimated variance of v, Y,

is large. We note that the estimate of the total based on the response sample is given by

_ Ho
Ystrat,r = thth .
h=1
We obtain formula (12) for k by noting from (13) that we can express E(K) as
L
E(1-f,)
H .

hglVar(Vth JE(fh)

> Var(v, Y, E(f,)
E(k) ~

Then we see that the expression for E(K) is satisfied approximately, if the stratum sizes Ny, are large, by

letting k be given by (12).

5.2. Logistic regression with binary explanatory variable. Estimating log(odds
ratio)

The model is as follows:

Y,,...,Y, are independent 0/1 -variables

Explanatory 0/1-variable X with fixed known values X,...,X,

Class probabilities: 7, = P(Y; =1|x, =1) and 7, =P(Y; =1|x; =0)
Response variables: R,,...,R, with MAR (missing at random) model:
P(Ri=1[x =1)=p;, and P(R; =1|x =0)= p,,
We can reparametrize the model in a logit version:

PY =1]x%) g

=a+
P(Y =0]x) P
giving us the following 1-1 relationships:
a=log— <7, = 17
-7, 1+e™“
7z, I(1-7m)) . 1
= log———~ = Jog(odds ratio), and 7, = ——.
f=log 7y (1= 1) gl ) e
The aim is to estimate S. Lets=(1, ..., n) denote the full sample with strata s, ={ies:x; =1} and

S, ={l €5: X =0}. The sizes of 5, and S, are denoted by n, and n,. We note that n, = Zinzl X; = X and

17



No = n - X. The response samples in the strata are S, ={i€s,: R, =1} and s), ={i €S, : R; =1} with
total response sample being S; of size n,. Let also n,, = s, | and n,, =S, |. We see that
N, =2, X =X, and n,, =n, — X, . The data from s can be represented as follows where njjr denotes

the number of observations with x =iandy = j:

X\y y=0 y=1 Totals Nonresponse
x=0 Noor No1r Nor Ny —Nor
x=1 Nior Niir Nir N =Ny,

We then have the (maximum likelihood) estimates MLE)
7%lr = nllr/nlr and ﬁ'Or = nmr/nO, .

Hence, MLE of Sequals

5. =log 7?1r/(1_7%1r) —og MurMoor
Tor (1= 7o) NorNorr

Similarily, the estimator based on the full sample is given by

B =1log 7?1 /(1_7:[1) -1o N11Moo
7Ty I(1=7y) NioNo;

with obvious analogue notation. We can express this estimate as follows:

s A7) 7 A A
=log ! I~ =log—1——log—"—= B - B3,,
T T

of the same form as in Section 4.1. We also have that [31 and /Afo are independent based on the
separate sample strata S; and Sy. It can be shown that for large ny, ny, ,3 is approximately N ( ﬂ,az)

where

2 1 1
O-ﬁ == + .
Nz (l-m) nyzy(l—7,)

Here, approximately, Var(,Bl) =1/{nyz,(1-x,)}and Var(ﬁo) =1/{ny7,(1-1,)} . It follows that an

estimate of Var( /Af ) is given by

1 1
A + A A
nz(1-7z) nemo(l—-7,)

NN, 11 11
= b= — | —— .
NN NoiNgo N N Mo N

18

V(B)=




It follows that V ( B) =\71 +\i0 , Where \71 = (ﬁ + ﬁ) and\io = (r+01 + nLOO) are the variance estimates of

,@1 and ,BO respectively.

Imputation method: For each missing value in S; - Sy, the imputed value y* is drawn at random from

the estimated distribution of Y given x = 1:

y* = 1 with probability 7,, =n,,, /n,, and y* = 0 with probability 1- 7z, =n,,, /n,, .
The same imputation method is used for S, - Sor, with y* drawn at random from the estimated
distribution of Y given x = 0. This is the same as stratified hot-deck imputation, imputed values are

drawn at random from Y, o =(Y; :i €;,) and Y, s = (Y; 11 €Sp,).
The imputed values in S - S, can be represented in the same form as the original data where now ni’}

denotes the number of imputed values with X =iandy = j:

