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1. Introduction 
Multiple imputation is a method specifically designed for variance estimation in the presence of 

missing data, developed by Rubin (1987). The basic idea is to create m imputed values for each 

missing value and combine the m completed data sets by Rubin’s combination formula for variance 

estimation. For the estimator to be valid, the imputations must display an appropriate level of 

variability. In Rubin’s term, the imputation method is required to be “proper”.  In national statistical 

institutes (NSI’s) the methods used for imputing for nonresponse very seldom if ever satisfy the 

requirement of being “proper”. However, the idea of creating multiple imputations to measure the 

imputation uncertainty and use it for variance estimation and for computing confidence intervals is 

still of interest. The problem is then that Rubin’s combination formula is no longer valid with the usual 

nonproper imputations used by NSI’s. The reason being that the variability in nonproper imputations 

is too little and the between imputation component must be given a larger weight in the variance 

estimate. The problem is then to determine what this weight should be to give valid statistical 

inference, and also for what kind of nonresponse mechanisms and estimation problems it is possible to 

determine a simple combination formula not dependent on unknown parameters. This paper suggests 

an approach for studying this problem. 

 

In Section 2 an approach for determining the combination of the imputed completed data sets is 

suggested. Section 3 has two applications with random nonresponse, (i) estimating a population 

average from simple random samples using hot-deck imputation and (ii) estimating a regression 

coefficient using residual regression imputation. Section 4 deals with the general problem of multiple 

imputation for stratified samples. In Section 5 we apply the theory in Section 4 to stratified samples 

with random nonresponse within strata, covering (i) estimation of population average using stratified 

hot-deck imputation and (ii) estimation of log(odds ratios) in logistic regression with missingness both 

for the dependent variable and the explanatory variable. Section 6 takes up the problem of using the 

same combination rule for all estimation problems with a given imputation method and data & 

response model.  
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2. An approach for determining an alternative combination for-
mula for variance estimation in multiple imputation 

Let s = (1,…,n ) denote the full sample, with  y =( nyy ,....,1 ) denoting the full sample data, values of 

random variable nYY ,....,1 . The objective is to estimate some parameter θ.  Now, let obsy  be the 

observed part of y, with sr being the response sample of size nr, 

):( riobs siyy ∈= . 

Let θ̂  be the estimator based on the full sample data y, with )ˆ(θVar estimated by )(ˆ yV . For rssi −∈  

we impute by some method ∗
iy and let y* denote the complete data ),,( riobs ssiyy −∈∗ . Based on y*, 

we have *)(ˆ*ˆ yθθ =  and )(ˆˆ ∗∗ = yVV . 

 

Multiple imputation of m repeated imputations leads to m completed data-sets with m estimates 

,,...,1,ˆ mii =∗θ  and related variance estimates miVi ,...,1,ˆ =∗ . The combined estimate is given by 

m
m

i
i /ˆ

1
∑
=

∗∗ = θθ . 

The within-imputation variance is defined as 

mVV
m

i
i /ˆ

1
∑
=

∗∗ =  

and the between-imputation component is 

∑
=

∗∗∗ −
−

=
m

i
im

B
1

2)ˆ(
1

1 θθ . 

The total estimated variance of ∗θ  is then proposed to be  

∗∗ ++= B
m

kVW )1( .       (1) 

That is, we need to determine k such that 

E(W) = )( ∗θVar .       (2) 

Rubin (1987) has shown that k = 1 can be used with proper imputations, which essentially means 

drawing imputed values from a posterior distribution in a Bayesian framework.   

In general, one has to determine the terms in (2). One way to try and do this is to use double 

expectation, conditioning on obsy , that is, 

 

)}|({)( obsYWEEWE =  
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)}|({)}|({)( obsobs YEVarYVarEVar ∗∗∗ += θθθ . 

Typically, 

)ˆ()( θVarVE ≈∗        (3) 

and 

   )|ˆ()|( obsobs yVaryBE ∗∗ = θ . 

Hence, approximately 

)|ˆ()1)(()ˆ()( obsYEVar
m

kEVarWE ∗++= θθ .    (4) 

Moreover, 

myVaryVar obsobs /)|ˆ()|( ∗∗ = θθ  

and 

)|ˆ()|( obsobs yEyE ∗∗ = θθ . 

 

This implies that 

)}|ˆ({)}|ˆ({1)( obsobs YEVarYVarE
m

Var ∗∗∗ += θθθ . 

    

From (3) and (4), the equation (2) becomes 

    

)|ˆ()()ˆ( obsYEVarkEVar ∗+ θθ = )}|ˆ({ obsYEVar ∗θ , 

 

which gives the following general expression for E(k): 

 

)|ˆ(
)ˆ()|ˆ()(

obs

obs

YEVar
VarYVarEkE

∗

∗ −
=

θ
θθ .     (5) 

 

For this to be of interest, k must be, at least approximately, determined independent of unknown pa-

rameters. In addition, one needs to check that (3) holds. 

To illustrate how (5) can be used we shall in the next section consider two special cases with random 

nonresponse. 
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3. Two applications to simple random samples and random non-
response 

3.1. Estimating population average with hot-deck imputation 
Consider a simple random sample from a finite population of size N, where the aim is to estimate the 

population average µ of some variable y. We shall assume completely random nonresponse. In 

Rubin’s term MCAR (missing completely at random). We note that MCAR means that the response 

indicators NRR ,...,1  are independent with the same response probability )1( == ir RPp . The imputation 

method is the hot-deck method, where ∗
iy  is drawn at random from yobs, and the estimate is the 

sample mean. Let ry  be the observed sample mean and ∑ ∈− −=
rr si rinr yy 2

1
12 )(σ̂ the observed 

sample variance. Then ∗Y  is the imputation-based sample mean for the completed sample, 

and the combined estimator is given by 

mYY
m

i
i /

1
∑
=

∗∗ = . 

