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1 Introduction

A primary reason for the substantial growth in the availability and use of panel data
in econometrics during the last thirty years is the opportunity that such data give for
identifying and controlling for unobserved heterogeneity which may affect the estima-
tion of slope coefficients and other parameters of interest from cross-section data, time-
series data, or repeated (non-overlapping) cross-sections. It is well known [see e.g., Bal-
tagi (2001, chapters 2 and 3), Balestra (1996), and Mátyás (1996)] (i) that the potential
nuisance created by fixed (additive) individual heterogeneity in OLS estimation can be
eliminated by measuring all variables from their individual means or taking individual
differences over time, (ii) that the potential nuisance created by fixed (additive) time
specific heterogeneity in OLS estimation can be eliminated by measuring all variables
from their time specific means or taking time specific differences over individuals, and
(iii) that efficient estimation in the presence of suitably structured random individual or
time specific heterogeneity, can be performed by (Feasible) Generalized Least Squares.

It is, however, possible to construct such aggregate estimators from disaggregate
building-blocks. Approaching estimation in this way, is far from an algebraic exercise. It
is illuminating primarily because we can utilize the fact that regression coefficients can be
estimated consistently from parts of a panel data set in a large number of ways and that
some disaggregate estimators are more robust to bias than others. We can, for instance
apply all observations from one or two individuals or from one or two periods only. By
combining an increasing number of individual specific or period specific estimators, we can
include an increasing part of the observations until, at the limit, we utilize the full panel
data set. Such an investigation is interesting on the one hand because several familiar
estimators (within, between, generalized least squares etc.) for coefficients in panel data
models can be interpreted as known linear combinations of elementary estimators, on the
other hand because we get suggestions of other estimators along the way.

The paper is structured as follows. After describing the model and some ways of
transforming it (Section 2), we first, in Section 3, define ‘disaggregate’ ‘within individ-
ual’ and ‘within period’ estimators, each of which can be given either an OLS or an
Instrumental Variables (IV) interpretation. In Section 4, a more general moment esti-
mator, obtained by an arbitrary weighting of these elementary estimators as well as its
variance-covariance matrix, is constructed. We next reconsider nine familiar estimators
of a slope coefficient vector in a linear regression equation for panel data with two-way
random or fixed effects, three of which are ‘within (group)’, two are ‘between (group)’
estimators related to individual or time variation, one is the standard OLS (Ordinary
Least Squares) and three are Generalized Least Squares (GLS) estimators. We show
that these ‘aggregate’ estimators can all belong to this class and demonstrate that our
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general estimator contains not only the nine estimators mentioned above, but also several
others which are more robust to violation of the standard assumptions in random coeffi-
cient models. In this process, some textbook results [Maddala (1977, section 14–2) and
Hsiao (2003, section 2.2)] and some results in Biørn (1994, 1996) are generalized. Both
a standard regression framework and situations with simultaneity (correlation between
individual effects, period effects, and/or disturbances on the one hand and the regressor
vector on the other) and situations with random measurement errors in the regressor
vector are considered. Among the latter estimators we select estimators which are more
robust to simultaneity and measurement errors and more efficient than the ‘disaggregate’
estimators. Finally, an empirical illustration of robustness and efficiency loss, relating to
manufacturing productivity, is given.

2 Model, notation, and transformations

Consider a linear regression equation relating y to a vector of K (stochastic) regressors
x, with data set from a panel of N ( ≥ 2) individuals observed in T ( ≥ 2) periods:

yit = k + xitβ + εit, εit = αi + γt + uit, i = 1, . . . , N ; t = 1, . . . , T,(2.1)

where yit and xit = (x1it, . . . , xKit) are the values of y and x for individual i in period
t, β = (β1, . . . , βK) ′ is the coefficient vector, αi and γt are random effects specific to
individual i and period t, respectively, uit is a genuine disturbance, and k is an intercept
term. It is, however, possible to interpret αi and γt as fixed effects, see Section 5. At the
moment, we make the standard assumptions for two-way random effects models,

uit ∼ IID(0, σ2), αi ∼ IID(0, σ2
α), γt ∼ IID(0, σ2

γ), i = 1, . . . , N ; t = 1, . . . , T,(2.2)

uit, αi, γt, xit are independently distributed for all i and t,(2.3)

which imply

E(εit|X) = 0, E(εitεjs|X) = δijσ
2
α + δtsσ

2
γ + δijδtsσ

2, i, j = 1, . . . , N,
t, s = 1, . . . , T,

(2.4)

where δij = 1 for i = j and = 0 for i 6= j, and δts = 1 for t = s and = 0 for t 6= s, and X

is the (NT ×K) matrix containing all the xit’s. Some of the assumptions in (2.2) and
(2.3) will be relaxed later on.

The individual specific vectors and matrices, of dimension (T × 1) and (T × K),
respectively, and the period specific vectors and matrices, of dimension (N × 1) and
(N ×K), respectively, are

yi· =




yi1

...
yiT


 , Xi· =




xi1

...
xiT


 , y·t =




y1t

...
yNt


 , X·t =




x1t

...
xNt


 ,
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which are stacked into

y =




y1·
...

yN·


 , X =




X1·
...

XN·


 , y∗ =




y·1
...

y·T


 , X∗ =




X·1
...

X·T


 .

Further, let eH be the (H × 1) vector of ones, IH the H-dimensional identity matrix,
AH = eHe ′H/H, BH = IH − AH and let α = (α1, . . . , αN ) ′ and γ = (γ1, . . . , γT ) ′.
Alternative ways of writing (2.1) are then

yi· = eT k + Xi·β + εi·, εi· = eT αi + γ + ui·, i = 1, . . . , N,(2.5)

y·t = eNk + X·tβ + ε·t, ε·t = α + eNγt + u·t, t = 1, . . . , T,(2.6)

where εi·, ui·, ε·t, u·t are defined in similar way as yi· and y·t, and after deducting global
means we obtain

yi·−ȳ = (Xi·−X̄)β + εi·−ε̄, εi·−ε̄ = eT (αi−ᾱ) + BT γ + ui·−ū,(2.7)

y·t−ȳ∗ = (X·t−X̄∗)β + ε·t−ε̄∗, ε·t−ε̄∗ = BNα + eN (γt−γ̄) + u·t−ū∗,(2.8)

where ᾱ = (1/N)
∑

i αi, γ̄ = (1/T )
∑

t γt, X̄ = (1/N)
∑

i Xi·, X̄∗ = (1/T )
∑

t X·t,
ȳ = (1/N)

∑
i yi·, ȳ∗ = (1/T )

∑
t y·t, , etc. Premultiplying (2.5) by BT , (2.7) by AT ,

(2.6) by BN and (2.8) by AN , give, respectively,

BT yi· = BT Xi·β + BT εi·,
AT (yi· − ȳ) = AT (Xi· − X̄)β + AT (εi· − ε̄),

(2.9)

BNy·t = BNX·tβ + BNε·t,
AN (y·t − ȳ∗) = AN (X·t − X̄∗)β + AN (ε·t − ε̄∗).

(2.10)

We let W , V , B, and C, with appropriate subscripts, symbolize matrices containing
within individual, within period, between individual, and between period (co)variation,
respectively. Define individual specific and period specific cross-product matrices as
follows:

W XXij = X ′
i·BT Xj· =

∑T
t=1(xit − x̄i·) ′(xjt − x̄j·),

W Xγi = X ′
i·BT γ =

∑T
t=1(xit − x̄i·) ′(γt − γ̄),

i, j = 1, . . . , N,(2.11)

V XXts = X ′·t BN X·s =
∑N

i=1(xit − x̄·t) ′(xis − x̄·s),
V Xαt = X ′·t BN α =

∑N
i=1(xit − x̄·t) ′(αi − ᾱ),

t, s = 1, . . . , T,(2.12)

BXXii = (Xi· − X̄) ′AT (Xi· − X̄) = T (x̄i· − x̄) ′(x̄i· − x̄),
BXαii = (Xi· − X̄) ′eT (αi − ᾱ) = T (x̄i· − x̄) ′(αi − ᾱ),

i = 1, . . . , N,(2.13)

CXXtt = (X·t − X̄∗) ′AN (X·t − X̄∗) = N(x̄·t − x̄) ′(x̄·t − x̄),
CXγtt = (X·t − X̄∗) ′eN (γt − γ̄) = N(x̄·t − x̄) ′(γt − γ̄),

t = 1, . . . , T,(2.14)

etc., where x̄i· = (e ′T /T )Xi·, x̄·t = (e ′N/N)X·t, x̄ = (e ′NT /(NT ))X = (e ′TN/(TN))X∗.
These matrices have the following properties:
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• W XXij , which has full rank K if xit contains no individual specific variables, is
the (K ×K) matrix of within individual covariation in the x’s of individuals i and
j, and V XXts, which has full rank K if xit contains no period specific variables, is
the (K ×K) matrix of within period covariation in the x’s of periods t and s. If
individual specific regressors occur, W XXij has one zero column (and row) for each
such variable, and if period specific regressors occur, V XXts has one zero column
(and row) for each such variable.