X\y y=0 y=1 Totals
X=0 Noo Noi Ny —Nor
x=1 N n; N —ny,

The imputation based estimate of 7 is given by 7, =(n,,, +n,,)/n, such that the imputation based

estimate /3 becomes

A K *
% T n, +n
IBI =10g 1,\* — IOg 11r 11 —.
1-7 Ny =Ny =Ny

Similarily, the imputation based estimates for f, and S are given by

A Noir + Mo Be _ Be P
By =log——"— and §" = p - f5;.
Ny —Noir = Noy
The m repeated imputations leads to m estimates ﬁlfi , Bg, ,B3°, fori=1,...m. The combined estimate

is given by

M=

B =

A m A m — —
ﬂi /m:_zl:ﬂl,i/m_;ﬂo,i/m:ﬂl _ﬁo-
i= i=

The imputed variance estimate V" for ,3 is given by
1 1 1 1
+ + +

V*= .
* * * *
N 0 Mige F N Noye +Ngp Nogp +Ngg

(15)
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We see that E(\i | Yobs) ! + ! and (3) holds. We also note that (8) holds

na(1=72,) N (1= 7Zg,)

separately for each class.

5.2.1. Separate classes combination

Let us first use the approach in Section 4.1 and determine separate K;, Ko for the two classes. Consider

first stratum S, = {i € S: X; =1}. To determine k; from (9) we need to determine E( ,31* | Yiobs) and

Var( ﬁ’l* | V1005 ) - We have that conditional on Y, obs, Ny is binomially distributed (n, —n,,,7,,). Hence,
E(N | Yions) = (M =Ny )7, and Var(ng, | Y, gs) = (0 =0y )72, (1= 7y,).

We see that, conditional on Y gps, ,31* is of the form

TzlogEJrZ

, where Z is binomial (n,p) and a and b are constants.

Taylor linearization around E(Z) = np gives that

a+np a+b
T~1 Z-np)————
Ogb—np+( p)(a+z)(b—z)

and

a+b
(a+np)(b-np)

2
E(T)zlogEJrng and Var(T)z( j np(1 - p). (16)

It follows that, witha=n;;;and b=n; - ny;; :

A

N, +( =N )7y, ~ 4ans
n =Ny, — (N =N )7y, 1-1

E(B; | Vy05) = log = A,

r

and

2
A n ~ ~
Var(ﬂl | yl,obs)z( ! J (nl _nlr)ﬂlr(l _ﬁlr) .

Nz, (1-7,)

Let f; be the nonresponse rate in stratum s;: f; =(n, —n,,)/n, . We see that

A fn 1 1 Ao
Var(g' L. =fl-f)————=f1-f,)V .
B W)=t 5y = W= ) s = = V(B
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From (9), we find approximately:

var(f,)-Var($)
E{ f1 (1- 1:1 )V(/Blr)}

__Evar(, [n,)-Var(8)
E{f,(1- f)EN (B, In, 1}

BG4
Ef (1= )by

1 1

NPy M (1_ plr)/ Pir :L

- Ef) 1-p;, Pir

E(k )=

Q

~
~

which is satisfied approximately by letting

where f, =(n, —n,,)/n,is the rate of nonresponse in stratum s,.

The between imputation component for /3 is given by B’ = >0 ( ﬂAl*’i —B)* and likewise B; is

the between imputation component for ,30* . Then an estimated variance of the combined imputation

based estimate 3* for Bis given by, from (7),

WA 1 1 *
Wsep =V’ '+ z;=0 (1——f + H)Bx

X

where V " is the average of m replicates of the imputed variance estimate V* given by (15).

5.2.2. Overall combination formula. Determination of k in (1)

From (11) we need Var(f | Yiobs) and Var( B Yoobs) - We have from previous section that
Var(fy [ Vi) = fil= iV (4,)

Var(f; | Yooss) = foll= foV (for)-
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It follows from (11) that

oL RO-fNG) 1 R f N By)
1- fl 21x=0 fx(l_ fx)v(ﬁxr) 1- fO le=0 1:x(l_ fx)V(ﬂxr)

Now, Var(A,) ~(n,, /nVar(B, |n,)=(- f,Var(B, |n, ). Similarily,

(17)

Var( ﬁo) ~(1- f,)Var( ﬁOr |n,,) . We can therefore estimate the variance of the full sample estimates

By and B, by V() =(1-fN(B,) and V(B,)=(1- fV (f,,), respectively. Then

WG ) 1
l_fl ZX:O fxv(ﬁx) 1_1:0 ZX:O fxv(ﬁxr) 1_fl 1_fO

Just like in Section 5.1.2 we see that k is a weighted average of the inverse of the response rates. If all

f, = f, the overall nonresponse rate, we get that k = 1/(1-f ). Otherwise, a stratum response rate 1- f, has

large weight if either the nonresponse rate is large and/or the estimated variance of ﬁx is large.

