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1 Introduction

In this article we study the technological, institutional and organizational

factors that have influenced the cost of liquefying natural gas (LNG) after

the first LNG plant came on stream in 1964. A large part of discovered

gasfields are situated too far away from the major gas markets to make direct

pipeline transportation viable (see IEA (2001)). Such gas fields are often

coined stranded gas fields, and it is the desire to capitalize these gas reserves
which has spurred the development of the LNG industry.

Today, LNG is regarded as one of the fastest growing sub-sectors of the

energy industry. According to many sources, e.g. EIA (2003), prospects for

continued growth are very good; there is increasing demand for combined

cycle gas turbine electricity generation (CCGT), major energy markets are in

the process of being deregulated making it easier to sell LNG, and costs in

the LNG supply chain have decreased radically the last decade. In addition,

some regions, as the U.S., seem to have entered into a situation with a chronic

natural gas supply shortage. For some of these regions LNG may be the only

viable solution.

To our knowledge, there exists no recent study in the economics literature

of LNG supply chain costs. In this paper, we therefore look at the following

two research questions: What are the factors driving the fall in liquefaction

unit costs? To what extent is the cost of liquefaction likely to fall further?

In order to answer these questions we have used historical data to estimate

experience curves for the construction of LNG liquefaction plants, also tak-

ing into account other relevant factors than pure experience. We base our

estimation on a unique data set with price and scale information on nearly

all LNG liquefaction plants and the number of LNG liquefaction technology

suppliers at each point in time.

Experience curves may be powerful tools when it comes to explaining past

and indicating future cost gains for relatively new technologies. In its basic

form, an experience curve explores the relationship between accumulated pro-

duction at time t and average cost of production at time t. It has been shown

in numerous studies that a significant, negative trend can be found between

the cost of a new technology and accumulated supply of this technology, take

for instance the CCGT electricity generation technology (IEA (2000)).

There are at least four, more fundamental, mechanisms at work behind an

experience curve, see IEA (2000). First, as personnel engaged in the planning

and production of the new product gain experience with the new technology,

say an LNG liquefaction plant, they are likely to become more efficient and

better organized to perform the tasks at hand. This improves the productivity

of labour, and unit costs are reduced. The process is often coined ”learning

by doing”, and was first formally described in the seminal paper by Arrow

(1962).

Second, experience may also induce research and development (R&D).

This may lead to further improvements in technology - so called process
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innovations- which also reduce unit costs. Some studies have tried to separate

the effects of organizational learning and induced R&D by keeping track of

targeted public funding to R&D projects, see for example Ibenholt (2002) and

Jespersen (2002). However, technological progress may also be independent

of experience with the product under study, e.g. gas turbines have become

more effective, which have implied savings in the overall project cost of an

LNG plant. If both an independent technological progress and accumulated

production increases over time, one may exaggerate the effect of actual pro-

duction experience, if this independent technological change is not accounted

for.

Third, it is often the case that the market for a new technology is poorly

developed, hence, potential scale advantages in the production or process

technology cannot be explored. As time goes by, the size of the market may

increase, and so does the scale of each production unit. Thus we will observe

that costs decrease with accumulated production, but then it would be wrong

to interpret this as technical progress in a strict sense. This is pointed out

in Hall and Howell (1985). However, increased scale of production can also

become possible due to technological progress, e.g. due to better materials

technology, it has become possible to build larger cooling towers.

Fourth, when the market size picks up, more firms enter and start to

supply the new technology, and prices fall due to increased competition. In

this case it would clearly be wrong to interpret the fall in producer prices as

technical progress or organizational learning. In most empirical applications

average cost is not observable, and the price of the product in question is used

instead. As long as the price is used as a proxy for unit costs, we may also

have an effect on the observed unit price through increased competition.

While learning and technological progress can continue to work together

for a long time, the limits of the scale effect and the competition effect with

respect to cost savings are likely reached much sooner. Our aim is therefore

to separate the influence on costs from the different effects in our experience

curve estimation. We confine our study to the effects on capital cost, that

is, the cost of building a natural gas liquefaction factory. For an LNG plant,

capital costs generally amount to more than 95% of the total annualized

expenditure, of which roughly 75% is total direct costs (see IEA (2001) and

DiNapoli (1986)).

Moreover, we concentrate on the liquefaction part of the LNG supply

chain. According to for example Petroleum Economist (2001) and Weems

(2000), the capital cost of LNG liquefaction, make up about 40-50% of total

LNG-chain capital costs. In a forthcoming discussion paper we study the two

other major cost components; transport costs and regassification costs, see

Greaker and Sagen (2005).

Our study is inspired by Joskow and Rose (1985), who investigate the

construction costs of coal-burning generation units in the US. They find an

organizational learning effect which can be separated from the scale effect.

Although the study of Joskow and Rose (1985) have many similarities with
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our study, the two studies differ in an important aspect. While we only have

data on the price paid by the buyer of an LNG liquefaction facility, they have

access to cost data. Thus, they do not have to take into account that the

mark-up over marginal cost may have varied between the observations.

Our paper attempts to include mark-up pricing in the experience curve

model estimation. This is also done by Lieberman (1984) in his study of

chemical industry products. Lieberman (1984) looks at different levels of

market concentration using the Herfindahl index to separate the data. The

study reveals that the negative effect on the price from new market entry

was significantly higher in an initially high market concentration situation

compared with a low market concentration situation.