• BXXii and CXXtt, which have rank 1, are the (K ×K) matrices of between indi-
vidual cross-products and between period cross-products of the x’s of individual i

and period t, respectively.

• W Xγi is the (K × 1) vector of within covariation of the x’s of individual i and the
period specific effects, V Xαt is the (K × 1) vector of within covariation of the x’s
of period t and the individual specific effects, BXαi is the (K×1) vector of between
cross-products of the x’s of individual i and its individual specific effects, and CXγt

is the (K × 1) vector of between cross-products of the x’s of period t and its period
specific effects.

Premultiplying the two equations in (2.9) by X ′
i·BT and (Xi· − X̄) ′AT , respec-

tively, and premultiplying the two equations in (2.10) by X ′·tBN and (X·t − X̄∗) ′AN ,
respectively, while using (2.11)–(2.14), we get

W XY ij = W XXij β + W Xεij , W Xεij = W Xγi + W XUij , i, j = 1, . . . , N,(2.15)

BXY ii = BXXii β + BXεii, BXεii = BXαii + BXUii, i = 1, . . . , N,(2.16)

V XY ts = V XXts β + V Xεts, V Xεts = V Xαt + V XUts, t, s = 1, . . . , T,(2.17)

CXY tt = CXXtt β + CXεtt, CXεtt = CXγtt + CXUtt, t = 1, . . . , T.(2.18)

These can be considered ‘moment versions’ of Eq. (2.1),

3 Base estimators and their properties

The fact that W Xεij and have zero expectations when (2.2) and (2.3) are satisfied, in
combination with (2.15) and (2.17) motivate the following N2 individual specific and T 2

period specific estimators of β:

β̂Wij = W−1
XXijW XY ij = (X ′

i·BT Xj·)−1(X ′
i·BT yj·), i, j = 1, . . . , N,(3.1)

β̂V ts = V −1
XXtsV XY ts = (X ′·tBNX·s)−1(X ′·tBNy·s), t, s = 1, . . . , T.(3.2)

We denote them as base estimators, or disaggregate estimators, of β. They can be given
the following interpretations:
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(i) β̂Wii is the OLS estimator based on observations from individual i, and β̂Wij, for
j 6= i, is the IV estimator based on the ‘within variation’ of individual j, BT Xj·,
using the ‘within variation’ of individual i in Xi·, BT Xi·, as IV matrix.

(ii) β̂V tt is the OLS estimator based on observations from period t, and β̂V ts, for s 6= t,
is the IV estimator based on the ‘within variation’ of period s, BNX·s, using the
‘within variation’ of period t in X·t, BNX·t, as IV matrix.

All these N2+T 2 estimators exist if all elements of xit vary across individuals and periods,
since this usually ensures that W XXij and V XXts have rank K.

If individual specific variables occur, so that W XXij contains one or more zero rows
and columns, their coefficients cannot be estimated from (3.1), but estimators for the
coefficients of the other, i.e., the two-dimensional or period specific variables, can be
solved from W XXijβ̂Wij = W XY ij . Likewise, if period specific variables occur, so that
V XXts contains one or more zero rows and columns, their coefficients cannot be estimated
from (3.2), but estimators for the coefficients of the other, i.e., the two-dimensional or
individual specific variables, can be solved from V XXtsβ̂V ts = V XY ts.

Since inserting for W XY ij from (2.15) and for V XY ts from (2.17) in (3.1) and (3.2)
gives, respectively,

β̂Wij − β = W−1
XXijW Xεij = W−1

XXij(W Xγi + W XUij), i, j = 1, . . . , N,(3.3)

β̂V ts − β = V −1
XXtsV Xεts = V −1

XXts(V Xαt + V XUts), t, s = 1, . . . , T,(3.4)

and (2.2) and (2.3) imply

E(W XUij |X) = E(W Xγi|X) = 0K1, i, j = 1, . . . , N,(3.5)

E(V XUts|X) = E(V Xαt|X) = 0K1, t, s = 1, . . . , T,(3.6)

we know that β̂Wij and β̂V ts are unbiased estimators for β. Furthermore, β̂Wij is
consistent when T → ∞ (T -consistent, for short), since then plim(W Xεij/T ) = 0K1,
provided that plim(W XXij/T ) is non-singular, and β̂V ts is consistent when N →∞ (N -
consistent, for short), since then plim(V Xεts/N) = 0K1, provided that plim(V XXts/N)
is non-singular.

However, some of the base estimators may be consistent even if conditions (2.2)–(2.3)
are weakened. The following robustness results hold:

[1 ]Since (3.3) does not contain α, all β̂Wij are T -consistent even if αi is treated as
fixed or allowed to be correlated with x̄i·, but if γt is correlated with x̄·t, all β̂Wij

are inconsistent. Symmetrically, since (3.4) does not contain γ, all β̂V ts are N -
consistent even if γt is treated as fixed or allowed to be correlated with x̄·t, but if αi

is correlated with x̄i·, all β̂V ts are inconsistent.
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[2 ]Endogeneity of or random measurement error in (some components of) xit may
cause E(x ′

ituit) 6= 0K1. Then plim(W XUii/T ) 6= 0K1, so that the OLS estimators
β̂Wii are inconsistent, but the IV estimators β̂Wij (j 6= i) remain T -consistent.
Symmetrically, we then also have plim(V XUtt/N) 6= 0K1, so that the OLS estima-
tors β̂V tt are inconsistent, but the IV estimators β̂V ts (s 6= t) remain N -consistent.

In Appendix A it is shown that when (2.2)–(2.3) hold, the matrices of covariances be-
tween the individual specific and the period specific base estimators, respectively, can be
expressed as

C(β̂Wij , β̂Wkl|X) = E[(β̂Wij − β)(β̂Wkl − β) ′|X](3.7)
= (σ2

γ + δjlσ
2)W−1

XXijW XXikW
−1
XXlk,

C(β̂V ts, β̂V pq|X) = E[(β̂V ts − β)(β̂V pq − β) ′|X](3.8)
= (σ2

α + δsqσ
2)V −1

XXtsV XXtpV
−1
XXqp,

C(β̂Wij , β̂V pq|X) = E[(β̂Wij − β)(β̂V pq − β) ′|X](3.9)
= σ2W−1

XXij(xiq − x̄i·) ′(xjp − x̄·p)V −1
XXqp, i, j, k, l = 1, . . . , N,

t, s, p, q = 1, . . . , T.

Eq. (3.7) for (k, l) = (i, j) and (3.8) for (p, q) = (t, s) give in particular the variance-
covariance matrices

V(β̂Wij |X) = E[(β̂Wij − β)(β̂Wij − β) ′|X](3.10)
= (σ2

γ + σ2)W−1
XXijW XXiiW

−1
XXji, i, j = 1, . . . , N,

V(β̂V ts|X) = E[(β̂V ts − β)(β̂V ts − β) ′|X](3.11)
= (σ2

α + σ2)V −1
XXtsV XXttV

−1
XXst, t, s = 1, . . . , T.

When (2.2)–(2.3) hold, β̂Wjj and β̂V ss are always more efficient than β̂Wij (j 6= i) and
β̂V ts (s 6= t), respectively, i.e., V(β̂Wij |X) − V(β̂Wjj |X) for i 6= j and V(β̂V ts|X) −
V(β̂V ss|X) for t 6= s are positive (semi)definite matrices. The formal proof of this is

V(β̂Wij |X)− V(β̂Wjj |X) = (σ2
γ + σ2)(W−1

XXijW XXiiW
−1
XXji −W−1

XXjj)
= (σ2

γ + σ2)(A−1
WXijA

−1
WXji − IK)W−1

XXjj ,

V(β̂V ts|X)− V(β̂V ss|X) = (σ2
α + σ2)(V −1

XXtsV XXttV
−1
XXst − V −1

XXss)
= (σ2

α + σ2)(A−1
V XtsA

−1
V Xst − IK)V −1

XXss,

where
AWXij = W−1

XXiiW XXij , AV Xts = V −1
XXttV XXts.