Let sY  denote the sample mean based on a full sample. Then, 

)11()( 2

Nn
YVar s −= σ , with ∑

=
−

−
=

N

i
iy

N 1

22 )(
1

1 µσ   

being the population variance. We have further that 

robs yyYE =∗ )|(    and 2
2 ˆ1)|( r

r

rr
obs n

n
n

nnyYVar σ−
⋅

−
=∗   

using that robsi yyYE =∗ )|( and 2ˆ1)|( r
r

r
obsi n

nyYVar σ−
=∗ . 

In this case,  

)11(ˆˆ 2

Nn
V −= ∗

∗ σ  

where 

( )∑ ∑ −
∗∗∗

∗ −+−
−

=
r rs ss ii yyyy

n
222 )()(

1
1σ̂ . 

It can be shown that  

)|ˆ( 2
obsyE ∗σ = 2

)1(
12 ˆ)1)(1(ˆ rnn

n
nr

r

r
σσ ≈+− −  

and (3) holds. We find, from (5), 
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)|ˆ()(

)()(
)( 21

112

2 rrn
n

n
nn

Nnr

nEE
YVar

kE
r

rr σ
σ

−− ⋅

−−
=  

= 21

112112

)(

)())((

2 σ

σσ

r

rr

r

n
n

n
nn

NnNn

E

E
−− ⋅

−−−
 

rr

rr

pp
pp 1

1
/)1(

=
−

−
≈   

which is satisfied approximately by letting 

f
k

−
=

1
1   

where  f = nnn r /)( −  is the rate of nonresponse. 

3.2. Estimating regression coefficient with residual imputation 
We shall assume completely random nonresponse as in Section 3.1. We consider a ratio model, i.e., 

regression through the origin: 

iii xY εβ += , with ii xVar 2)( σε = ; i = 1, …,n.  

It is assumed that all xi’s are known, also in the nonresponse sample. The full data estimator of β is 

given by 

∑∑
==

=
n

i
i

n

i
i xY

11
/β̂ . 

The unbiased estimator of σ2 is given by 

 

∑
=

−
−

=
n

i
ii xy

n ix
1

212 )ˆ(
1

1ˆ βσ . 

We shall consider residual regression imputation:  

Let rβ̂ be the β̂ - estimate based on observed sample sr. Define the standardized residuals  

iirii xxye /)ˆ( β−=  , for rsi ∈ . 

For rssi −∈ : Draw the value of ∗
ie  at random from the set of observed residuals ri sie ∈, , and the 

imputed y-value is given by 

iiiri xexy ∗∗ += β̂ . 
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Let rssi inrsi ir
n

i i XXxXxXxX
rr

−==== ∑∑∑ −∈∈=
   and   ,

1
. All considerations from now on are 

conditional on nr and Xr, and we aim to determine k directly from (5). Define the proportion of the x-

total in the nonresponse group to be: 

XXf nrX /= . 

We now have 

Xyy
rr ss is i /)(ˆ ∑∑ −

∗∗ +=β  

))ˆ()ˆ((
1

1ˆ 21212 ∑ ∑
−

∗∗∗
∗ −+−

−
=

r r
iis ss

iiii xyxy
n xx ββσ .  

In order to determine k from (5) we need to check the validity of (3) and derive the following 

quantities: )|ˆ(),|ˆ( obsobs yEyVar ∗∗ ββ  and )ˆ(βVar .  We note that 

XVar /)ˆ( 2σβ = . 

Consider (3) which is equivalent to 
22 )ˆ( σσ ≈∗E . 

Let nr
ss

inr Xy
r

/ˆ ∑
−

∗=β , and  ∑
−

∗ −
−

=
r

iss
inri

nr
nr xy

n x
212 )ˆ(

1
1ˆ βσ .  Here, nnr = n - nr.  Then, after some 

algebra, one can express 2ˆ∗σ  in the following way: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −+−+−

−
=∗

2222 )ˆˆ(ˆ)1(ˆ)1(
1

1ˆ nrr
nrr

nrnrrr X
XXnn

n
ββσσσ . 

In this case, 

iirobsi xexyYE +=∗ β̂)|( ,  where rs i nee
r

/∑= , 

2)|( eiobsi sxyYVar =∗ ,  where ∑ −=
rr s ine ees 212 )( . 

 

Using this, it can be shown that 

)1
)1(

4
1

1()ˆ( 3
2122

rr nn
nfc

nn
c

n
cE

⋅
−

−
−

−
−

−=∗ σσ  

where 321 ,, ccc  lies in the interval (0,1). 

 

Hence, 22 )ˆ( σσ ≈∗E  and (3) follows, at least for moderate and large nr.  
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Next, we look at )|ˆ(and  )|ˆ( obsobs yEyVar ∗∗ ββ :  

We see that XXX nrnrrr /)ˆˆ(ˆ βββ +=∗ , and  

∑
−

+=
rss

i
nr

robsnr x
X
eyE ββ ˆ)|ˆ(  

nreobsnr XsyVar /)|ˆ( 2=β . 

 

This gives us 

)|ˆ( obsyE ∗β = ∑
−

+
rss

ir x
X
eβ̂  

. )|ˆ( 2
2 e

nr
obs s

X
XyVar =∗β  

 

Next, we need to find )|ˆ(Varand  )|ˆ( obsobs yEyEVar ∗∗ ββ : 

),ˆ(2)(
)(

)ˆ()|ˆ(Var 2

2

eCov
X

x
eVar

X

x
VaryE r

ss iss i
robs

rr βββ
∑∑ −−∗ ++= . 