We are aware that there exist both databases of LNG costs, and detailed

cost models of LNG plants, see for example DiNapoli and Yost (2003). How-

ever, both the databases and the models are the proprietary of consulting

firms, and not available to the public. Hence, as far as we know, this pa-

per presents the first generally available econometric analysis of LNG plant

capital cost developments.

The paper is organized as follows: The next section discusses some the-

oretical features of market competition when costs depend on accumulated

output. The third and fourth section includes a short introduction to LNG

liquefaction technology and factors driving the capital cost of liquefaction

facilities. Section five explains our data sources, and briefly discusses an im-

portant anomaly in the dataset. Section six and seven sets out our estimation

model, and section eight presents our results. In section nine we conclude.

2 Experience curves

In its basic form an experience curve describes the relationship between unit

costs/unit price and accumulated production of some commodity, see Boston

Consulting Group (1972). It is assumed that experience with production of

the commodity can lead to both organizational learning and technological

advances. Most recent studies of experience curves, see e.g. IEA (2000), have

used a variant of the following equation in order to describe the experience

process:

ci = a0Q(t)
−a1, (1)

where ci is the unit cost, Q(t) is accumulated production at time t and a0
and a1 are positive parameters. The parameter a1 expresses the speed of the
experience process, that is, the higher the a1, the faster will costs per. unit
decrease with accumulated output.

Experience can be either industry wide of firm specific. In the latter case

Q(t) denotes the accumulated production of a single firm. If the firm is for-

ward looking, it would take future gains from experience into consideration

when setting the current price. This is analyzed in a seminal paper by Spence

(1981),both for a monopoly and for an oligopoly with sequential entry. Ac-

cording to Spence the monopoly will not equate marginal income with current
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marginal cost. Instead the relevant marginal cost is the cost of the last unit

i.e. at the end of the time horizon. Hence, the monopoly will operate with a

negative mark-up and a negative profit the first years.

Introducing more firms do not change this result as long as experience is

firm specific. The first firm to enter the market will enjoy lower costs than

later entrants at all periods, and hence, be able to make positive profits in

the future outweighing the initial negative profits. However, matters change

if there are extensive spill-overs between firms, that is, experience is industry

wide. Later entrants can then operate with nearly the same costs as the first

firm making it harder for the first firm to cover initial losses. Thus, with

industry wide experience, firms are not likely to set prices below marginal

costs in the start-up of a new market.

Of course, if only price data is available, forward looking firms and lim-

ited spill-overs make estimating experience effects from accumulated produc-

tion very difficult. In the case of a monopoly you could observe a constant

price even though the unobserved unit cost was monotonically falling (Spence

(1981)).

In our analysis we assume that liquefaction technology firms are not for-

ward looking, but that they base their pricing decisions on current unit costs.

Through out the history of LNG the development of the market for LNG

liquefaction plants has been sluggish and uncertain - especially before 1999.

Thus, it must have been difficult for the liquefaction technology firms to form

expectations about future demand, and future learning possibilities. Years

have passed without any new liquefaction facilities being built, hence, histori-

cal pricing of liquefaction technology, with point of departure in an uncertain

marginal cost sometime in the future, seems unlikely.

3 LNG liquefaction technology

The first LNG liquefaction unit came into operation in 1964 at Arzew, Alge-

ria. The liquefaction process takes natural gas and cools it via compression

to −1610 C, shrinking it to 1/600th of its original volume and making trans-
portation by ship economical. Natural gas consists mostly of methane CH4,
but also includes other substances like sulphur, CO2, C3H8 (prophane) etc.
These substances must be removed from the natural gas before cooling it

down to −1610 C. If not, they become solid, and may interrupt the cooling
process. A LNG liquefaction unit therefore also produces other chemicals like

solid sulphur and LPG (liquid prophane/buthane gas).1

A typical LNG liquefaction plant consists of one or more process trains.

A process train can be viewed as a standalone liquefaction unit, that is, one

process train can be shut down without affecting operations at adjacent trains.

The cooling process can be achieved by one of several proprietary methods. A

majority of the liquefaction plants use the method developed by Air Products

and Chemical Inc. (APCI), which is referred to as a mixed refrigerants with

1Se for instance Institute for law, energy and enterprise, ”Introduction to LNG” (2003).
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propane precooling process. In total APCI has constructed and installed 57

trains of which some are not yet operating.

There are four other proprietary methods. Philips together with Bechtel

market the Cascade process. This process was developed for the world´s

second LNG liquefaction plant at Kenai, Alaska which started operations in

1969. Since then, Philips/Bechtel has stayed out of the LNG construction

business until the start up of the Atlantic LNG project in Trinidad in 1999.

The first LNG liquefaction plant at Arzev, Algeria in 1964 was outfitted

with the Prico technology of Black and Veatch Pritchard. To our knowledge

the Prico technology is used only at Arzev and at Skikda, Algeria for the 1981

installation (phase II), in total 6 trains.

In the beginning of the LNG liquefaction market, Technip also had their

own process; the Teal process. It was used for the phase I installation at

Skikda. Technip has later joined in a strategic alliance with APCI, and are

no longer in the business of marketing their own process.

In recent years the German company Linde and Shell, with their Dual

Mixed Refrigerant (DMR) process, have also entered the LNG liquefaction

market with their own technologies. The Linde process is to be used for

the extension of the liquefaction capacity at the Burrup, Northwest shelf,

Australia, starting deliveries in 2004. In addition, the Linde process will

also be used at Snøhvit, Norway, which is scheduled to start delivering LNG

from 2006. The Shell DMR process will be first used for deliveries from the

Sakhalin II LNG plant, eastern Russia, from 2007 (See for instance Thomas

(1997) and Shukri (2004) for more on the different methods).