The latter are the (K×K) matrix of (sample) regression coefficients when regressing the
block of X relating to j, i.e., Xj·, on the block of X relating to individual i, i.e., Xi·,
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and when regressing the block of X relating to period s, i.e., X·s, on the block of X

relating to period t, i.e., X·t, respectively. Here all (A−1
WXijA

−1
WXji − IK), j 6= i, and

all (A−1
V XtsA

−1
V Xst − IK), s 6= t, are positive (semi)definite matrices, provided that all

variables in xit are two-dimensional.
The structure of the variance-covariance matrices of the estimators is transparent in

the one-regressor case, K = 1. Then (3.7) and (3.10) read

C(β̂Wij , β̂Wkl|X) = (σ2
γ+δjlσ

2)
WXXik

WXXijWXXkl

, V(β̂Wij |X) = (σ2
γ+σ2)

WXXii

W 2
XXij

,(3.12)

where WXXik, β̂Wij , etc. denote the scalar counterparts to W XXik, β̂Wij , etc. The
coefficient of correlation between two arbitrary individual specific base estimators for the
slope coefficient can therefore be written as

ρ(β̂Wij , β̂Wkl|X) =
C(β̂Wij , β̂Wkl|X)

[V(β̂Wij |X)V(β̂Wkl|X)]1/2
(3.13)

=
σ2

γ + δjlσ
2

σ2
γ + σ2

WXXik

(WXXiiWXXkk)1/2
= ρ(εjt, εlt)RWXik,

where RWXik = WXXik/(WXXiiWXXkk)
1/2 is the sample coefficient of correlation be-

tween the x’s of individuals i and k and ρ(εjt, εlt) = (σ2
γ+δjlσ

2)/(σ2
γ+σ2) is the coefficient

of correlation between εjt and εlt. If we therefore consider (2.5) as an N -equation model
with one equation for each individual and with common slope coefficient, ρ(β̂Wij , β̂Wkl|X)
is simply the product of the coefficient of correlation between two ε disturbances from in-
dividuals (equations) j and l in the same period, and the coefficient of correlation between
the values of the regressor (instrument) for individuals (equations) i and k. This means
that ρ(β̂Wij , β̂Wkl|X) has one equation specific component (j vs. l) and one instrument
specific component (i vs. k). For j = l and for i = k (3.13) gives, respectively,

ρ(β̂Wij , β̂Wkj |X)=RWXik, for all j; i 6=k [same equation (individual), different IV],

ρ(β̂Wij , β̂Wil|X)=
σ2

γ

σ2
γ+σ2

, for all i; j 6= l [different equations (individuals), same IV].

Symmetrically, (3.8) and (3.11) for K = 1 give

C(β̂V ts, β̂V pq|X) = (σ2
α + δsqσ

2)
VXXtp

VXXtsVXXpq

, V(β̂V ts|X) = (σ2
α + σ2)

VXXtt

V 2
XXts

.(3.14)

The coefficients of correlation can therefore be written as

ρ(β̂V ts, β̂V pq|X) =
C(β̂V ts, β̂V pq|X)

[V(β̂V ts|X)V(β̂V pq|X)]1/2
(3.15)

=
σ2

α + δsqσ
2

σ2
α + σ2

VXXtp

(VXXttVXXpp)1/2
= ρ(εis, εiq)RV Xtp,
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where RV Xtp = VXXtp/(VXXttVXXpp)
1/2 is the coefficient of correlation between the x’s

in periods t and p and ρ(εis, εiq) = (σ2
α + δsqσ

2)/(σ2
α + σ2) is the coefficient of correlation

between εis and εiq. If we therefore consider (2.6) as a T -equation model with one equation
for each period and with common slope coefficient, ρ(β̂V ts, β̂V pq|X) is simply the product
of the coefficient of correlation between two ε disturbances from periods (equations) s

and q for the same individual, and the coefficient of correlation between the values of
the regressor (instrument) in periods t and p. This means that ρ(β̂V ts, β̂V pq|X) has one
equation specific component (s vs. q) and one instrument specific component (t vs. p).
For s = q and t = p (3.15) gives, respectively,

ρ(β̂V ts, β̂V ps|X)=RV Xtp, for all s; t 6=p [same equation (period), different IV],

ρ(β̂V ts, β̂V tq|X)=
σ2

α

σ2
α+σ2

, for all t; s 6=q [different equations (periods), same IV].

From (3.12) and (3.14) we find that the inefficiency when using the (within) variation
of individual i as IV for the (within) variation of individual j relative to performing OLS
on the observations from individual j and when using the (within) variation of period t as
IV for the (within) variation of period s relative to performing OLS on the observations
from period s, can be expressed simply as, respectively,

V(β̂Wij |X)

V(β̂Wjj |X)
=

1
AWXijAWXji

=
1

R2
WXij

,(3.16)

V(β̂V ts|X)
V(β̂V ss|X)

=
1

AV XtsAV Xst
=

1
R2

V Xts

.(3.17)

Hence, R−2
WXij (≥ 1) and R−2

V Xts (≥ 1) measure, respectively, the loss of efficiency when
using estimators which are robust to inconsistency caused by simultaneity or random
measurement error in the regressor, (i) by estimating a relationship for individual j by
using as IV observations from another individual, i, rather than using OLS, and (ii) by
estimating a relationship for period s by using as IV observations from another period,
t, rather than using OLS.

4 A class of moment estimators

Since each of the N2 +T 2 base estimators of β, β̂Wij and β̂V ts, only uses a minor part of
the panel data set, they may not be considered real competitors to estimators constructed
from the complete data set, when (2.2)–(2.3) are valid. And even if these assumptions
are violated by correlation between xit and uit, between x̄i· and αi, and/or between
x̄·t and γt, aggregate estimators which are more efficient than any of the IV estimators
β̂Wij (j 6= i) and β̂V ts (s 6= t) may exist. Yet, the insight provided by examining
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these base estimators as we have done in th previous section is useful when constructing
composite estimators of β, of which they can serve as building-blocks.

This motivates the construction of a class of estimators of β by weighting the indi-
vidual specific or period specific (co)variation in X and y, as defined in (2.11)–(2.12), as
follows: Let θ = (θts) be a (T ×T ) matrix and τ = (τij) an (N ×N) matrix of (positive,
zero or negative) weights and define a general moment estimator as

b = b(θ, τ ) =
(∑T

t=1

∑T
s=1 θtsV XXts +

∑N
i=1

∑N
j=1 τijW XXij

)−1
(4.1)

×
(∑T

t=1

∑T
s=1 θtsV XY ts +

∑N
i=1

∑N
j=1 τijW XY ij

)
.

Using (3.1)–(3.2) it can be written as a weighted average of the base estimators:

b =
(∑T

t=1

∑T
s=1 θtsV XXts +

∑N
i=1

∑N
j=1 τijW XXij

)−1
(4.2)

×
(∑T

t=1

∑T
s=1 θtsV XXtsβ̂V ts +

∑N
i=1

∑N
j=1 τijW XXijβ̂Wij

)
,

or, in simplified notation,

b =
∑T

t=1

∑T
s=1 GV tsβ̂V ts +

∑N
i=1

∑N
j=1 GWijβ̂Wij ,(4.3)

where GV ts and GWij are (K×K) weighting matrices,
∑

t

∑
s GV ts+

∑
i

∑
j GWij = IK ,

given by

GV ts = Q−1θtsV XXts, t, s = 1, . . . , T,

GWij = Q−1τijW XXij , i, j = 1, . . . , N,

Q = Q(θ, τ ) =
∑T

t=1

∑T
s=1 θtsV XXts +

∑N
i=1

∑N
j=1 τijW XXij .

(4.4)

None of the latter matrices are symmetric in general. If, however, θts = θst for all t, s

and τij = τji for all i, j, then Q′ = Q.
The estimator b is unbiased for any θ and τ when (2.2) and (2.3) hold, and in

Appendix B it is shown that its variance-covariance matrix is (This formula in the special
case where K = 1 and σ2

γ = 0 is derived in Biørn (1994, Appendix A).)

V(b|X) = Q−1 P (Q−1) ′ = Q(θ, τ )−1P (θ, τ , σ2, σ2
α, σ2

γ)(Q(θ, τ )−1) ′,(4.5)

where

P = P (θ, τ , σ2, σ2
α, σ2

γ) = σ2(SV + SW + SV W ) + σ2
α ZV + σ2

γ ZW ,(4.6)
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SV = SV (θ) =
T∑

t=1

T∑

p=1

V XXtp

(
T∑

s=1

θtsθps

)
,

SW = SW (τ ) =
N∑

i=1

N∑

k=1

W XXik




N∑

j=1

τijτkj


 ,

SV W = SV W (θ, τ ) =
T∑

t=1

T∑

s=1

N∑

i=1

N∑

j=1

θtsτij(xis − x̄i·) ′(xjt − x̄·t),

ZV = ZV (θ) =
T∑

t=1

T∑

p=1

V XXtp

(
T∑

s=1

θts

) (
T∑

r=1

θpr

)
,

ZW = ZW (τ ) =
N∑

i=1

N∑

k=1

W XXik




N∑

j=1

τij




(
N∑

l=1

τkl

)
.

(4.7)

It is easily seen that SWV = 0 if either θts = θ for all t, s or τij = τ for all i, j, that
ZV = 0 if

∑T
s=1 θts = 0 for all t, and that ZW = 0 if

∑T
j=1 τij = 0 for all i. The standard

estimators in fixed and random effects models have at least one of these properties, which
will be shown in the next section.

By utilizing (4.5)–(4.7), we can estimate V(b|X) consistently from a panel data set
for any weighting matrices θ and τ we may choose when consistent estimators of the
variances σ2, σ2

α, and σ2
γ have been obtained.