Alternatively, from (17):

l — zlx=0 (1 - fx?\fx}i(:‘gxr)
k ZL:O fo (ﬂxr)

where the weights are a, = fx\i(ﬁxr)/{ fl\i (ﬁlr) + fOVA(,éOr)} . So we can alternatively express 1/k as a

=Yi0a, (- 1)

weighted average of the response rates.

We note that if the aim is to estimate 7, and 7, we obtain, of course, k = 1/(1-f,) for 7z, and k= 1/(1-

fo) for 7.

5.3. Logistic regression with categorical explanatory variable. Estimating
log(odds ratios)

If the explanatory X is categorical defining, say, H classes, we can generalize the results as follows:
Let 7, =P(Y =1|x=h),h=0, ..., H-1. Logistic regression defining the categories is done by
introducing H-1 binary explanatory variables Xy, ..., Xy.; Where X, = 1 if observation belongs to class h,
and 0 otherwise for h =1, ...,H-1. Then an observation belongs to class 0 if X, =X, =...=Xy_; =0.

The logit version of the model becomes, with X =(X;, X ,..., Xyy_; )

P =11x) _

g P(Y =0[x) =+ X+ BXg + ot Xy Py -
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We see that

a=log— 0
-7,
and
B = logM = log(odds ratio) for class h versus class 0.
7wy /(1 —1my)

Estimating /£, by multiple imputation is done in exactly the same manner as for binary X, with class h

replacing class 1.

5.4. Logistic regression with missing values in a binary explanatory variable

The situation is as in Section 5.2, except thaty is fully observed in s, y = (V,,..., ¥, ), and we have
missing values for the X- variable. Y,,...,Y, are independent 0/1 -variables and we have an explanatory
0/1-variable X with fixed values X,...,X,, some of which are missing. The response variables indicate
missingness of the x;'s with now with MAR model

PRy =1]y; =1)=q,, and P(R; =1]y; =0)=0q,,.
Otherwise, the model is the same as in Section 5.2 with class probabilities: 7, = P(Y; =1| X, =1) and
7, =P(Y; =1| X% =0), and the logit version log{P(Y =1|X)/P(Y =0|X)} =a + X with

p= 10g%. The aim is still to estimate £ .

Letnows'= {ies:y, =1}ands’= {ies:y, =0} withsizes n and n;. The response samples in the
strataare s} ={ies':R, =1} and s! = {i es” : R, =1} with total response sample being
S, ={ies:R; =1} =s; Us, . The data can now be represented as before, except that nonresponse

totals is for each y-stratum.

X\y y=0 y=1
x=0 Noor Noir
Xx=1 Nior Mir

Totals Nor Nir
Nonresponse Ny — Ny, ny =Ny
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The MLE 7,,,7,,, ﬁ’r , based on S, are the same as before, as is the full sample estimate ﬁ . The
imputation method is stratified hot-deck for the y - strata. For each missing value of x in s' —s; , the
imputed value X* is drawn at random from X, ;¢ = (X; :i € s;). Similarily, imputed values in

s’ — s/ are drawn at random from X, ;. = (X; :i €8Y).

The imputed values in S - S; can be represented in the same form as the original data where now ni’;

denotes the number of imputed values with X =iandy = j:

X\y y=20 y=1
x=0 Moo o,
x=1 Nig Ny
Totals g —ng, n —n,

Now we need to represent ,3* , now denoted ,é* , in a different way for it to be the sum of two

independent terms, conditional on the observed data (Y, Xops):

* *
ﬂA =log (nnr + nll)(nOOr + noo)
*
(Mg + N )Ny +Ngy)

~ 1o (n11r+n11)_10 (Nyor +Ny) _ BI_IBO

*

(Ngir +Ngy) (Noor +Ngo)
and
P Nl 20
Var(ﬁ* | y, Xobs) :Var(ﬂ* | ya Xl,obs) +Var(ﬂ* | ya XO,obs) :
We see that
P n, +n P N, +N
ﬁ*l=10g - 11r 11 _ and ,B*Ozlog - 10r 10* .
Ny =Ny, =Ny Ny =Ny —Nyg

We now have that conditional on (Y, Xes), Ny, is binomial (n; —n;,, p') where p' =n;,,/n;,, and nj,

is binomial (n; —n, , p’) where p’ =n,,, /n;, . Then from (16), we find that approximately:

Mt =M)PL o mp P
na-pH T a-pH

E(B) | ¥, ) = log— 1
o Ny =Ny, — (N _nlr)p1

and
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n

2
o_ o 11_ 1 .
nfplnf(l— pl)J (nl nlr)p ( p )

Var(ﬁi | y: Xl,ObS) ~ (

Let f ' be the nonresponse rate in stratum s': f'=(n; —n;.)/n; . We note that g, =n;, /n; =1—f'.