To sum up; in the sixties and in the early seventies, the world’s first

five LNG plants used four different technologies, supplied by four different

engineering firms. Then, during the rest of the seventies, the eighties and until

1999, only the APCI technology was installed except from the installation in

Skikda, phase II by Prico. In the late 1990´s Philips reentered the market,

shortly followed by new designs from Linde and Shell, and the developers

of LNG plants again have four different firms and liquefying technologies to

choose from.

Why were there four firms initially, and later only one firm for a period

of nearly thirty years? This has puzzled us a lot, and made it necessary to

test two alternative models of LNG liquefaction costs incorporating theories

of mark-up pricing.

4 Factors influencing the price of LNG liquefaction capacity

An LNG liquefaction unit is created as the result of a large and complicated

construction project. Actual construction typically takes several years, and

involves extensive engineering work. The following factors will be crucial for

total construction costs:
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4.1 Infrastructure

In addition to the liquefaction plant, well and pumping equipment at the gas

field, pipelines from the gas field to the liquefaction plant and harbour facilities

for storage and loading LNG on to the LNG ships, need to be designed and

built. Some of these costs, particularly onshore facilities directly related to

the LNG plant, are sometimes included in the official cost figures, and make

it necessary to control for these other cost factors. However, we lack detailed

data on all the cost components, and are not able to include this into our

regressions directly.

4.2 Number of trains/capacity on trains

A liquefaction plant has a certain capacity, commonly measured in million

tons natural gas processed per year. Taking into account that a liquefaction

plant has a certain optimal lifetime, the lifetime capacity of the plant should

of course not exceed the total amount of gas resources available at the site.

On the other hand, we are more prone to believe that downstream market

conditions have put an upper bound on total capacity limiting the utilization

of potential scale advantages.

There may be economies of scale connected either to the total capacity

of the plant or to the capacity of each train making up the plant. Since a

train nearly is a complete plant, we would expect eventual scale advantages

in liquefaction per se to be connected to train size. Older facilities tend to

have trains with lower capacities, but still more than one train. If there were

scale advantages to train size, we are puzzled with respect to why each train

was not made bigger. One reason could be that facilities made up of more

trains are likely to have less supply problems, that is, if one train is down,

the plant can still process LNG from the other trains.

Another reason could be that later technological advances have made it

possible to make gradually bigger trains. It is argued that increased gas

turbine efficiency combined with larger turbine units have reduced the number

of gas turbines needed in LNG plants by half since the industry start-up (see

Troner (2001)). This may have made it easier to build larger trains.

4.3 Organizational learning

There are 20 export plants currently in operation or under construction. At

many of these sites additional trains have been added many years after the

start up date. With respect to trains, there are at present 80 trains in opera-

tion or under construction worldwide, see EIA (2003). Our hypothesis is that

organizational learning with respect to constructing and building a liquefac-

tion train takes place each time a train is built, independent of whether the

train is added to an existing plant or the train is set up on a greenfield site.

Further, we conjecture that the capacity of the train does not influence learn-

ing, that is, learning reduces liquefaction costs by the same rate independent

of train size.

Clearly, some sort of learning also takes place while running a liquefaction
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plant. One example could be the experience gathered with the Philips, Kenai

plant from 1969. Although this plant has only one train, it has operated at

more than 95% of capacity for more than 30 years, maybe making it more

acceptable for today’s buyers of LNG production technologies to rely on one

train facilities.

Another example could be the reduced need for design redundancy. The

dominant Asian LNG market has historically focused more on security of

supply than other regional markets e.g. LNG is and has been Japan’s only

source of natural gas imports. Consequently, LNG greenfield projects in the

Asian region have historically been planned using ample capacity margins

and redundant design features in order to assure security of supply and the

ability to meet its contract supply obligations. Experience with production of

LNG may however have decreased the need for design redundancy, and hence,

reduced the capital costs of later trains.

4.4 Experience induced process R&D

There is much writing about technological advances in the literature about

the LNG business, however, we have not discovered examples of major tech-

nological breakthroughs in the history of LNG. Neither have the LNG history

shown any important difference in thermodynamic efficiency between the dif-

ferent liquefaction technologies (see Troner (2001)).

Many of the inventions seem to be of a process nature, that is, they

have gradually reduced running costs. A steady decrease in power require-

ments may be the most apparent development of this kind. The power re-

quirement for the world’s first base load LNG plant at Arzew, Algeria was

509kwhrs/tonne LNG, while the power requirement at current installations

are around 250-330 kwhrs/tonne LNG. This has happened through evolution

of compressor design and advances in turbine drivers.

At the ongoing Snøhvit installation, Norway, this process may have been

taken even further by using electric powering of compressors with on site

CCGT generation of electricity instead of compressors with direct gas tur-

bine drive, see www.statoil.com. This should improve energy efficiency even

further, and hence a given gas reserve can last longer and produce more LNG

for sale. However, because our focus is on capital cost of liquefaction, our

study will not pick up such changes.

4.5 Autonomous technological change

As already mentioned, some of the technologies used for LNG liquefaction,

have improved independent of the development of the LNG business. One

example is gas turbine technology, and we would expect materials technology

to have improved in general. We aim to pick up this effect by including a

time trend in our experience curve model.
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4.6 Competition between suppliers of liquefaction technology

As in most other experience curve studies, we do not possess actual cost

data, but data about the price paid by the buyer of the object under study.