5 Specific aggregate estimators

In this section, we consider specific members of the class of estimators described by (4.1).
Some of these are familiar, others less familiar.

Aggregate within and between estimators

The estimator b contains several familiar estimators for fixed effects models as particular
members. We first establish the weighting system (θ, τ ) for six such estimators and
comment on other, less familiar estimators which are more robust to violation of the
basic assumptions. The results below generalize those in Biørn (1994, section 3), where
only one regressor is included (K = 1) and period specific effects are disregarded (γt = 0).

We define, in the usual way [see, e.g., Greene (2003, section 13.3.2)], the (K ×K)-
matrices of overall (aggregate) within individual and within period, (co)variation as

W XX =
∑N

i=1 W XXii =
∑N

i=1

∑T
t=1(xit − x̄i·) ′(xit − x̄i·),(5.1)

V XX =
∑T

t=1 V XXtt =
∑T

t=1

∑N
i=1(xit − x̄·t) ′(xit − x̄·t),(5.2)

etc. The corresponding overall between individual, and between period (co)variation are

BXX =
∑N

i=1 BXXii = T
∑N

i=1(x̄i· − x̄) ′(x̄i· − x̄) = (1/T )
∑T

t=1

∑T
s=1 V XXts,(5.3)

CXX =
∑T

t=1 CXXtt = N
∑T

t=1(x̄·t − x̄) ′(x̄·t − x̄) = (1/N)
∑N

i=1

∑N
j=1 W XXij ,(5.4)
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etc., where the last equalities are shown in Appendix C. The matrix of overall (co)variation
and its decomposition into within and between variation is

T XX =
∑N

i=1

∑T
t=1(xit − x̄) ′ (xit − x̄) = W XX + BXX = V XX + CXX ,(5.5)

which after inserting from (5.1)–(5.4) becomes

T XX =
∑N

i=1 W XXii + (1/T )
∑T

t=1

∑T
s=1 V XXts(5.6)

=
∑T

t=1 V XXtt + (1/N)
∑N

i=1

∑N
j=1 W XXij .

Finally, the matrix of residual (co)variation, i.e., the (co)variation which remains when
all (co)variation between individuals and between periods is eliminated (also denoted as
the combined within-individual-and-period (co)variation) is

RXX =
∑N

i=1

∑T
t=1(xit−x̄i·−x̄·t+x̄) ′(xit−x̄i·−x̄·t+x̄) = T XX−BXX−CXX ,

(5.7)
which after inserting from (5.3), (5.4), and (5.6) becomes

RXX =
∑N

i=1

(
W XXii − (1/N)

∑N
j=1 W XXij

)
(5.8)

=
∑T

t=1

(
V XXtt − (1/T )

∑T
s=1 V XXts

)
.

We see from (5.6) and (5.8) that T XX and RXX can be expressed in terms of the W XXij ’s
and the V XXts in two symmetric ways.

We can now, combining the decompositions exemplified in (5.1)–(5.4) with (3.1)–(3.2),
express the familiar within individual, within period, between individual, and between
period estimators of β as

β̂W = W−1
XX W XY =

(∑N
i=1 W XXii

)−1 (∑N
i=1 W XXii β̂Wii

)
,(5.9)

β̂V = V −1
XX V XY =

(∑T
t=1 V XXtt

)−1 (∑T
t=1 V XXtt β̂V tt

)
,(5.10)

β̂B = B−1
XX BXY =

(∑T
t=1

∑T
s=1 V XXts

)−1 (∑T
t=1

∑T
s=1 V XXts β̂V ts

)
,(5.11)

β̂C = C−1
XX CXY =

(∑N
i=1

∑N
j=1 W XXij

)−1 (∑N
i=1

∑N
j=1 W XXij β̂Wij

)
.(5.12)

Familiar results from panel data textbooks are: (i) β̂W and β̂V , as expressed by the
first equalities in (5.9) and (5.10), are the MVLUE (Minimum Variance Linear Unbiased
Estimator) of β in the cases with only fixed individual specific and with only fixed period
specific effects, respectively. (ii) β̂B and β̂C , as expressed by the first equalities in (5.11)
and (5.12), are obtained by running OLS on relations expressed in terms of individual
specific and in terms of period specific means, respectively. On the other hand, the
expressions after the last equality signs in (5.9)–(5.12), in particular the two last ones are

13



non-standard and are more interesting from our point of view. We find that: (iii) β̂W

and β̂C utilize the (co)variation across periods in the panel data set and disregard the
(co)variation across individuals, while (iv) β̂V and β̂B utilize the (co)variation across
individuals and disregard the (co)variation across periods. This demonstrates that among
these four estimators, β̂W and β̂C are related to time-series analysis and β̂V and β̂B are
related to cross-section analysis.

With this in mind, it is interesting to reconsider the two remaining familiar estima-
tors in the panel data literature: the total (standard OLS) (T ) and the residual (R)
estimators. Both can be written in two symmetric ways, either as

β̂T = T−1
XXT XY = (BXX + CXX + RXX)−1(BXY + CXY + RXY )(5.13)

=
(∑N

i=1 W XXii + (1/T )
∑T

t=1

∑T
s=1 V XXts

)−1

×
(∑N

i=1 W XXii β̂Wii + (1/T )
∑T

t=1

∑T
s=1 V XXts β̂V ts

)
,

β̂R = R−1
XXRXY(5.14)

=
[∑N

i=1

(
W XXii − (1/N)

∑N
j=1 W XXij

)]−1

×
[∑N

i=1

(
W XXii β̂Wii − (1/N)

∑N
j=1 W XXij β̂Wij

)]
,

or as

β̂T =
(∑T

t=1 V XXtt + (1/N)
∑N

i=1

∑N
j=1 W XXij

)−1
(5.15)

×
(∑T

t=1 V XXtt β̂V tt + (1/N)
∑N

i=1

∑N
j=1 W XXij β̂Wij

)
,

β̂R =
[∑T

t=1

(
V XXtt − (1/T )

∑T
s=1 V XXts

)]−1
(5.16)

×
[∑T

t=1

(
V XXtt β̂V tt − (1/T )

∑T
s=1 V XXts β̂V ts

)]
,

which follow from (3.1)–(3.2) and the decompositions exemplified in (5.5)–(5.8). We know
that β̂T is the MVLUE of β in the absence of any individual or period specific hetero-
geneity, whereas β̂R has the same property when all the αi’s and γt’s are interpreted as
unknown constants (both fixed individual and period specific effects). The last equalities
in (5.13) and (5.15) show clearly that the standard OLS estimator utilizes (co)variation
both across individuals and periods.

Briefly, (5.9)–(5.16) show that all the six familiar aggregate estimators for fixed effects
models belong to the class (4.2) and can be interpreted as follows:

(i) The overall within individual estimator β̂W and the overall between pe-

riod estimator β̂C are both matrix weighted averages of the base individual

specific estimators β̂Wij, the former utilizing only the N individual specific OLS
estimators, the latter also the N(N−1) individual specific IV estimators.
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(ii) The overall within period estimator β̂V and the overall between individ-

ual estimator β̂B are both matrix weighted averages of the base period specific

estimators β̂V ts, the former utilizing only the T period specific OLS estimators, the
latter also the T (T−1) period specific IV estimators.

(iii) The (overall) residual estimator β̂R can be interpreted as a matrix weighted
average of either all the N2 base individual specific estimators or all the T 2 base
period specific estimators.

(iv) The total OLS estimator β̂T can be interpreted as a matrix weighted average of
either (a) all the N individual specific OLS estimators, all the T period specific
OLS estimators, and all the T (T −1) period specific within period IV estimators,
or (b) all the T period specific OLS estimators, all the N individual specific OLS
estimators, and all the N(N−1) individual specific within individual IV estimators.

The weights are summarized in Table 1, panel A. In compact notation, we have

β̂R = b(BT ,0NN ) = b(0TT , BN ),
β̂B = b(AT ,0NN ),
β̂C = b(0TT ,AN ),
β̂W = b(BT , AN ) = b(0TT , IN ),
β̂V = b(AT , BN ) = b(IT ,0NN ),
β̂T = b(IT , AN ) = b(AT , IN ).