 

Using Cauchy-Schwarz inequality,  

∑∑∑
===

≤
n

i
i

n

i
i

n

i
ii baba

1

2

1

22

1
)(  

with ai = ix  and bi =1, we see that  

.)( 2

1
nXx

n

i
i ≤∑

=
       (6) 

Now, after some algebra we find that 0),ˆ( =eCov rβ  and 

 

 =)(eVar ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

∑
rr

s i

r Xn

x

n
r

22 )(
1σ = 

rn
d

2

1)1( σ
− , .10 1 ≤≤ d  

Moreover, from (6),  

 

.10    ,
)(

22
2

2

2

≤≤=
∑ − d

X
Xnd

X

x
nrnrss i

r  
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Hence, 

r

nrnr

r
obs nX

Xndd
X

yE
2

2
21

2 )1()|ˆ(Var σσβ ⋅
−

+=∗ . 

 

Next we find that  

)2()()1()( 1

2
122 −+=−−= dn

n
eVarsE r

r
ne

r

σσ  

which gives us 

).2( )|ˆ( 1

2

2 −+⋅=∗ dn
nX

XyEVar r
r

nr
obs

σβ  

From (5), 

)2( 1

)1(

2

2

2

2
2122

−+⋅

−⋅+
=

−

dn
k

rX
X

n

XX
Xndd

nX
nr

r

nrnr

rr

σ

σσσ

  

= 
)2(

)1(

1

21
2

−+
−+⋅−
dnXX

XXnddXXnXn

rnrr

rnrnrrrr  

r

nr

r n
ndd

X
X

21)1( −+≈ . 

 

We note that if all xi = 1, then d1 = d2 = 1. Now, with XXf nrX /= being the proportion of the x-total 

in the nonresponse goup and f = nnnr /  the rate of nonresponse, we finally get, since typically 

0)1( 21 ≈− dd , 

k 
XX ff

fdd
f −

≈
−

−+
−

≈
1

1
1

)1(
1

1
21  

 

for usual x-values and nonresponse rates. 
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4. Multiple imputation for stratified samples 

4.1. Separate combinations  
One way to combine the m completed data sets is to do it separately for each stratum, that is determine 

k . The general setup is then as follows:  The sample s is divided into H sample strata, s1, . . ., sH. Let yh 

be the planned full data from sub sample sh of size nh. It is assumed that y1, . . . ,yH  are independent. 

The observed part of yh is denoted by yh,obs with shr being the response sample from sh of size nhr. The 

estimator based on the full sample data is the sum of independent terms: 

∑
=

=
H

h
h

1

ˆˆ θθ  where hθ̂  is based on the yh. 

∑ == H
h hVarVar 1 )ˆ()ˆ( θθ  is estimated by ∑ == H

h hh yVV 1 )(ˆ)ˆ(ˆ θ where )(ˆ
hh yV is the variance estimate of 

hθ̂ based on yh. For hrh ssi −∈  we impute by some method ∗
iy based on yh,obs and let yh* denote the 

complete data ),,( , hrhiobsh ssiyy −∈∗ . Based on ∗
hy , we have  )(ˆˆ ∗∗ = hhh yθθ and  ).(ˆˆ ∗∗ = hhh VV y Then the 

imputation based estimator is given by ∑
=

∗∗ =
H

h
h

1

ˆˆ θθ and ∑ =
∗∗ = H

h hVV 1
ˆˆ .  Multiple imputation of m 

repeated imputations leads to m completed data-sets with m estimates for each stratum h, 

miih ,...,1,ˆ
, =θ  and related variance estimates .,...,1,ˆ

, miV ih =∗  The total estimates and related variances 

are ∑ =
∗∗ = H

h ihi 1 ,
ˆˆ θθ and ∑ =

∗∗ = H
h ihi VV 1 ,

ˆˆ , for i =1, . . . , m. The combined estimate for stratum h is given by 

m
m

i
ihh /ˆ

1
,∑

=

∗∗ = θθ . 

The within-imputation variance for stratum h is  

mVV
m

i
ihh /ˆ

1
,∑

=

∗∗ =  

and the between-imputation component is 

∑
=

∗∗∗ −
−

=
m

i
hihh m

B
1

2
, )ˆ(

1
1 θθ . 

Following the same idea as in Section 2, formula (1), the total estimated variance of ∗
hθ  is then 

proposed to be  

∗∗ ++= hhhh B
m

kVW )1( . 
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The combined total estimate is given by 

 

 ∑∑
=

∗

=

∗∗ ==
H

h
h

m

i
i m

11
/ˆ θθθ . 

 

It follows that the total estimated variance of ∗θ can be expressed as 

 

∑∑
=

∗∗

=
++==

H

h
hh

H

h
hsep B

m
kVWW

11
)1(      (7) 

where 

∑ ∑
= =

∗∗∗ ==
m

i

H

h
hi VmVV

1 1
/ˆ . 

 

Provided (3) holds for each stratum h, 

 

 )ˆ()( hh VarVE θ≈∗         (8) 

 

we have from (5) that kh  must satisfy 

 

)|ˆ(
)ˆ()|ˆ(

)(
,

,

obshh

hobshh
h YEVar

VarYVarE
kE

∗

∗ −
=

θ
θθ

.     (9) 

 

The combination formula (7) is an alternative to the usual combination formula (1), especially useful 

when we get simple expressions for kh, but not for k. The next section developes an expression for k in 

this situation. 