This implies that we must take into consideration that the price for an LNG

liquefaction unit may include a mark-up. As already described in some detail,

the number of competing technologies has varied a lot since the start of the

LNG business. It is therefore also likely that the intensity of competition and

the mark-up have varied considerably. We explicitly include a mark-up in our

model. Further, we test two alternative formalizations of the mark-up. This

is described in more detail in section six below.

4.7 Output prices

The price on LNG has tended to follow the price on oil, mostly as a formal

link in bilateral trade contracts. LNG may be regarded as a substitute for

oil; both can be used as input to the chemical industry, to heat buildings,

to produce electricity etc. Hence, to the extent that a higher oilprice leads

to increased demand for LNG, the downstream price of LNG may follow as

observed. Up-stream, the suppliers of LNG liquefaction technology may have

used this as an opportunity to increase their mark-up. This is treated in more

detail in section six below.

4.8 Other factors

In addition to the factors mentioned, there are clearly a lot of other factors

influencing costs. Environmental/safety regulations may be important. In

many cases, innovations that reduce running costs, also reduce the environ-

mental impact. Since energy for liquefaction is provided from burning natural

gas at the site, an LNG facility emits large amounts of greenhouse gases like

CO2, and local pollutants like nitric oxides etc. By improving energy effi-
ciency, the emission intensity of the liquefaction process is also reduced. In

fact, we may have that the quest for energy efficiency and reduced emissions

drives capital costs up.

We do not include a variable aiming to pick up the effect of environmen-

tal/safety regulations. Hence, we should not be particularly surprised if capi-

tal cost is influenced only weakly or even positively from a time trend aiming

to pick up technological improvements since environmental/safety regulations

are likely to have been strengthened through time. On the other hand, in a

study of five different LNG projects, DiNapoli and Yost (2003) found no re-

lationship between low environmental impact and high capital costs.

Prices on central inputs may have increased more or less than the price

index we use to inflate historical prices, and by this lead to biased estimates

of what is driving LNG liquefaction costs. According to OMAN LNG, the

two train facility at Qalhat involved 10,000 tons of steel, 40 million man

hours of construction time and some 100,000 cubic meters of concrete for the

foundation alone. Even though 40,000 tons of steel sounds impressive, the

steelcost would with current steel prices make up less than 1% of total capital
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costs. Construction time is more important. The expenses related to both

financing and insurance as well as personnel wages are accumulating for each

day of construction. We would therefore have liked to adjust for spatial and

time related differences in financing costs and pay to construction workers,

however, we miss data to correct for these possible effects.

According to our sources, the properties of the feed gas is also a significant

cost issue. Large amounts of sulphur in the feed gas require removal and re-

covery facilities. Similarly, large amounts of CO2 also require its own removal
facility. As far as we know, the Snøhvit LNG factory in Norway will be the

first LNG liquefaction facility for which the CO2 is not only removed, but
also pumped back into the geological structure containing the natural gas.

5 Data and data sources

Collecting cost data for LNG liquefaction units has been a long and cum-

bersome process. Since there exists no public database of LNG liquefaction

costs, we have had to rely on occasional articles in Petroleum Economist,

World Gas Intelligence and the Oil and Gas Journal. Book publications as

”The Fundamentals of the LNG Industry” (Petroleum Economist (2001)),

various internet press releases from the different technology licensors and all

kinds of newspapers, as well as talks with key persons in the LNG business,

also proved to be valuable sources for information about capital costs.

In particular, we have gone through all the issues of the Petroleum Econo-

mist from 1955 up to the current date. Cost data about LNG liquefaction

have mostly appeared there, in cover stories about new LNG projects. These

articles were often written before the LNG liquefaction unit had begun op-

erating, but nearly always after the project had been agreed. Hence, many

of our cost data must be viewed as ex ante estimates, and not the actual

accounted costs. On the other hand, for many of the datapoints, we have ex

post confirmation, that is, the same cost is reported in a later article, in a

book etc.

Each LNG project is regarded as one cost observation, however several

projects in our dataset consist of construction of more than one production

train. In those cases we divide the total project cost figures on the number

of trains installed to calculate average train capital costs.

In order to estimate organizational experience effects, the data set must

be sorted as a time series. In case our data are reported after start-up, we use

the time of LNG plant start-up as the sorting measure. On the other hand,

if the cost data is an estimate from an articled published before start-up, we

use the publication date. 2

In addition to estimating organizational experience effects, we also use

the dates to investigate whether a time trend picking up general technolog-

ical change has influenced costs. In order to estimate the time trend more

2This is not a big point, because such a sorting principle yields almost the same sorting

of datapoints as the sorting that would have resulted from using only the dates that the

liquefaction units came into operation.
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correctly, we constructed a ”year-counter” based on our start-up- or publica-

tion date informations. This ”year-counter”, based on total months elapsed

since the prior LNG plant observation, divided by 12, for all the observations,

provides the exact relative difference in time between each data observation.

All price data, apart from two observations, are in current U.S. $. We

have taken all figures and inflated to 2003 U.S. $ by using the consumer price

index inflation calculator served by the US Department of Labor. We also

have one observation in English £, and another in French Francs. In this case

we have transformed it into U.S. $ by the exchange rate at that time, and

inflated it afterwards.

Table 1 presents the two main descriptive statistics i.e. average capacity

cost and average train size.

Table 1 ”Descriptive statistics”

billion $/mty mty (capacity on trains)

Mean 0.3231 2.6918
Std. 0.1305 1.2994

The main puzzle with the dataset is the low costs for the first five facilities.