For the total, residual and both within estimators the weights are given in two versions.
The weights corresponding to (5.9)–(5.16) are given in rows 6, 8, 1, 2, 10, 4, 9, and 3,
respectively, the weights in row 5 follow from (5.3), (5.5), and (5.6), and the weights
in row 7 follow from (5.4), (5.5), and (5.6). We can derive their variance-covariance
matrices when the random effects specification is valid [cf. (2.2)] by inserting the value
of the weights in Table 1, panel A, into (4.5)–(4.7), using (5.1)–(5.8). The results are
summarized in panel B. Compactly,

V(β̂R|X) = σ2R−1
XX ,

V(β̂B|X) = (σ2 + Tσ2
α)B−1

XX ,

V(β̂C |X) = (σ2 + Nσ2
γ)C−1

XX ,

V(β̂W |X) = (RXX + CXX)−1[σ2RXX + (σ2 + Nσ2
γ)CXX ](RXX + CXX)−1,

V(β̂V |X) = (RXX + BXX)−1[σ2RXX + (σ2 + Tσ2
α)BXX ](RXX + BXX)−1,

V(β̂T |X) = (RXX + BXX + CXX)−1

× [σ2RXX + (σ2 + Tσ2
α)BXX + (σ2 + Nσ2

γ)CXX ]
× (RXX + BXX + CXX)−1.
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Table 1: The General Moment Estimator (4.1)

A: Weights θts and τij for standard between and within estimators

θtt θts, s 6= t τii τij , j 6= i θ τ

β̂B
1
T

1
T

0 0 AT 0NN

β̂C 0 0 1
N

1
N

0TT AN

β̂R 1− 1
T

− 1
T

0 0 BT 0NN

β̂R 0 0 1− 1
N

− 1
N

0TT BN

β̂W 1− 1
T

− 1
T

1
N

1
N

BT AN

β̂W 0 0 1 0 0TT IN

β̂V
1
T

1
T

1− 1
N

− 1
N

AT BN

β̂V 1 0 0 0 IT 0NN

β̂T 1 0 1
N

1
N

IT AN

β̂T
1
T

1
T

1 0 AT IN

B: Values of SV + SW , ZV , ZW , Q, and ZV W defining Covariance Matrices

SV + SW ZV ZW Q ZV W

β̂B BXX TBXX 0 BXX 0
β̂C CXX 0 NCXX CXX 0
β̂R RXX 0 0 RXX 0
β̂W CXX + RXX 0 NCXX CXX + RXX 0
β̂V BXX + RXX TBXX 0 BXX + RXX 0
β̂T BXX +CXX +RXX TBXX NCXX BXX +CXX +RXX 0

GLS estimators for random effects models

We next reconsider the GLS estimator of β, which is the MVLUE in the two-way random
effects model (2.1)–(2.3). Consider first the following subclass of the estimator b:

β̂ = β̂(µB, µC , µR)(5.17)

= (µBBXX + µCCXX + µRRXX)−1(µBBXY + µCCXY + µRRXY ),

where (µB, µC , µR) are scalar constants (one of which may be normalized to unity without
loss of generality). Using the decompositions exemplified by (5.3), (5.4), and (5.8), it can
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be expressed in the (4.1) format either as

β̂ =


µB

T

T∑

t=1

T∑

s=1

V XXts + µR

N∑

i=1

W XXii +
µC − µR

N

N∑

i=1

N∑

j=1

W XXij



−1

×

µB

T

T∑

t=1

T∑

s=1

V XY ts + µR

N∑

i=1

W XY ii +
µC − µR

N

N∑

i=1

N∑

j=1

W XY ij


 ,

or as

β̂ =


µC

N

N∑

i=1

N∑

j=1

W XXij + µR

T∑

t=1

V XXtt +
µB − µR

T

T∑

t=1

T∑

s=1

V XXts



−1

×

µC

N

N∑

i=1

N∑

j=1

W XY ij + µR

T∑

t=1

V XY tt +
µB − µR

T

T∑

t=1

T∑

s=1

V XY ts


 ,

compactly

β̂ = b(µBAT , µCAN + µRBN ) = b(µBAT + µRBT , µCAN ).(5.18)

As shown thirty years ago by Fuller and Battese (1973, 1974), the two-way random
effects GLS estimator of β utilizing (2.2)–(2.3), for known (σ2, σ2

α, σ2
γ), can be written as

β̂GLS = β̂(λB, λC , 1)=(λBBXX +λCCXX +RXX)−1(λBBXY +λCCXY +RXY )(5.19)

=

[
RXX

σ2
+

BXX

σ2 + Tσ2
α

+
CXX

σ2 + Nσ2
γ

]−1 [
RXY

σ2
+

BXY

σ2 + Tσ2
α

+
CXY

σ2 + Nσ2
γ

]
,

where

λB =
σ2

σ2 + Tσ2
α

, λC =
σ2

σ2 + Nσ2
γ

.

This is the MVLUE in the random effects model. Under normality of uit, αi and γt it
is the Maximum Likelihood estimator. The corresponding estimators when only random
individual effects occur (γt = σ2

γ = 0) and when only random period effects occur (αi =
σ2

α = 0) are, respectively,

β̂GLS(α) = β̂(λB, 1, 1) = (λBBXX + CXX + RXX)−1(λBBXY + CXY + RXY ),

β̂GLS(γ) = β̂(1, λC , 1) = (BXX + λCCXX + RXX)−1(BXY + λCCXY + RXY ).

The weights θts and τij for these three GLS estimators are functions of λB and/or
λC , as given, in two versions, in Table 2, panel A:

β̂GLS = b(BT + λBAT , λCAN ) = b(λBAT , BN + λCAN ),
β̂GLS(α) = b(BT + λBAT ,AN ) = b(λBAT , IN ),
β̂GLS(γ) = b(IT , λCAN ) = b(AT ,BN + λCAN ).

17



In Appendix D it is shown that their variance-covariance matrices, when three variance
components occur, can be written as

V(β̂GLS |X) = σ2[RXX + λBBXX + λCCXX ]−1 =

[
RXX

σ2
+

BXX

σ2 + Tσ2
α

+
CXX

σ2 + Nσ2
γ

]−1

,

V(β̂GLS(α)|X) = [RXX +λBBXX +CXX ]−1

× [σ2RXX +λ2
B(σ2+Tσ2

α)BXX +(σ2+Nσ2
γ)CXX ][RXX +λBBXX +CXX ]−1,

V(β̂GLS(γ)|X) = [RXX +BXX +λCCXX ]−1

× [σ2RXX +(σ2+Tσ2
α)BXX +λ2

C(σ2+Nσ2
γ)CXX ][RXX +BXX +λBCXX ]−1.

Then, of course, β̂GLS(α) and β̂GLS(γ) are not MVLUE. If the one-way random effects
model is valid, i.e., if σ2

γ = 0 and if σ2
α = 0, respectively, the latter two are simplified to

V(β̂GLS(α)|X) =
[
RXX + CXX

σ2
+

BXX

σ2 + Tσ2
α

]−1

,

V(β̂GLS(γ)|X) =

[
RXX + BXX

σ2
+

CXX

σ2 + Nσ2
γ

]−1

.

Table 2: The General Moment Estimator (4.1)

For Random Effects Models

λB = σ2/(σ2 + Tσ2
α), λC = σ2/(σ2 + Nσ2

γ)
A: Weights θts and τij

θtt θts, s 6= t τii τij , j 6= i θ τ

β̂GLS 1− 1−λB

T
− 1−λB

T
λC

N
λC

N
BT + λBAT λCAN

β̂GLS
λB

T
λB

T
1− 1−λC

N
− 1−λC

N
λBAT BN + λCAN

β̂GLS(α) 1− 1−λB

T
− 1−λB

T
1
N

1
N

BT + λBAT AN

β̂GLS(α)
λB

T
λB

T
1 0 λBAT IN

β̂GLS(γ) 1 0 λC

N
λC

N
IT λCAN

β̂GLS(γ)
1
T

1
T

1− 1−λC

N
− 1−λC

N
AT BN + λCAN

B: Values of SV + SW , ZV , ZW , Q, and ZV W defining Covariance Matrices

SV + SW ZV ZW Q ZV W

β̂GLS λ2
BBXX +λ2

CCXX +RXX λ2
BTBXX λ2

CNCXX λBBXX +λCCXX +RXX 0
β̂GLS(α) λ2

BBXX +CXX +RXX λ2
BTBXX NCXX λBBXX +CXX +RXX 0

β̂GLS(γ) BXX +λ2
CCXX +RXX TBXX λ2

CNCXX BXX +λCCXX +RXX 0
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Robustness

An interesting question is robustness of the members of the class b(θ, τ ) to violation of
(2.2)–(2.3). From (4.2) and conclusions [1] and [2] in Section 3 it follows that

• If xit contains an IID measurement error vector, which becomes part of uit, then
(i) all estimators such that θtt = 0, θts 6= 0 for some s 6= t, and all τij = 0, are
N -consistent, and (ii) all estimators such that τii = 0, τij 6= 0 for some j 6= i, and
all θts = 0, are T -consistent.

• If endogeneity of some variables in xit, gives rise to E(x ′
ituit) 6= 0K1, while E(x ′

itujs) =
0K1 for j 6= i and/or s 6= t, then similar consistency results hold.