We see that
A 1 1
Var(By | Y, X o) = fl —— = 11— ) ——.
ot n p'(1-p") e p'(1-p")
Similarily,
50 po
E(ﬂ* | y7 Xl,obs) ~ log (1_ p())
) 0 1 0 0 1
var(B, | Y, Xoops) # " ———F-=1 (1-1")

nop’(1-p°) no,P’(1—p”)

where f ° is the nonresponse rate in s*: f°=(n; —n; )/n;. We have that

1 n;, 1 1 1 1 1
— —= = + and ——; oo = + .
NP (=p) NyNgye Ny Ny Noe P (L=P")  Mygr Nooy

So the denominator in (5) becomes

E(F (- )G +70)+ /(- ) +50)) (18)
To obtain the numerator in (5) we first see that:

1 0
3 - p p
E(ﬁ* | yaxobs) ~10g1_ p1 _logl— po

11r

n n,.n ~
—log 10r :10g 11r 00r :ﬂr'

olr 00or OlrnIOr

=10gn

Hence, the numerator in (5) equals, as before, Var( ﬁ’r) —Var( ,B ), and exactly as before we have

approximately

Var(j3,)-Var(3)= L Sl = THN I 1= P (19)
nz(1-m)) Pyr Nyzo(1-7,) Por

where as before
P =P(Ry =1|x =1) and p,, =P(R; =1|x =0).

We need alternative estimates of p;r and por:
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Since
P, =P(R =1|x=1)=P(R, =LY; =1 =1)+P(R, =LY, =0| x =1)
=P(Y; =1] % =1)P(R, =1]Y; =1)+ P(Y; =0| x; =1)P(R; =1]Y; =0)
= 7,0y, + (1= 7, )or

we have P, =72,(1- f)+(1-7)1- % and 1-p,, =7, f' +(1-7)f°

Similarily, p,, =7Z,(1— f")+(1-7%,)(1-1°) and 1-f,, =7, f' +(1—7,)f°.

We can also use that n, p,, = n,, and n,p,, = n,, . From (18) and (19) it follows that we can use

Gover

= e T e ) T+ A= 7) )+ (G4 5 (g +(1—7T0r)f )

fl—f! )(ﬁ+nm)+f (1 o)L

Noir ”00 r

UG+l + (L

Mir

”01 ”00 )ﬁor}+f {("11 Mior )(1 ﬂ-lr)+(
- DG+ )+ = 1O

F (1= )}

Noir

Notir ”00r

f( fO(L 4L

— Mor noo Mir — Noir

L R )+f (1= G-+

”oo r

We note that if f' = f° =1, then k = 1/(1 - f ). Otherwise, we can express 1/K as a linear combination of

the response rates (1 - f', 1 - f%). Let w, = —+— and w, =ﬁ+ﬁ . Then

Noir

%:al(l— fH+a,(1- %)

where
a, = f'w /(f'w, + f°w,) and a, = fw, /(f'w, + f'w,).

We note that in general a, +a, #1.
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6. Question: Can we use the same combination formula for a
given situation and imputation method, for all scientific esti-
mands ?

We try here to give a general approach to this problem. As an illustration we consider the case in

Section 3.1, a simple random sample with nonresponse MCAR and hot-deck imputation. For other

situations and imputation methods, similar considerations should be studied.

In Section 3.1 we found that for estimating the population mean with the sample mean,

k= ﬁ , with f=(n—n,)/n, the nonresponse rate. (20)

The question is now: Is this k valid for other estimation problems as well, using the same imputation
method. The answer, in general, is NO. What is needed is to find conditions for (20) to be valid. In this
case, the stochastic variables are (S,S;), so an alternative notation is to use (S,S;) instead of Yqs . Hence,

(5) becomes

VarE (9" |s,s,)—Var(6)

Bl = EVar(§*|s,s,) @l
One obvious requirement is that, at least approximately

E@"|s)=46, (22)
the imputed estimator should estimate the same parameter as 6.
We shall in this note restrict attention to estimates that are linear in (y;:1 €S):

0= PO (23)

Some results:

Lemma 1 Assume 6 is given by (23). Then 0 satisfies (22) if and only if a;(s)=a(s)forall ies.
Le., 0= as)y ¥ =na(s)y;.

Theorem Assume 6 is given by (23) and satisfies (22). Then E(k)=1/p, and k=1/(1-f).