Today, the Philips Atlantic LNG plant at Trinidad is viewed as the state-

of-the-art liquefaction plant. The plant began operating in 1999, had only

one train with a capacity of 3.2 million tons LNG per year, and liquefaction

capacity cost of 0.244 billion $ per mty (million tons per year), that is, well

below the mean cost of capacity as given in Table 1, and well above the mean

train size also reported in Table 1. These figures should be compared with

the first five LNG liquefaction installations:

Table 2 ”The first five installations”

Site Start up Technology Trainsize bill.$/mty 1)

Arzew, Algeria 1964 Prico 0.37 mty 0.219
Kenai, Alaska 1969 Philips 1.40 ” 0.203
Marsa El Brega, Libya 1970 APCI 0.65 ” 0.163
Skikda, Algeria 1972 Teal 1.10 ” 0.235
Lumut, Brunei 1972 APCI 1.06 ” 0.253

1) All figures are in 2003 U.S. $

Observe that all capacity costs are below the mean cost, and further, that

the train sizes are very small.

After Lumut, Brunei, no new facility was built until 1977 in Abu Dhabi,

and then at a considerably higher capacity cost; 0,414 bill. $/mty. All ob-

servations above are based on capital cost estimates for liquefaction alone.
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Further, for many of the observations we have multiple sources (see for ex-

ample DiNapoli (1986) and Thomas (1997)). Differences in observed capacity

cost, may not only stem from differences in real costs, but also from differ-

ences in mark-up pricing. Hence, we need to look further into the possible

mark-up in selling liquefaction plants.

6 The Mark-Up on LNG liquefaction

6.1 Upstream Cournot competition

In order to analyze factors which are likely to determine the size of the mark-

up, we will present a formal model. With respect to our data set, we are

especially interested in to what extent the mark-up is linked to the oil price

and to the number of firms supplying LNG liquefaction technology.

LNG is mostly traded in long term contracts specifying both sales volume

and price. The sellers of LNG are in most cases consortia in which the owner

of the gas resource has a major share. Hence, we may assume that eventual

resource rent is collected downstream, and not upstream on the input price

of the feed gas. For each liquefaction unit, the consortium owning the unit,

normally sells to more than one buyer. The buyers are typically national gas

companies using LNG to supplement their supply of piped natural gas, power

plants using LNG to produce electricity, or industry using LNG as input in

the production process.

We will look at the price formation of LNG liquefaction capacity in a

Cournot game. The point of departure for constructing the demand schedule

for LNG liquefaction capacity is each particular LNG project. For each project

the initiators of the LNG project i.e. the LNG consortium, meet with the

potential buyers of LNG and agree on the volume/price given the price on

LNG liquefaction capacity.

We assume that the number of LNG projects in each time period is ex-

ogenously given. Further, that the suppliers of LNG liquefaction technology

compete simultaneously for all the projects in that time period. Thus, in the

Cournot game suppliers of LNG liquefaction units compete given the demand

schedule for LNG liquefaction capacity from all the projects in the time pe-

riod. While the number of projects is exogenous, the scale of each project

depends on the LNG liquefaction capacity price.

Assume that the end-user demand for LNG is given by the following linear

demand function:

xd = a− bwl + dwo, (2)

where xd is total demand for LNG, wl is the price of LNG at export

terminal, wo is the price of oil, and where a, b and d are constants/parameters.
The demand function should be interpreted as a residual demand function,

that is, demand given that we have full capacity utilization of piped natural

gas to the region.

Each LNG consortium acts as a monopoly. Hence, it maximizes:
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ω = [wl − ρ] [a− bwl + dwo]− σκ, (3)

where ρ is cost per. unit LNG capacity at export terminal (liquefaction),
and σκ is site specific infrastructure costs. The first order condition for profit
maximum yields, after some rearranging, the price of LNG:

wl =
a+ dwo + bρ

2b
. (4)

Data from IEA (2001) shows that the price of LNG has indeed tended to

follow the oil price. By inserting the price from (4) into the demand function

(2), we find the supply xs from the consortium:

xs =
a− bρ+ dwo

2
.

Total supply of LNG depends on how many LNG projects that are com-

pleted by different LNG consortia in a given time period. Assume that Γ LNG
projects are currently being completed. Total demand for LNG capacity is

then given:

xTs =
Γ

κ=1

aκ − bκρ+ dκwo
2

Assume that aκ = a, bκ = b and dκ = d for all projects. We then get
the following inverse demand function for LNG capacity: ρ = a+dwo

b
− 2

bΓx
T
s .

There are m suppliers of LNG liquefaction technology currently being active.

We further assume that they play a one shot Cournot game given the total

demand for LNG capacity. Let xTs =
m

i=1
xi. We then have that each LNG

liquefaction supplier i maximizes its profit πi:

πi =
a+ dwo
b

− 2

bΓ

m

i=1

xi − ci xi

where ci is the capacity cost of LNG liquefaction. The first order condi-

tions are:

∂πi
∂xi

=
a+ dwo
b

− 2

bΓ

m

i=1

xi − ci − 2

bΓ
xi = 0, ∀i.

We assume symmetric LNG liquefaction technology suppliers i.e. ci = c,
∀i. The first-order conditions are then easily solved:

xi = Γ
a+ dwo − bc
2(m+ 1)

. (5)

And we get the price of liquefaction capacity:
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ρ =
1

m+ 1
(
a+ dwo
b

) +
m

m+ 1
c, (6)

and the mark-up over costs:

ρ− c
c

=
1

m+ 1

a+ dwo
bc

− 1 (7)

Note that while the oilprice increases the mark-up, the number of LNG

liquefaction suppliers decreases the mark-up.