6 Empirical illustration: Factor productivity

In this section, we present an empirical application of some of the above results for a
model with a single regressor (K = 1), relating to factor productivity. The data are from
successive annual Norwegian manufacturing censuses, collected by Statistics Norway, for
the sector Manufacture of textiles (ISIC 32), with N = 215 firms observed in the years
1983–1990, i.e., T = 8. The yit’s and xit’s in this example are, respectively, the log of
the material input and the log of gross production, both measured as values at constant
prices, so that the (scalar) coefficient β can be interpreted as the input elasticity of
materials with respect to output, assumed to be one in simple input-output analysis. The
OLS estimate of β obtained from the complete data set (NT = 1720 observations) is
β̂T = 1.1450. From the residuals, ε̂it, which are consistent, and the resulting between
individual, between period, and residual sum of squares,

B
ε̂̂ε

= T
∑N

i=1(¯̂εi· − ¯̂ε)2, C
ε̂̂ε

= N
∑T

t=1(¯̂ε·t − ¯̂ε)2, R
ε̂̂ε

=
∑N

i=1

∑T
t=1(ε̂it − ¯̂εi· − ¯̂ε·t + ¯̂ε)2,

we compute the ANOVA type estimates:

σ̂2
α +

σ̂2

T
=

B
ε̂̂ε

T (N − 1)
, σ̂2

γ +
σ̂2

N
=

C
ε̂̂ε

N(T − 1)
, σ̂2 =

R
ε̂̂ε

(N − 1)(T − 1)
,

cf. Searle, Casella, and McCulloch (1992, section 4.7.iii), which give the estimated vari-
ance components

σ̂2
α =

1
T (N − 1)

[
B

ε̂̂ε
− R

ε̂̂ε

T − 1

]
= 0.14394,

σ̂2
γ =

1
N(T − 1)

[
C

ε̂̂ε
− R

ε̂̂ε

N − 1

]
= 0.00066,

σ̂2 = 0.03449.
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Hence, the estimate of the total disturbance variance becomes σ̂2
ε = σ̂2

α + σ̂2
γ + σ̂2 =

0.17909. The corresponding shares representing individual heterogeneity, period hetero-
geneity, and residual variation are, respectively, σ̂2

α/σ̂2
ε = 0.80372, σ̂2

γ/σ̂2
ε = 0.00370,

and σ̂2/σ̂2
ε = 0.19259. The corresponding (marginal) shares are BY Y /TY Y = 0.93992,

CY Y /TY Y = 0.00829, RY Y /TY Y = 0.05179 for log-input and BXX/TXX = 0.83525,
CXX/TXX = 0.04216, and RXX/TXX = 0.12259 for log-output. Not surprisingly, in
both cases, the between firm variation dominates.

We have selected N = 10 firms randomly from the 215 in the full sample and included
the T = 8 observations from each of them. All results below refer to this subsample of
NT = 80 observations, except that the variance components have been estimated from
the complete sample, as explained above.

The firm specific IV/OLS estimates of the input elasticity of materials β̂Wij for the
N = 10 firms are given in the upper panel of Table 3, with the OLS estimates on the
main diagonal, varying from −0.09 (firm 2) to 1.54 (firm 7), and the IV estimates in
the off-diagonal positions. The standard errors, obtained from (3.10), are given in the
lower panel. All standard errors are derived under the assumption that (2.2)–(2.3) are
valid. Even for the OLS estimates, the precision is low. The corresponding within-
firm coefficients of correlation of log-output, RWXij , given in Table A3, panel A, show
considerable variation, are often low, and exceed 0.9 in few cases only. This indicates that
log-output for other firms tend to be weak instruments for ‘own’ log-output, cf. (3.10)
and (3.12). Recall that the OLS estimates are inconsistent in the presence of endogeneity
of or random measurement error in log-output; the IV estimates are T -consistent.

The weights which are given to the firm specific OLS estimates (Table 3) in the overall
within-firm estimate of the materials input elasticity β̂W , which is 0.9284 (standard error
0.0773), are reported in Table A1, panel A. The estimate for firm 1 by far dominates
in this aggregate, with a weight of 38 per cent. The weights which are given to all
the firm specific IV/OLS estimates (Table 3) in the overall between-year estimate β̂C ,
which is 0.7269 (standard error 0.1628), are reported in Table A1, panel B. Again, the
disaggregate estimate for i = 1, j = 1 by far dominates, with a weight of almost 15 per
cent. Some off-diagonal weights are negative, which reflect negative correlation between
the log-output of the relevant firms; cf. Tables A3, Panel A.

The year specific IV/OLS estimates β̂V ts for the T = 8 years are given in the upper
panel of Table 4, with the OLS estimates on the main diagonal, varying between 1.21
(cross section from year 1989) and 1.64 (cross section from year 1985), and the IV esti-
mates in the off-diagonal positions. All the T 2 = 64 estimates exceed one. Their standard
errors, calculated from (3.11), are given in the lower panel. Overall, the precision is much
higher than for the firm specific estimates. The corresponding across-year coefficients of
correlation of log-output, RV Xts, given in Table A3, panel B, show far less variation than
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the corresponding across-firm correlation coefficients. This indicates that log-output for
other years may be strong instruments for the year’s ‘own’ log-output, cf. (3.11) and
(3.14). Recall that the OLS estimates are inconsistent in the presence of endogeneity of
or random measurement errors in log-output; the IV estimates are N -consistent.

The weights which are given to the period specific OLS estimates (Table 4) in the
within-year estimate of the materials input elasticity β̂V , which is 1.4528 (standard error
0.1717), are reported in Table A2, panel A. The weights vary much less than in Table A1,
between 20 per cent (for 1984) and 8 per cent (for 1990). The weights which are given to
all the period specific IV/OLS estimates in Table 4 in the overall between-firm estimate
β̂B, which is 1.5195 (standard error 0.1965), are reported in Table A2, panel B. Again,
the weights vary less than in Table A1, and all off-diagonal weights are positive.

The residual estimate, the total (standard OLS) estimate, and the GLS estimate
of the material input elasticity β (with standard error in parenthesis) are, respectively,
β̂R = 0.9978 (0.0875), β̂T = 1.4222 (0.1646), and β̂GLS = 1.0147 (0.0717). The latter two
are both weighted averages of β̂B, β̂C , and β̂R (cf. Tables 1 and 2), which agrees with
the numerical estimates β̂B = 1.5195, β̂C = 0.7269, and β̂R = 0.9978.

Since all the aggregate estimators considered have either all θtt 6= 0 or all τii 6= 0,
they are inconsistent in cases of endogeneity of or measurement errors in the regressor,
confer the discussion of robustness at the end of Section 5. If we modify the between-firm
estimator β̂B by replacing θts = 1/T for all (t, s) by θts = 0 for s = t, θts = 1/T for s 6= t

(cf. Table 1), we get β̂B∗ = 1.5307. This is N -consistent and is slightly above the (less
robust) between-firm estimate β̂B = 1.5195. Symmetrically, if we modify the between-
year estimator β̂C by replacing τij = 1/N for all (i, j) by τij = 0 for j = i, τij = 1/N

for j 6= i (cf. Table 1), we get β̂C∗ = 0.5976, which is T -consistent and is substantially
below the (less robust) between-year estimate β̂C = 0.7279. If, however, (2.2)–(2.3) hold,
β̂B∗ is somewhat less efficient than β̂B (standard error 0.2007 against 0.1965), and β̂C∗ is
markedly less efficient than β̂C (standard errors 0.2442 against 0.1628), i.e., the efficiency
loss when omitting the disaggregate OLS estimates (the diagonal elements of the lower
panels of Tables 3 and 4) in aggregate estimator may be substantial.

Acknowledgements: I thank Terje Skjerpen for valuable comments after a careful
reading of the paper.
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Table 3: Firm Specific IV Estimates β̂Wij. (OLS Along Main Diagonal)
β = Materials - Output Elasticity. N = 10, T = 8.

Within deviation of firm i used as IV for within deviation of firm j

i ↓ j → 1 2 3 4 5 6 7 8 9 10
1 0.92 -0.03 1.29 3.41 0.99 0.92 1.74 1.23 0.12 -0.85
2 0.70 -0.09 1.92 1.80 1.15 4.94 3.20 1.42 0.69 4.67
3 0.95 -0.09 0.55 3.17 1.01 1.02 1.46 1.16 0.54 0.26
4 1.02 -0.43 14.42 1.22 0.78 -0.06 0.77 2.53 0.91 -2.77
5 0.94 -0.04 0.08 -3.46 0.99 0.94 1.62 1.16 0.36 -0.11
6 1.08 0.55 -0.64 0.67 1.05 0.90 1.21 1.13 0.92 0.74
7 1.11 -0.81 0.68 2.06 1.02 0.88 1.54 1.02 2.01 0.85
8 0.97 -0.02 0.32 -11.62 1.04 0.90 1.63 1.16 0.61 0.27
9 0.93 -0.05 2.91 1.39 1.14 1.14 0.91 1.30 0.53 -1.67
10 1.24 0.25 -2.19 0.38 1.07 0.79 1.58 0.91 -2.78 0.78

Standard errors

i ↓ j → 1 2 3 4 5 6 7 8 9 10
1 0.28 1.73 1.05 6.87 0.49 1.27 1.19 0.52 2.21 2.07
2 0.64 0.75 2.19 3.01 1.28 12.69 8.85 1.09 2.30 8.49
3 0.31 1.73 0.95 6.95 0.47 0.86 1.02 0.46 2.02 1.22
4 1.90 2.26 6.62 1.00 6.44 2.79 2.33 20.73 2.84 3.83
5 0.30 2.16 1.00 14.49 0.45 0.93 1.03 0.48 3.22 1.08
6 0.54 14.53 1.25 4.26 0.63 0.66 1.43 0.53 2.52 1.05
7 0.46 9.26 1.36 3.25 0.64 1.30 0.72 0.64 6.47 0.85
8 0.32 1.84 0.99 46.51 0.47 0.79 1.03 0.45 2.13 1.07
9 0.49 1.37 1.52 2.25 1.13 1.31 3.67 0.75 1.27 7.60
10 0.84 9.36 1.70 5.63 0.71 1.01 0.89 0.70 14.13 0.68

Table 4: Year Specific IV Estimates β̂V ts. (OLS Along Main Diagonal)
β = Materials - Output Elasticity. N = 10, T = 8.