4.2. An overall combination formula 
Now let W be given by (1). We shall determine the between imputation factor k. Since 

)()( sepWEWE = we have 

.)1(})1({
1

∗

=

∗ +=+∑ B
m

kEB
m

kE
H

h
hh      (10) 

 

Here, ∑
=

∗∗∗ −
−

=
m

i
im

B
1

2)ˆ(
1

1 θθ = ∑ ∑
=

∗∗ −
−

m

i
hh ihm 1

2
, )}ˆ({

1
1 θθ . We note that 
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)|()|( 1 obs
H
h hobs yBEyBE ∑ =

∗∗ = .       

 

This follows from the fact that )|ˆ()|ˆ()|( 1 obs
H
h hobsobs yVaryVaryBE ∑ =

∗∗∗ == θθ and 

)|ˆ()|( obshobsh yVaryBE ∗∗ = θ . 

 

Hence, the identity  (10) becomes 

)}.|({)}|({
1

obs

H

h
obshh YBkEEYBEkE ∗

=

∗ =∑       

This gives us a solution for k if we want to use the usual combination formula (1): 

 

)|(
)|(1

obs

H
h obshh

yBE
yBEkk ∗

=
∗∑=  

 

= 
)|ˆ(

)|ˆ(1

obs

H
h obshh

yVar
yVark

∗
=

∗∑
θ

θ  = 
)|ˆ(
)|ˆ(

1 obs

obsh
H

h
h yVar

yVark
∗

∗

=
⋅∑

θ
θ ,    (11) 

 

a weighted average of kh. We get a simple expression for k only when all kh are equal, say kh = k0. 

Then k = k0. 

5. Four applications to stratified samples and random nonre-
sponse within strata 

5.1. Estimating population average from stratified sample with stratified hot-
deck imputation 

Consider stratified simple random samples from a finite population of size N, with H strata of sizes Nh, 

h = 1,...,H. The aim is to estimate the population average µ of some variable y. We assume completely 

random nonresponse within each stratum, typically denoted as MAR (missing at random). This means 

that the response indicators in stratum h, 
hNhh RR ,1, ,..., are independent with the same response 

probability phr = )1( , =ihRP . The imputation method is stratified hot-deck. Let yh,obs be the observed 

part from the response sample shr of size nhr from stratum h,  

):(, hriobsh siyy ∈= . 
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Then an imputed value ∗
iy in stratum h is drawn at random from yh,obs.  

 

The estimator based on the full sample data is the usual stratified weighted average 

 

∑
=

=
H

h
hhstrat yN

N
Y

1

1 = ∑
=

H

h
hh yv

1
. 

Here, NNv hh /=  and h
si

ih nyy
h

/∑
∈

= , where sh is the sample from stratum h and || hh sn = . 

Then  

)11()( 2

1

2

hh
h

H

h
hstrat Nn

vYVar −= ∑
=

σ , with ∑
∈

−
−

=
hUi

hi
h

h y
N

22 )(
1

1 µσ  

being the population variance in stratum h. Here Uh is stratum population h and µh is the average in Uh. 

 

Let hry be the observed sample mean from stratum h and ∑ ∈− −=
hrhr si hrinhr yy 2

1
12 )(σ̂ the observed 

sample variance.  The imputation-based estimator is given by 

∗

=

∗ ∑= h

H

h
hstrat yN

N
Y

1

1  

where  

)(1)(1
∑∑∑

−∈

∗

−∈

∗

∈

∗ +=+=
hrhhrhhr ssi

ihrhr
hssi

i
si

i
h

h yyn
n

yy
n

y . 

 

Let the m imputation replicates of ∗
stratY  be denoted by ∗

istratY , for i = 1, …, m. The combined estimator 

is given by  

∑
=

∗∗ =
m

i
istratstrat YY

1
, . 

5.1.1. Separate strata combinations  

It follows from Section 3.1 that 

h
h f

k
−

=
1

1  

where hhrhh nnnf /)( −=  is the rate of nonresponse in stratum h. The combination formula for the 

variance estimate of ∗
stratY becomes, from (7),  

∑
=

∗∗ +
−

+=
H

h
h

h
sep B

mf
VW

1
)1

1
1( . 
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Here, ∑
=

∗∗ =
H

h
hVV

1
and ∗

hV is the average of the m values of the imputation based variance estimate 

 =∗
hV̂ )11(ˆ 22

hh
hh Nn

v −∗σ   

where 

( )∑ ∑ −
∗∗∗

∗ −+−
−

=
hr hrhs ss hihi

h
h yyyy

n
222 )()(

1
1σ̂ . 

5.1.2. Overall combination formula. Determination of k in (1) 

From (11) we need to determine )|( obshh yYvVar ∗  and )|()|( 1∑ =
∗∗ = H

h obshhobsstrat yYvVaryYVar . Then we 

have that 

k = 
)|(
)|(

1
1

1 obsstrat

obshh
H

h h yYVar
yYvVar

f ∗

∗

=
⋅

−
∑ . 

Now, for i ∈ sh - shr: 

hrobshi yyYE =∗ )|( ,  and 2
, ˆ1)|( hr

hr

hr
obshi n

nyYVar σ−
=∗ . 

This gives the following results:  

hrobshh yyYE =∗ )|( ,  and 2
2, ˆ1)|( hr

hr

hr

h

hrh
obshh n

n
n

nnyYVar σ−
⋅

−
=∗  

h

hr
h n

f
2σ̂

≈ . 

Hence we can determine k as 

∑
∑

==
⋅

−
= H

k hhrkk

hhrhh
H

h h nvf
nvf

f
k

1
22

22

1 /ˆ
/ˆ

1
1

σ
σ . 