Further, note from (5) that total supply of LNG liquefaction capacity, that

is mxi = x
T
s = mΓ

a+dwo−bci
2(m+1) , increases when the price of oil increases. Look-

ing to our dataset and the number of new LNG facilities in the period 1977

to 1984, it does seem like the supply of LNG liquefaction capacity increased

slightly some years after the oil-price shock in 1973.

On the other hand, equation (7) is not suitable for our econometric ex-

perience curve model. We will therefore test a variant of (7), see the next

section.

6.2 ”War of attrition”

The models above do not actually answer the question posed at the end of

section five: Why were there four firms initially supplying liquefaction technol-

ogy, and later only one firm for a period of nearly thirty years? Hence, we will

also briefly look at a second alternative. Assume that instead of Cournot com-

petition in which all liquefaction technology firms may make positive profit

before fixed costs, the LNG liquefaction firms play a Bertrand game, and

that the different technologies are perfect substitutes (see for instance Troner

(2001) which states that there is no important difference in thermodynamic

efficiency between the different liquefaction technologies). This implies that

when m ≥ 2, the price will be equal to marginal cost of liquefaction capac-
ity i.e. ρ = ci. To the extent that liquefaction firms also have fixed costs,
they will all have negative profits, and we get a ”war of attrition” from which

only one firm can survive, and continue to supply liquefaction technology (see

Tirole (1997), page 311-314).

Then, when all firms except one have left the business i.e. m = 1, we
assume that the price on LNG liquefaction is set as above, that is, the owner of

the remaining LNG liquefaction technology acts as a monopoly. This implies

that the liquefaction capacity price ρ is given:

ρ = mu(wo) ∗ ci (for m = 1),

where mu(wo) > 1 is the mark-up as a function of the oilprice.
The constant mark-up is assumed to hold for all observations from 1977

until 1999. In this period only APCI supplied liquefaction technology ex-

cept from one case. For the years from 1999 on Bechtel, Linde and later

Shell entered the liquefaction market with their proprietary technologies, and

hence, the companies will in the Bertrand model enter a new round of fierce

competition through the ”war of attrition”.
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7 The liquefaction cost model

Basically, we treat our dataset as 40 observations of the same cost function

in different points in time. Because different technologies may differ with re-

spect to cost structure, we control for the two historically main technologies;

APCI and Philips/Bechtel, by using dummies. The four other technologies,

Prico, Teal, Linde and Shell, are in the dataset represented by one or two

observations respectively, and will be embodied in the constant term. Orga-

nizational learning is an argument in the cost function which varies according

to time. We assume that learning is industry wide, and that liquefaction firms

are myopic i.e. they set the price on liquefaction capacity based on current

unit cost.

The previous discussion suggests that the price of an LNG liquefaction

unit may for all or some periods exceed the costs. Let ρt denote the price on
LNG liquefaction capacity recorded for a liquefaction installation t measured
in $ per mt/year. We then formulate the following log linear model:

lnρt = α0 + lnmutj(wt,mt) + α1gt + α2dPhil + α3dAPCI (8)

+α4 ln (Qt) + α5 ln
qt
nt

+ α6 (datt) + ut

The liquefaction unit t may consist of trains that are added to an existing
facility, or one or more trains built on a greenfield site. The other variables

are as follows:

mutj(wt,mt) = the mark-up in model alternative j (see specification below).
The arguments of the mark-up function are wt; a moving average of
the oilprice for the last five years, and mt; the number of competing
LNG liquefaction technologies being marketed at the time of a final

construction agreement. It is of course difficult to measure the latter

variable. Even though the APCI technology seems to have dominated

the LNG liquefaction market for the whole period from 1972 to 1999,

we do not know to what extent it has been constantly challenged by the

other technologies.

gt = a dummy adjusting for infrastructure cost. The variable gt takes the
value 0 if our observation includes only liquefaction plant capital costs,
and the value 1 if our cost observation also includes other cost factors
than the mere liquefaction unit. Of a total 40 cost observations 10 in-
clude total cost figures. These are typically greenfield facilities, often

involving pipelines from the gas field, as well as storage and loading fa-

cilities. Clearly, using a dummy in order to pick up such cost differences

is a rude measure, however, we lack data to refine the measure further.

16



dPhil, dAPCI = dummies specifying the liquefaction technology. Since we

only have one or two observations for the other technologies respectively,

these technologies are treated together as the last category.

Qt = accumulated LNG liquefaction trains built at the time of train t. As
mentioned, we measure organizational learning as accumulated experi-

ence with the building of new liquefaction trains. Our point of departure

is that learning has been industry wide.

qt
nt

= total capacity of facility t divided by the number of trains at fa-

cility t. This variable is intended to pick up eventual scale advantages
in liquefaction. Clearly, there may be scale advantages connected to

infrastructure and total capacity of a facility. On the other hand, our

focus is on liquefaction cost per se, and we have therefore sought to

separate liquefaction costs from infrastructure costs.

datt = date of start-up/date of publishing of cost data. In addition to being a
measure to sort the observations, we also use the date of start-up/date

of publishing of cost data, earlier explained as the ”year-counter”, in

order to identify any time trend suggesting some form of technological

development, or other kind of development.

Lastly, αh, h = 1, ...6 are parameters.