Within deviation of year t used as IV for within deviation of year s

t ↓ s → 1983 1984 1985 1986 1987 1988 1989 1990
1983 1.267 1.433 1.572 1.383 1.514 1.567 1.407 1.613
1984 1.232 1.375 1.483 1.290 1.390 1.483 1.302 1.526
1985 1.374 1.508 1.642 1.465 1.589 1.576 1.468 1.663
1986 1.414 1.529 1.660 1.483 1.586 1.604 1.499 1.669
1987 1.441 1.595 1.751 1.588 1.606 1.652 1.435 1.618
1988 1.519 1.668 1.803 1.671 1.712 1.625 1.394 1.623
1989 1.454 1.589 1.676 1.584 1.570 1.477 1.212 1.487
1990 1.502 1.665 1.809 1.683 1.626 1.614 1.330 1.551

Standard errors

t ↓ s → 1983 1984 1985 1986 1987 1988 1989 1990
1983 0.080 0.073 0.099 0.105 0.113 0.118 0.142 0.158
1984 0.083 0.071 0.097 0.099 0.109 0.116 0.133 0.152
1985 0.086 0.074 0.093 0.093 0.103 0.105 0.123 0.140
1986 0.092 0.077 0.095 0.091 0.101 0.105 0.121 0.136
1987 0.094 0.080 0.100 0.096 0.096 0.097 0.106 0.118
1988 0.102 0.088 0.105 0.103 0.100 0.093 0.101 0.116
1989 0.117 0.097 0.117 0.113 0.105 0.097 0.097 0.115
1990 0.113 0.096 0.116 0.110 0.101 0.096 0.100 0.112
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Appendices

A: The covariance matrices of the base estimators

In order to derive the variance-covariance matrices of β̂Wij and β̂V ts when (2.2)–(2.3) is
valid, we first need expressions for the variance-covariance matrices of W XUij , V XUts,
W Xγi, and V Xαt. Since (2.2) implies

E(αα ′|X) = σ2
αIN , E(γγ ′|X) = σ2

γIT ,

E(uj·u ′
l·|X) = δjlσ

2IT , E(u·su ′·q|X) = δsqσ
2IN , j, l = 1, . . . , N,

E(uj·u ′·q|X) = σ2iTqi
′
Nj , s, q = 1, . . . , T,

where iHj denotes the j’th column of IH , we get, after some algebra,

E(W XUij W ′
XUkl|X) = δjl σ

2 W XXik,

E(W Xγi W
′
Xγk|X) = σ2

γ W XXik,

E(W Xεij W ′
Xεkl|X) = (σ2

γ + δjlσ
2)W XXik,

(a.1)

E(V XUts V ′
XUpq|X) = δsq σ2 V XXtp,

E(V Xαt V ′
Xαp|X) = σ2

α V XXtp,

E(V Xεts V ′
Xεpq|X) = (σ2

α + δsqσ
2)V XXtp,

(a.2)

E(W XUij V ′
XUpq|X)

E(W Xεij V ′
Xεpq|X)

}
= σ2(xiq − x̄i·) ′(xjp − x̄·p), i, j, k, l = 1, . . . , N,

t, s, p, q = 1, . . . , T.
(a.3)

Combining (a.1)–(a.3) with (3.3)–(3.4), it follows that the matrices of covariances be-
tween the individual specific and between the period specific base estimators, respectively,
can be expressed as

C(β̂Wij , β̂Wkl|X) = E[(β̂Wij − β)(β̂Wkl − β) ′|X](a.4)

= (σ2
γ + δjlσ

2)W−1
XXijW XXikW

−1
XXlk, i, j, k, l = 1, . . . , N,

C(β̂V ts, β̂V pq|X) = E[(β̂V ts − β)(β̂V pq − β) ′|X](a.5)

= (σ2
α + δsqσ

2)V −1
XXtsV XXtpV

−1
XXqp, t, s, p, q = 1, . . . , T,

and that the matrices of ‘cross covariances’ between the two sets of estimators are

C(β̂Wij , β̂V pq|X) = E[(β̂Wij − β)(β̂V pq − β) ′|X](a.6)

= σ2W−1
XXij(xiq − x̄i·) ′(xjp − x̄·p)V −1

XXqp,

i, j = 1, . . . , N ; p, q = 1, . . . , T.

This completes the proof of (3.7)–(3.9).
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B: The variance-covariance matrix of b

Inserting for W XY ij and V XY ts from (2.15) and (2.17) in (4.1), using (4.4), we find

b− β = Q−1
[∑T

t=1

∑T
s=1 θtsV Xεts +

∑N
i=1

∑N
j=1 τijW Xεij

]

= Q−1
[∑T

t=1

∑T
s=1 θtsV XUts +

∑T
t=1

(∑T
s=1 θts

)
V Xαt

+
∑N

i=1

∑N
j=1 τijW XUij +

∑N
i=1

(∑N
j=1 τij

)
W Xγi

]
.

Combining this equation with (3.3), (3.4), and (a.1)–(a.3), we find that b is an unbiased
estimator of β for any θ and τ and has variance-covariance matrix

V(b|X) = Q−1 P (Q−1) ′ = Q(θ, τ )−1P (θ, τ , σ2, σ2
α, σ2

γ)(Q(θ, τ )−1) ′,(b.1)

where

P = P (θ, τ , σ2, σ2
α, σ2

γ) = σ2(SV + SW + SV W ) + σ2
α ZV + σ2

γ ZW ,(b.2)

SV = SV (θ) =
∑T

t=1

∑T
p=1 V XXtp

(∑T
s=1 θtsθps

)
,

SW = SW (τ ) =
∑N

i=1

∑N
k=1 W XXik

(∑N
j=1 τijτkj

)
,

SV W = SV W (θ, τ ) =
∑T

t=1

∑T
s=1

∑N
i=1

∑N
j=1 θtsτij(xis − x̄i·) ′(xjt − x̄·t),

ZV = ZV (θ) =
∑T

t=1

∑T
p=1 V XXtp

(∑T
s=1 θts

) (∑T
r=1 θpr

)
,

ZW = ZW (τ ) =
∑N

i=1

∑N
k=1 W XXik

(∑N
j=1 τij

) (∑N
l=1 τkl

)
.

(b.3)

This completes the proof of (4.5)–(4.7).

C: Proof of (5.3) and (5.4)

Since x̄i· − x̄ =
∑T

t=1(xit − x̄·t)/T , x̄·t − x̄ =
∑N

i=1(xit − x̄i·)/N , etc., and
∑N

i=1(Xi· − X̄) ′AT (Xi· − X̄) = 1
T

∑T
t=1

∑T
s=1 X ′·t BN X·s,∑T

t=1(X·t − X̄) ′AN (X·t − X̄) = 1
N

∑N
i=1

∑N
j=1 X ′

i·BT Xj·
hold identically, (2.13) and (2.14) can be rewritten as

BXXii = 1
T

∑T
t=1

∑T
s=1(xit − x̄·t) ′(xis − x̄·s),

BXαii =
∑T

t=1(xit − x̄·t) ′(αi − ᾱ),
i = 1, . . . , N,(c.1)

CXXtt = 1
N

∑N
i=1

∑N
j=1(xit − x̄i·) ′(xjt − x̄j·),

CXγtt =
∑N

i=1(xit − x̄i·) ′(γt − γ̄),
t = 1, . . . , T,(c.2)

and the following identities hold

∑N
i=1 BXXii = 1

T

∑T
t=1

∑T
s=1 V XXts,

∑T
t=1 CXXtt = 1

N

∑N
i=1

∑N
j=1 W XXij .(c.3)

Similarly,
∑N

i=1 BXαii =
∑T

t=1 V Xαt,
∑T

t=1 CXγtt =
∑N

i=1 W Xγi.
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The overall between individual and overall between period (co)variation can then be
written as

BXX =
∑N

i=1 BXXii = T
∑N

i=1(x̄i· − x̄) ′(x̄i· − x̄) = 1

T

∑T
t=1

∑T
s=1 V XXts,(c.4)

CXX =
∑T

t=1 CXXtt = N
∑T

t=1(x̄·t − x̄) ′(x̄·t − x̄) = 1

N

∑N
i=1

∑N
j=1 W XXij ,(c.5)

where the last equalities follow from (c.3), which completes the proof.