 

If the stratum sizes Nh are large then we can let hhrhhh nvYvV /ˆ)(ˆ 22σ= . Let also 

∑ == H
k kkkhhhh YvVfYvVfb 1 )(ˆ/)(ˆ . Then 

 

∑
∑

∑

=

=

=

−
⋅=

−
=

H

h h
hH

h
hhh

H
h

h
hhh

f
b

fYvV

f
fYvV

k
1

1

1

1
1

)(ˆ
1

1)(ˆ

.                       (12) 

Since 11 =∑ =
H
h hb , we see that k is a weighted average of the inverse of the response rates. If all fh = f, 

the overall nonresponse rate, we get as for simple random sample that k = 1/(1-f ). Otherwise, a 
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stratum response rate 1- fh has large weight if either the nonresponse rate is large and/or the estimated 

variance of hhYv  is large. 

5.1.3. An alternative expression for k in (1) 

By directly applying (5) we can get an alternative expression for k. Given yobs, the imputed sample 

means ∗
hY are independent which implies that 

rstrathr

H

h
hobsstrat yyN

N
yYE ,

1

1)|( == ∑
=

∗  and 2
2

1

2 ˆ1)|( hr
hr

hr

h

hrh
H

h
hobsstrat n

n
n

nnvyYVar σ−
⋅

−
⋅= ∑

=

∗ . 

It follows that 

2

1

2 ˆ)|( hr
h

h
H

h
hobsstrat n

fvyYVar σ⋅≈ ∑
=

∗ . 

Just like in Section 3.1, (3) holds. From (5) we get 

 

∑
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n
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1

22

1
22

1

11

σ

σ
 = 

∑

∑

=

=

−

−
−

H

h
hh

hr

h
h

H
h

h

h
h

hr

h
h

ffE
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ffE
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2
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)1(
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σ
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 .    (13)

   

Now, )/1()|()( 2
hrhhrhrhr nEnYEVarYVar σ== . Let hrhrhhrh nvYvV /ˆ)(ˆ 22σ= . Then we see that the 

expression for E(k) is satisfied approximately, if the stratum sizes Nh are large, by letting 

 

∑
∑

=

= −
= H

h hrhh

H
h hrhhh

YvVf
YvVff

k 1

1

)(ˆ
)(ˆ)1(1 = ∑

=
−

H

h
hh fa

1
)1(     (14) 
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where the weights ∑ == H
k krkkhrhhh YvVfYvVfa 1 )(ˆ/)(ˆ . Since 11 =∑ =

H
h ha , we see that 1/k is a weighted 

average of the response rates. If all fh = f, the overall nonresponse rate, we have, as shown in Section 

5.1.2, that k = 1/(1-f). As seen in Section 5.1.2, we note also in expression (14) that a stratum response 

rate 1- fh has large weight if either the nonresponse rate is large and/or the estimated variance of hrhYv  

is large. We note that the estimate of the total based on the response sample is given by 

.
1

, ∑
=

=
H

h
hrhrstrat YvY  

We obtain formula (12) for k by noting from (13) that we can express E(k) as  

∑

∑

=

= −
≈ H

h
hhh

H
h

h
hhh

fEYvVar

fE
fEYvVar

kE

1

1

)()(

)1(
1)()(

)( . 

Then we see that the expression for E(k) is satisfied approximately, if the stratum sizes Nh are large, by 

letting k be given by (12).   

5.2. Logistic regression with binary explanatory variable. Estimating log(odds 
ratio) 

The model is as follows:  

nYY ,...,1  are independent 0/1 -variables 

Explanatory  0/1-variable x with fixed known values nxx ,...,1  

Class probabilities: )1|1(1 === ii xYPπ  and )0|1(0 === ii xYPπ  

Response variables: nRR ,...,1 with MAR (missing at random) model: 

 rii pxRP 1)1|1( ===  and rii pxRP 0)0|1( ===  

We can reparametrize the model in a logit version: 

x
xYP
xYP βα +=

=
=

)|0(
)|1(log  

giving us the following 1-1 relationships: 

απ
π

πα −+
=⇔

−
=

e1
1

1
log 0

0

0  

)1/(
)1/(log

00

11

ππ
ππβ

−
−

= = log(odds ratio),  and )(1 1
1

βαπ +−+
=

e
. 

The aim is to estimate .β  Let s = (1, . . . , n) denote the full sample with strata }1:{1 =∈= ixsis  and 

}0:{0 =∈= ixsis . The sizes of s1 and s0 are denoted by n1 and n0. We note that ∑ = == n
i i Xxn 11  and 
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n0 = n - X. The response samples in the strata are }1:{ 11 =∈= ir Rsis and }1:{ 00 =∈= ir Rsis with 

total response sample being sr of size nr. Let also || 11 rr sn =  and || 00 rr sn = . We see that 

rs ir Xxn
r

== ∑1  and rrr Xnn −=0 . The data from sr can be represented as follows where nijr denotes 

the number of observations with x = i and y = j: 

x\y y = 0 y = 1 Totals Nonresponse 

x = 0 n00r n01r n0r rnn 00 −  

x = 1 n10r n11r n1r rnn 11 −  

 

We then have the (maximum likelihood) estimates MLE) 

rrr nn 1111 /ˆ =π  and rrr nn 0010 /ˆ =π . 

Hence, MLE of β equals 

rr

rr

rr

rr
r nn

nn

0110

0011

00

11 log
)ˆ1/(ˆ
)ˆ1/(ˆ

logˆ =
−
−

=
ππ
ππβ . 