We will use the following expressions for the mark-up:

mutj(wt,mt) =

[wt]
β1 [mt]

β2 for j = 1, t = 1, ..., 41

1 for j = 2, t = 1, ..., 5; 23, ..., 40

[wt]
β3 expβ4 for j = 2, t = 6, ..., 22

(9)

where βk, k = 1, ...4 are parameters. The notation j = 1 denotes Cournot
competition, while j = 2 denotes Bertrand competition. The rationale behind
these alternatives are outlined above. We have chosen to model the mark-up

as simple as possible making the effect of the oilprice and the effect of the

number of competitors separable.

Our data set consists of 40 observations of capacity costs of which 10

includes infrastructure and the rest is given for liquefaction only. The error

term ut is assumed to be normally distributed with ∼ N(0,σt). Due to the
different character of our cost observations, that is, some are ex ante estimates,

others are historical costs, some include infrastructure, many do not etc., we

do not assume constant variance.3 Consequently, we will use WLS - weighted

least squares using OLS residuals - as our estimation method. The estimations

are carried out in PcGive with use of the special panel data package.
3This was confirmed by initial estimations using the OLS method, which lead us to reject

the H0-hypothesis of homoscedastisity within our dataset.
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8 Estimation results

We started with a full dataset estimation of the whole model, labeled Model

1, using the alternative j = 1 expression for the mark-up. That is, the market
actors play a one shot Cournot game incorporating both the oil price and the

number of competitors in their quantity setting behavior. Next we ran a series

of estimations removing non-significant variables successively. The results are

displayed in Table 3 below.

Table 3 ”WLS on the whole dataset”

 
Model 1 Model 2 Model 3 Model 4 Model 5 

α1 
0.1668** 
(0.0655) 

0.1767*** 
(0.0612) 

0.1786*** 
(0.0620) 

0.1629*** 
(0.0594) 

0.1668*** 
(0.0596) 

α2 
-0.1380 
(0.0929) 

-0.1432 
(0.0911) 

-0.0649 
(0.0708) 

- - 

α3 
-0.1160 
(0.0968) 

-0.1255 
(0.0935) 

- - - 

α4 
0.1189 

(0.1367) 
0.1560 

(0.1101) 
0.1108 

(0.1061) 
0.1208 

(0.1052) 
- 

α5 
0.0679 

(0.1451) - - - - 

α6 
-0.0136* 
(0.0068) 

-0.0129* 
(0.0065) 

-0.0108* 
(0.0064) 

-0.0117* 
(0.0063) 

-0.0049** 
(0.0022) 

β1 
0.1212* 
(0.0687) 

0.1173* 
(0.0673) 

0.1292* 
(0.0676) 

0.1254* 
(0.0761) 

0.1481** 
(0.0646) 

β2 
-0.3721*** 

(0.0619) 
-0.3646*** 

(0.0590) 
-0.3344*** 

(0.0552) 
-0.3529*** 

(0.0513) 
-0.3771*** 

(0.0470) 

R2 85.5 % 85.4 % 84.6 % 84.2 % 83.6 % 

n 40 40 40 40 40 

 

Standard errors in parentheses, * 90% level of significance, **95% level of signif-

icance. ***99% level of significance.

As can be seen from Model 1, only the infrastructure cost dummy, the

time trend variable, the oil price and the number of competitors came out

significant at a 90 % level or more in the full dataset estimation covering all

variables. This implies that we did not find any evidence of systematically

different pricing of technology between APCI or Philips and the other tech-

nologies available through time. From this we might assume that there have

been no real difference in construction costs between plants using the two

leading technologies and plants using alternative technologies, however the

data sample for the alternative technologies are modest.
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Next, and more importantly, we didn’t find any significant effects from

either experience or scale on liquefaction plant capacity pricing. However, as

one would expect, we discovered a strong time related positive correlation both

between accumulated trains and train capacity and each of them combined

with the time trend variable, which would weaken their respective partial

regression coefficients in the estimations. Still, we found evidence of a robust

significant time trend influencing LNG plant pricing, which may stem from

an anticipated general technological development.

The lack of significant findings from both learning- and scale effects are

somewhat surprising, as these factors are often related to new technology

developments. Particularly the steady increase in single train capacities has

commonly been associated with the falling costs of LNG capacity. In addition,

as the technology has matured and more experience is gained, it is likely that

the need for ample capacity design margins has gradually diminished.

The significant impact from both the oil price and the number of sup-

pliers of different technologies on the mark-up pricing behavior was expected

according to our formal model, shown in section six. Particularly competition

seems to have had a strong impact on LNG liquefaction capacity pricing, as

we find both a high coefficient value and a high level of significance for the

effect on capacity pricing from the number of competitors at each point in

time.

The key findings from the full dataset estimation were further strenght-

ened by additional estimation results, where non-significant variables were

removed successively, labeled Model 2-Model 5 in table 3. The time trend

effect is rather weak though in all regressions. Based on model 5, the yearly

decrease in liquefaction capacity pricing due to the time trend was about 0,5%

per year in the period 1970 to 1999. On the other hand, the greenfield effect

is rather strong. Compared to adding a new train to an existing facility, the

cost of capacity increases by about 17% if a liquefaction train is installed at

a greenfield site.