D: The variance-covariance matrix of β̂GLS

Recalling (5.11), (5.12), (5.14), and (5.19), the GLS weights in the variance-covariance
matrix can be obtained from Table 2, panel A, by adding λB times the weights in row
1, λC times the weights in row 2, and 1 times the weights in row 3 (or 4). Expressions
for the variance-covariance matrix of β̂GLS can be derived by inserting the weights in
Table 2, panel A, rows 1 or 2, into (4.5)–(4.7). The result is given in Table 2, panel B,
row 1. In deriving the variance-covariance matrix of β̂GLS , we note that

∑T
s=1 θts = λB,

∑T
s=1 θtsθps = δtp − 1− λ2

B

T
t, p = 1, . . . , T,

∑N
j=1 τij = λC ,

∑N
j=1 τijτkj = δik − 1− λ2

C

N
i, k = 1, . . . , N,

so that, using (4.7), we have

ZV = λ2
B

∑T
t=1

∑T
p=1 V XXtp = λ2

BTBXX , ZW = λ2
C

∑N
i=1

∑N
k=1 W XXik = λ2

CNCXX ,

which are the expressions given in Table 2, panel B, columns 2 and 3. Obviously, SV W =
0. From (4.7), in combination with the weights in Table 2, rows 1 and 2, we get

SV + SW = V XX − (1− λ2
B)BXX + λ2

CCXX = λ2
BBXX + W XX − (1− λ2

C)CXX ,
Q = V XX − (1− λB)BXX + λCCXX = λBBXX + W XX − (1− λC)CXX ,

both of which, since V XX −BXX = W XX −CXX = RXX , can be simplified to

SV + SW = RXX + λ2
BBXX + λ2

CCXX ,
Q = RXX + λBBXX + λCCXX .

These are the expressions given in Table 2, panel B, columns 1 and 4. Finally, noting
that

σ2(SV + SW ) + σ2
αZV + σ2

γZW = σ2[RXX + λBBXX + λCCXX ],

the variance-covariance matrix of β̂GLS can be written as

V(β̂GLS |X)=σ2[RXX +λBBXX +λCCXX ]−1 =

[
RXX

σ2
+

BXX

σ2+Tσ2
α

+
CXX

σ2+Nσ2
γ

]−1

.(d.1)
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The variance-covariance matrices of the one-way GLS estimators β̂GLS(α) and β̂GLS(γ)

when the two-way effects model is valid, obtained from Table 2, panel B, rows 2 and 3,
are

V(β̂GLS(α)|X) = [RXX +λBBXX +CXX ]−1(d.2)
× [σ2RXX +λ2

B(σ2+Tσ2
α)BXX +(σ2+Nσ2

γ)CXX ][RXX +λBBXX +CXX ]−1,

V(β̂GLS(γ)|X) = [RXX +BXX +λCCXX ]−1(d.3)
× [σ2RXX +(σ2+Tσ2

α)BXX +λ2
C(σ2+Nσ2

γ)CXX ][RXX +BXX +λCCXX ]−1.

If the one-way random effects model is valid, i.e., if σ2
γ = 0 and σ2

α = 0, respectively,
they can be simplified to

V(β̂GLS(α)|X) =
[
RXX +CXX

σ2
+

BXX

σ2+Tσ2
α

]−1

,(d.4)

V(β̂GLS(γ)|X) =

[
RXX +BXX

σ2
+

CXX

σ2+Nσ2
γ

]−1

.(d.5)

Appendix tables

Table A1: Weights of β̂Wij in β̂W and β̂C . N = 10, T = 8.

A. Weights of β̂Wii in β̂W , per cent. Average weight = 10 per cent

i → 1 2 3 4 5 6 7 8 9 10
38.25 5.22 3.24 2.93 14.86 6.84 5.71 14.76 1.84 6.35

B. Weights of β̂Wij in β̂C , per cent. Average weight = 1 per cent

i ↓ j → 1 2 3 4 5 6 7 8 9 10
1 14.95 -2.40 3.95 -0.60 8.50 3.28 -3.47 8.00 -1.87 2.00
2 -2.40 2.04 -0.70 0.51 -1.20 -0.12 0.17 -1.40 0.67 0.18
3 3.95 -0.70 1.27 -0.17 2.58 1.41 -1.18 2.61 -0.60 0.99
4 -0.60 0.51 -0.17 1.15 0.18 0.41 0.49 0.06 0.40 0.30
5 8.50 -1.20 2.58 0.18 5.81 2.78 -2.51 5.43 -0.80 2.38
6 3.28 -0.12 1.41 0.41 2.78 2.67 -1.23 3.28 -0.69 1.67
7 -3.47 0.17 -1.18 0.49 -2.51 -1.23 2.23 -2.50 0.25 -1.89
8 8.00 -1.40 2.61 0.06 5.43 3.28 -2.50 5.77 -1.21 2.41
9 -1.87 0.67 -0.60 0.40 -0.80 -0.69 0.25 -1.21 0.72 0.12
10 2.00 0.18 0.99 0.30 2.38 1.67 -1.89 2.41 0.12 2.48
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Table A2: Weights of β̂V ts in β̂V and β̂B. N = 10, T = 8.

A. Weights of β̂V tt in β̂V , per cent. Average weight = 12.5 per cent

t → 1983 1984 1985 1986 1987 1988 1989 1990
15.503 20.005 11.536 12.091 10.844 11.551 10.556 7.915

B. Weights of β̂V ts in β̂B, per cent. Average weight = 1.56 per cent

t ↓ s → 1983 1984 1985 1986 1987 1988 1989 1990
1983 2.222 2.437 1.793 1.705 1.579 1.516 1.260 1.129
1984 2.437 2.868 2.084 2.043 1.857 1.749 1.517 1.330
1985 1.793 2.084 1.654 1.662 1.497 1.468 1.255 1.101
1986 1.705 2.043 1.662 1.733 1.555 1.499 1.303 1.154
1987 1.579 1.857 1.497 1.555 1.554 1.543 1.403 1.266
1988 1.516 1.749 1.468 1.499 1.543 1.656 1.524 1.328
1989 1.260 1.517 1.255 1.303 1.403 1.524 1.513 1.276
1990 1.129 1.330 1.101 1.154 1.266 1.328 1.276 1.135

Table A3: Coefficients of Correlation, Log-Output. N = 10, T = 8.

A. Within Firm, RWXij

i ↓ j → 1 2 3 4 5 6 7 8 9 10
1 1.000 -0.435 0.909 -0.146 0.912 0.518 -0.601 0.861 -0.572 0.329
2 -0.435 1.000 -0.435 0.333 -0.347 -0.052 0.081 -0.408 0.550 0.080
3 0.909 -0.435 1.000 -0.144 0.952 0.765 -0.701 0.964 -0.626 0.559
4 -0.146 0.333 -0.144 1.000 0.069 0.235 0.309 0.022 0.446 0.178
5 0.912 -0.347 0.952 0.069 1.000 0.706 -0.696 0.938 -0.393 0.628
6 0.518 -0.052 0.765 0.235 0.706 1.000 -0.503 0.835 -0.501 0.647
7 -0.601 0.081 -0.701 0.309 -0.696 -0.503 1.000 -0.695 0.196 -0.803
8 0.861 -0.408 0.964 0.022 0.938 0.835 -0.695 1.000 -0.594 0.637
9 -0.572 0.550 -0.626 0.446 -0.393 -0.501 0.196 -0.594 1.000 0.090
10 0.329 0.080 0.559 0.178 0.628 0.647 -0.803 0.637 0.090 1.000

B. Within Year, RV Xts

t ↓ s → 1983 1984 1985 1986 1987 1988 1989 1990
1983 1.000 0.965 0.936 0.869 0.850 0.790 0.687 0.711
1984 0.965 1.000 0.957 0.916 0.879 0.803 0.728 0.737
1985 0.936 0.957 1.000 0.982 0.934 0.887 0.794 0.804
1986 0.869 0.916 0.982 1.000 0.947 0.885 0.805 0.823
1987 0.850 0.879 0.934 0.947 1.000 0.962 0.915 0.954
1988 0.790 0.803 0.887 0.885 0.962 1.000 0.963 0.969
1989 0.687 0.728 0.794 0.805 0.915 0.963 1.000 0.974
1990 0.711 0.737 0.804 0.823 0.954 0.969 0.974 1.000
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