Similarily, the estimator based on the full sample is given by 

0110

0011

00

11 log
)ˆ1/(ˆ
)ˆ1/(ˆ

logˆ
nn
nn

=
−
−

=
ππ
ππβ  

with obvious analogue notation. We can express this estimate as follows: 

01
0

0

1

1

00

11 ˆˆ
ˆ1

ˆ
log

ˆ1
ˆ

log
)ˆ1/(ˆ
)ˆ1/(ˆ

logˆ ββ
π

π
π

π
ππ
ππβ −=

−
−

−
=

−
−

= , 

of the same form as in Section 4.1. We also have that 1̂β  and 0β̂  are independent based on the 

separate sample strata s1 and s0. It can be shown that for large n0, n1, β̂ is approximately ),( 2
β̂σβN  

where 

)1(
1

)1(
1

000111

2
ˆ ππππ

σ β −
+

−
=

nn
. 

 

Here, approximately, )}1(/{1)ˆ( 1111 ππβ −= nVar and )}1(/{1)ˆ( 0000 ππβ −= nVar . It follows that an 

estimate of )ˆ(βVar is given by 

)ˆ1(ˆ
1

)ˆ1(ˆ
1)ˆ(ˆ

000111 ππππ
β

−
+

−
=

nn
V  

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+

000110110001

0

1011

1 1111
nnnnnn

n
nn

n . 
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It follows that 01
ˆˆ)ˆ(ˆ VVV +=β , where )(ˆand  )(ˆ

00011011

11
0

11
1 nnnn VV +=+= are the variance estimates of 

01
ˆand  ˆ ββ  respectively. 

 

Imputation method: For each missing value in s1 - s1r, the imputed value y* is drawn at random from 

the estimated distribution of Y given x = 1:  

y* = 1 with probability rrr nn 1111 /ˆ =π and y* = 0 with probability 1- rrr nn 1101 /ˆ =π . 

The same imputation method is used for s0 - s0r, with y* drawn at random from the estimated 

distribution of Y given x = 0. This is the same as stratified hot-deck imputation, imputed values are 

drawn at random from ):( 1,1 riobs siyy ∈=  and ):( 0,0 riobs siyy ∈= .  

The imputed values in s - sr can be represented in the same form as the original data where now ∗
ijn  

denotes the number of imputed values with x = i and y = j: 

 

x\y y = 0 y = 1 Totals 

x = 0 ∗
00n  ∗

01n  rnn 00 −  

x = 1 ∗
10n  ∗

11n  rnn 11 −  

 

The imputation based estimate of π1 is given by 111111 /)(ˆ nnn r
∗∗ +=π  such that the imputation based 

estimate ∗
1̂β  becomes 

∗

∗
∗

−
=

1

1
1 ˆ1

ˆ
logˆ

π
πβ = ∗

∗

−−
+

11111

1111log
nnn

nn

r

r . 

Similarily, the imputation based estimates for ββ and  0 are given by 

∗

∗
∗

−−
+

=
01010

0101
0 logˆ

nnn
nn

r

rβ  and ∗∗∗ −= 01
ˆˆˆ βββ . 

The m repeated imputations leads to m estimates ∗∗∗
iii βββ ˆ,ˆ,ˆ

,0,1 , for i =1, . . .,m. The combined estimate  

is given by 

∗∗

=

∗

=

∗

=

∗∗ −=−== ∑∑∑ 01
1

,0
1

,1
1

/ˆ/ˆ/ˆ ββββββ mmm
m

i
i

m

i
i

m

i
i . 

The imputed variance estimate ∗V̂  for β̂  is given by 

∗∗∗∗
∗

+
+

+
+

+
+

+
=

0000010110101111

1111ˆ
nnnnnnnn

V
rrrr

.   (15) 
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We see that 
)ˆ1(ˆ

1
)ˆ1(ˆ

1)|ˆ(
000111 rrrr

obs nn
yVE

ππππ −
+

−
≈∗  and (3) holds. We also note that (8) holds 

separately for each class. 

5.2.1. Separate classes combination  

Let us first use the approach in Section 4.1 and determine separate k1, k0 for the two classes. Consider 

first stratum }1:{1 =∈= ixsis . To determine k1 from (9) we need to determine )|ˆ( ,11 obsyE ∗β  and 

)|ˆ( ,11 obsyVar ∗β . We have that conditional on y1,obs , ∗
11n  is binomially distributed )ˆ,( 111 rrnn π− . Hence,  

rrobs nnynE 111,111 ˆ)()|( π−=∗  and ).ˆ1(ˆ)()|( 1111,111 rrrobs nnynVar ππ −−=∗  

We see that, conditional on y1,obs,  ∗
1̂β is of the form  

Zb
ZaT

−
+

= log  , where Z is binomial (n,p) and a and b are constants. 

Taylor linearization around E(Z) = np gives that  

))((
)(log

zbza
banpZ

npb
npaT

−+
+

−+
−
+

≈     

and  

npb
npaTE

−
+

≈ log)(  and  )1(
))((

)(
2

pnp
npbnpa

baTVar −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+
≈ .   (16)

   

It follows that, with a = n11r and b = n1 - n11r :  
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obs nnnn

nnnyE
111111

11111
,11 ˆ)(

ˆ)(log)|ˆ(
π

πβ
−−−

−+
≈∗ = r
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log β

π
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and 

)ˆ1(ˆ)(
)ˆ1(ˆ

)|ˆ( 1111

2

1111

1
,11 rrr

rr
obs nn

nn
nyVar ππ

ππ
β −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

≈∗ . 