Before we prove these two results, let us look at some special cases:

1. a(s)=1/n, same as in Section 3.1.

2. Regression coefficient for regression through the origin, ﬁ = Zi:S Y,/ Zies X; . Here (22) is

satisfied with a(s) = I/Z:iES X; , and hence k =1/(1—-f).
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3. A case where (22) does not hold is estimating the regression coefficient in usual linear regres-

sion:
Z.EJ 7
Z.es(x %)’
Here, a;(s) = , not independent of i.
z ]es( i X)
Here one can show that E( ﬂ |S) = p, ﬁ (exact ﬂ) Hence, for regular regression

problems hot-deck imputation cannot work.

Obviously, when Y is correlated to known X in nonresponse group, one should utilize this in the
imputations regardless of the estimation problems under consideration.

In order to prove the two results we need some facts:

e (a) Ny is binomial (n,py)
e (b) Sy given S,Nn; is a simple random sample from S of size N,
. (© P(R =1]s,n,)=n,/n and P(R, =1,R, =1|s,n,) :i-”f—_ll (follows from (b) )
n n-
* (d) E(Y'[s.8) =Y, (= E(Y[s,n) =Y, = E([s)=V;)
e ©  var(yss)-2 1
r]I’
(=Var(Y" |s,n)="" a ,where 67 =15 > (y;—,)* and Var(Y;"|s) =67)

I’

Proof of Lemma 1

We get
E@ 19=E[Y,, a@y+Y, ., aYls)
= EE aoy+Y,,  amvlss)
e[y a@yIshEY | a®7s)
First term :

E(Y,., a©yls)- EE[T,  a®ylsn,)

- eE(Y_a®yR [s.n)=E(_a©)¥P®R =1]s.n,)
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c n, _(a A
= E(Zies ai(s)yqlsj = pd.

Second term:

ey, a© Is)-EEY, a©7.Isn
EE(nir Zies—s, Zjes, ai(s)yj | Ss nrJ

EE(anies ZJES ai(s)yj(l a Ri)Ri |S’nFJ
E(nLZies Z}ils ai(s)yj(E(Ri |S’nr) - E(Rle |Sa nr))J
E( %S a2

1-
R I YELIOVE =P (ra(oyy, -0).

where a(s)=) . &(s)/n.

This implies that
E@"[5)= p.d+ P (nas)y, -0
( |S) - pr n—1 (n a(S)ys H)
and (22) is equivalent to

pr9+ p'(n a(s)y, —0) = «9@0(1+ pr)— pfna(s)ys

Qén(l_ pr) _

l—p - — A — . N— =
= A, S0=ma)Y, =2 Y,

and the result follows.

Proof of Theorem

From Lemma 1, 6 = a(s)zies y; =na(s)y, and 4" = a(S)(Z:ies y; + Zies_s ay:).

E@"|s.s,) =" a(s)(n,y, +(n—-n,)¥,) =na(s)y,
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nr—laA
n

2
.

Var(9" |s,s,) = [a(s)’(n—n,)

r

Hence,

VarE(é* |'s,s,) =Var(na(s)y,) = EVar(na(s)y, | s) +VarE(na(s)y, | s)

En’[a(s)I'Var(, | s)+Var{na(s)E(Y, |s)}

En’[a(s)P{E, Var(7, |s.n,) +Var, (E(Y, |s,n,)} +Var{na(s)E, (E(¥ |s.n,)}

—® Ena(s)P{E, (éz(ni—%) +Var, (V,)} +Var {na(s)E, ¥}

r

Enz[a(s)]z{(cf?E(ni)—%)+0+Var (na(s)E, v}

nZ(E(ni) —%)E[a(s)]z&f +Var .

Next,

n,—1

EVar(d"[s.s,) =" E{a(s)'(n—n) =67}

r

n, -1
n

r

= EE{[a(s)’(n—n,) 67 Is.n )~ E{[a(s)’(n—n)E(S7 [s,n,)}

= E[a(s)’85(n—n,) = EE([a(s)]’6:(n—n,)|s) = n(1- p,)E[a(s)]’ 6 .
We find now, from (21)

VarE (9" |s,s,)—Var(8)
EVar(§*|s,s,)

E(k) =

2 .1 2 22
M) TEROT e ey -1 _/p)-1_ 1

= = — . O

n(1- p,)E[a(s)]’ 67 1-p, I-p, P

Reference
Rubin, D.B. (1987): Multiple Imputation for Nonresponse in Surveys, Wiley, New York
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