 

Let f1 be the nonresponse rate in stratum s1: 1111 /)( nnnf r−= . We see that 

)ˆ(ˆ)1(
)ˆ1(ˆ

1)1(
)ˆ1(ˆ

1)|ˆ( 111
111

11
11

2
1

11
,11 r

rrrrr
obs Vff

n
ff

n
nfyVar β

ππππ
β −=

−
⋅−=

−
⋅≈∗ . 
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From (9), we find approximately: 
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111 =
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which is satisfied approximately by letting 

1
1 1

1
f

k
−

= . 

In exactly the same way, we find that  

0
0 1

1
f

k
−

=   

where  0000 /)( nnnf r−= is the rate of nonresponse in stratum s0. 

 

The between imputation component for ∗
1̂β is given by ∑ =

∗∗
−

∗ −= m
i imB 1

2
1,11

1
1 )ˆ( ββ  and likewise ∗

0B is 

the between imputation component for ∗
0β̂ . Then an estimated variance of the combined imputation 

based estimate ∗β  for β is given by, from (7), 

∗
=

∗ +
−

+= ∑ xx
x

sep B
mf

VW )1
1

1(1
0  

where ∗V is the average of m replicates of the imputed variance estimate ∗V̂ given by (15). 

5.2.2. Overall combination formula. Determination of k in (1) 

From (11) we need )|ˆ( ,11 obsyVar ∗β  and )|ˆ( ,00 obsyVar ∗β . We have from previous section that  

)|ˆ( ,11 obsyVar ∗β = )ˆ(ˆ)1( 111 rVff β−  

)|ˆ( ,00 obsyVar ∗β = )ˆ(ˆ)1( 000 rVff β− . 
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It follows from (11) that  
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β
β .     (17) 

Now, )|ˆ()1()|ˆ()/()ˆ( 11111111 rrrrr nVarfnVarnnVar βββ −=≈ . Similarily, 

)|ˆ()1()ˆ( 0000 rr nVarfVar ββ −≈ . We can therefore estimate the variance of the full sample estimates 

01
ˆand  ˆ ββ  by )ˆ(ˆ)1()ˆ(ˆ

111 rVfV ββ −=  and )ˆ(ˆ)1()ˆ(ˆ
000 rVfV ββ −= , respectively.  Then 
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Just like in Section 5.1.2 we see that k is a weighted average of the inverse of the response rates. If all 

fh = f, the overall nonresponse rate, we get that k = 1/(1-f ). Otherwise, a stratum response rate 1- fx has 

large weight if either the nonresponse rate is large and/or the estimated variance of xβ̂ is large. 

 

Alternatively, from (17): 

∑
∑

∑
=

=

= −=
−

= 1
01

0

1
0 )1(

)ˆ(ˆ
)ˆ(ˆ)1(1

x xx
x xrx

x xrxx fa
Vf

Vff
k β

β  

where the weights are )}ˆ(ˆ)ˆ(ˆ/{)ˆ(ˆ
0011 rrxrxx VfVfVfa βββ += . So we can alternatively express 1/k as a 

weighted average of the response rates.  

 

We note that if the aim is to estimate 1π  and 0π  we obtain, of course, k = 1/(1-f1) for 1π and k = 1/(1-

f0) for 0π . 

5.3. Logistic regression with categorical explanatory variable. Estimating 
log(odds ratios) 

If the explanatory x is categorical defining, say, H classes, we can generalize the results as follows: 

Let )|1( hxYPh ===π , h = 0, . . . , H-1. Logistic regression defining the categories is done by 

introducing H-1 binary explanatory variables x1, …, xH-1 where xh = 1 if observation belongs to class h, 

and 0 otherwise for h = 1, …,H-1. Then an observation belongs to class 0 if 0... 121 ==== −Hxxx . 

The logit version of the model becomes, with x = ),...,,( 121 −Hxxx : 

112211 ...
)|0(
)|1(log −−++++=

=
=

HHxxx
YP
YP βββα

x
x . 
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We see that  

0

0

1
log

π
πα
−

=  

and 

)1/(
)1/(log

00 ππ
ππβ

−
−

= hh
h  = log(odds ratio) for class h versus class 0. 

Estimating hβ by multiple imputation is done in exactly the same manner as for binary x, with class h 

replacing class 1.  

5.4. Logistic regression with missing values in a binary explanatory variable  
The situation is as in Section 5.2, except that y is fully observed in s, y = ),...,( 1 nyy , and we have 

missing values for the x- variable. nYY ,...,1  are independent 0/1 -variables and we have an explanatory  

0/1-variable x with fixed values nxx ,...,1 , some of which are missing. The response variables indicate 

missingness of the xi's with now with MAR model 

rii qyRP 1)1|1( ===  and rii qyRP 0)0|1( === . 

Otherwise, the model is the same as in Section 5.2 with class probabilities: )1|1(1 === ii xYPπ  and 

)0|1(0 === ii xYPπ , and the logit version xxYPxYP βα +=== )}|0(/)|1(log{  with 

)1/(
)1/(

00

11log ππ
ππβ −

−= . The aim is still to estimate β . 

 

 Let now s1 = }1:{ =∈ iysi and s0 = }0:{ =∈ iysi  with sizes o
1n and o

0n . The response samples in the 

strata are }1:{ 11 =∈= ir Rsis and }1:{ 00 =∈= ir Rsis  with total response sample being 

01}1:{ rrir ssRsis ∪==∈= . The data can now be represented as before, except that nonresponse 

totals is for each y-stratum. 

 

x\y y = 0 y = 1 

x = 0 n00r n01r 

x = 1 n10r n11r 

Totals o
rn0  o

rn1  

Nonresponse oo
rnn 00 −  oo

rnn 11 −  
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The MLE rrr βππ ˆ,ˆ,ˆ 01 , based on sr are the same as before, as is the full sample estimate β̂ . The 

imputation method is stratified hot-deck for the y - strata. For each missing value of x in 11
rss − , the 

imputed value x* is drawn at random from ):( 1
,1 riobs sixx ∈= .  Similarily, imputed values in 

00
rss − are drawn at random from ):( 0

,0 riobs sixx ∈= .  

 

The imputed values in s - sr can be represented in the same form as the original data where now ∗
ijn  

denotes the number of imputed values with x = i and y = j: 

 

x\y y = 0 y = 1 

x = 0 ∗
00n  ∗

01n  

x = 1 ∗
10n  ∗

11n  

Totals oo
rnn 00 −  oo

rnn 11 −  

       

Now we need to represent ∗β̂ , now denoted ∗β̂ , in a different way for it to be the sum of two 

independent terms, conditional on the observed data (y, xobs): 
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We see that 
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We now have that conditional on (y, xobs), ∗
11n  is binomial ( oo

rnn 11 − , p1) where o
rr nnp 111

1 /= , and ∗
10n  

is binomial ( oo
rnn 00 − , p0) where o

rr nnp 010
0 /= . Then from (16), we find that approximately:  
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Let f 1 be the nonresponse rate in stratum s1: ooo
111

1 /)( nnnf r−= . We note that .1/ˆ 1
111 fnnq rr −== oo  

We see that 

),|ˆ( ,1
1

obsxVar y∗β
)1(

1)1(
)1(

1
11

1

11
11

1

1

ppn
ff

ppn
f

r −
−=

−
≈

oo
. 

Similarily,  
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where f 0 is the nonresponse rate in s0: ooo
000

0 /)( nnnf r−= .   We have that 

rrrr

r

r nnnn
n

ppn 01110111

1
11

1

11
)1(

1
+==

−

o

o
 and 

rrr nnppn 0010
00

0

11
)1(

1
+=

−o
. 

 

So the denominator in (5) becomes 
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rrrr nnnn ffffE +−++− .   (18) 

To obtain the numerator in (5) we first see that: 
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Hence, the numerator in (5) equals, as before, )ˆ()ˆ( ββ VarVar r − , and exactly as before we have 

approximately 
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where as before  

  )1|1(1 === iir xRPp  and )0|1(0 === iir xRPp . 

We need alternative estimates of p1r and p0r: 

 



26 

Since  

,q)(q
)Y|R(P)x|Y(P)Y|R(P)x|Y(P

)x|Y,R(P)x|Y,R(P)x|R(Pp

rr

iiiiiiii

iiiiiiiir

0111

1

1
01101111

10111111

ππ −+=
====+=====

===+=======
 

we have )1)(ˆ1()1(ˆˆ 0
1

1
11 ffp r −−+−= ππ  and 0

1
1

11 )ˆ1(ˆˆ1 ffp r ππ −+=− . 

Similarily, )1)(ˆ1()1(ˆˆ 0
0

1
00 ffp r −−+−= ππ  and 0

0
1

00 )ˆ1(ˆˆ1 ffp r ππ −+=− . 
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We note that if f 1 = f 0 = f, then k = 1/(1 - f ). Otherwise, we can express 1/k as a linear combination of 
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6. Question: Can we use the same combination formula for a 
given situation and imputation method, for all scientific esti-
mands ? 

We try here to give a general approach to this problem. As an illustration we consider the case in 

Section 3.1, a simple random sample with nonresponse MCAR and hot-deck imputation. For other 

situations and imputation methods, similar considerations should be studied. 

In Section 3.1 we found that for estimating the population mean with the sample mean,  

f
k

−
=

1
1 , with  f = nnn r /)( − , the nonresponse rate.   (20)  

The question is now: Is this k valid for other estimation problems as well, using the same imputation 

method. The answer, in general, is NO. What is needed is to find conditions for (20) to be valid. In this 

case, the stochastic variables are (s,sr), so an alternative notation is to use (s,sr) instead of Yobs . Hence, 

(5) becomes  
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One obvious requirement is that, at least approximately  

θθ ˆ)|ˆ( =∗ sE ,        (22) 

the imputed estimator should estimate the same parameter as θ̂ . 

We shall in this note restrict attention to estimates that are linear in ( ): siyi ∈ : 

∑ ∈
=

si ii ysa )(θ̂        (23) 

Some results: 

Lemma 1 Assume θ̂ is given by (23). Then θ̂  satisfies (22) if and only if )()( sasai = for all si ∈ . 

I.e., ssi i ysnaysa )()(ˆ == ∑ ∈
θ . 

Theorem Assume θ̂ is given by (23) and satisfies (22). Then rpkE /1)( =  and )1/(1 fk −= . 

 

Before we prove these two results, let us look at some special cases: 

 

1. nsa /1)( = , same as in Section 3.1. 

2. Regression coefficient for regression through the origin, ∑∑ ∈=
=

si isi i xy /β̂ . Here (22) is 

satisfied with ∑ ∈
=

si ixsa /1)( , and hence )1/(1 fk −= . 
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3. A case where (22) does not hold is estimating the regression coefficient in usual linear regres-

sion: 
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n
npr ). Hence, for regular regression 

problems hot-deck imputation cannot work.  

 

Obviously, when y is correlated to known x in nonresponse group, one should utilize this in the 

imputations regardless of the estimation problems under consideration. 

In order to prove the two results we need some facts: 
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Proof of Lemma 1 
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and the result follows.                                         □ 

 

Proof of Theorem 
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