8.1 Firm specific learning

In order to look more into learning and competition we also ran WLS estima-

tions on two sub samples, one consisting of the APCI liquefaction trains only

and one sample also including the Philips technology trains. As APCI has

been the dominant producer of liquefaction technology since the early 1970´s,

delivering 59 out of a total 81 trains in our dataset, we may find that APCI has

developed a technology-specific experience with respect to their production

costs. As the Philips technology also has been present both in the early stage

of the LNG industry as well as in the later years, it is also interesting to con-

trol for any price differences between these two leading technologies. Starting

with the APCI dataset we could remove the technology dummies α2 and α3,
and the results from the estimations are reported in Table 4 below, labeled

Model 6 and 7. The results from the estimations using the APCI/Philips

dataset are labeled Model 8 and 9 in Table 4.
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Table 4 ”WLS on the APCI/Philips dataset”

 
Model 6 Model 7 Model 8 Model 9 

α1 
0.1519* 
(0.0846) 

0.1711** 
(0.0779) 

0.1795** 
(0.0693) 

0.1721*** 
(0.0593) 

α2 - - 
-0.0609 
(0.0876) 

- 

α3 - - - - 

α4 
0.4340 

(0.3685) 
0.6255** 
(0.2474) 

0.4828 
(0.3330) 

0.6183** 
(0.2307) 

α5 
0.1190 

(0.1832) 
- 

0.0447 
(0.1626) 

- 

α6 
-0.0279* 
(0.0136) 

-0.0313*** 
(0.0110) 

-0.0267** 
(0.0128) 

-0.0307*** 
(0.0104) 

β1 
0.0476 

(0.0879) 
- 

0.0665 
(0.0844) 

- 

β2 
-0.3805*** 

(0.0699) 
-0.3692*** 

(0.0637) 
-0.3539*** 

(0.0655) 
-0.3808*** 

(0.0507) 

R2 85.5 % 85.0 % 85.9 % 85.3 % 

n 26 26 35 35 

 

Standard errors in parentheses, * 90% level of significance, **95% level of signif-

icance. ***99% level of significance.

The results from both sub sample estimations are generally similar to the

full dataset estimations, that is the infrastructure dummy, the time trend and

the number of competitors seem to have a robust significant effect on the unit

price of an LNG production train. The results thus strenghten our earlier

findings that indicate oligopolistic LNG liquefaction plant pricing. Moreover,

the effect from the oil price is still positive, but no longer significant, as was

the case in the full dataset estimations.

Interestingly, both the experience and scale coefficients came out positive

in all estimations, including the full dataset. Rather controversially, for both

the sub samples the experience effect was even significant at a 95% level, that

is experience increases costs! We believe that these highly atypical results

may stem from some unknown factor, possibly related to the mark-up pricing

element. Allover, these findings strenghten the arguments against the hy-

pothesis of extended experience effects within LNG liquefaction construction

costs. We therefore doubt that any experience has taken place with respect

to construction costs of the APCI-licenced LNG plants. With respect to any

possible differences between the APCI and the Philips liquefaction technology,
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the estimations provided no significant findings of differences in the pricing

behavior.

8.2 War of attrition

To elaborate on our earlier findings regarding both experience effects and

monopoly power, we also tried the alternative mark-up model on the full

dataset (j = 2 in eq.(10)). Using the Bertrand-competition-based mark-up
we a priori assume that the low unit prices for both the first LNG plants

and plants in recent years was a direct result of fierce competition through

marginal cost pricing. This may bring forward possible experience effects in

a better way compared with the earlier model estimations. We continued the

same estimation procedure of removing variables successively, and the main

results are presented as Model 10-12 in table 5 below.

Table 5 ”Alternative model of mark-up”

 
Model 10 Model 11 Model 12 

α1 
0.1667** 
(0.0753) 

0.1482** 
(0.0665) 

0.1504** 
(0.0667) 

α2 
-0.1155 
(0.1053) 

- - 

α3 
-0.0637 
(0.1076) 

- - 

α4 
0.1476 

(0.1546) 
0.1343 

(0.1169) 
- 

α5 
0.0013 

(0.1619) - - 

α6 
-0.0122 
(0.0078) 

-0.0119 
(0.0071) 

-0.0042* 
(0.0025) 

β3 
0.1243 

(0.0785) 
0.1241 

(0.0750) 
0.1474** 
(0.0726) 

β4 
0.4459*** 
(0.0958) 

0.4585*** 
(0.0800) 

0.4976*** 
(0.0728) 

R2 81.5 % 80.8 % 80.0 % 

N 40 40 40 

 

Standard errors in parentheses, * 90% level of significance, **95% level of signif-

icance. ***99% level of significance.

With respect to the main findings from the earlier full model estimations,

the alternative mark-up model performs much the same. That is, we find

neither a significant experience effect nor a scale effect on LNG plant unit

costs, while the oil price, a time trend and particularly a dummy (β4) taking
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the value 1 in periods with mark-up pricing, show robust and significant

characteristics. Thus, in all of our full model estimations, irrespective of

mark-up model, the number of competitors stayed significant above a 99%

level, hence, rivalry between different liquefaction technologies seem to have

had a robust influence on LNG plant capacity pricing over the years.4

9 Conclusion

Our study casts doubt on the belief that there has occurred experience effects

with respect to the capital costs of LNG liquefaction facilities. Our conjecture

is that the total number of LNG trains is still to few, and the construction too

spread out over a long time period to foster any significant experience effects

in liquefaction technology production. Alternatively, the huge financial risks

involved in an LNG project may have delayed major technological develop-

ments. As the liquefaction technology proved itself reliable, the risks involved

in new technologies and possible delivery failures may have been greater than

the possible cost advantages from improved technology and more effective

production.

Another, and maybe more plausible explanation, is that the relatively

weak competition in much of the history of LNG has weakened the incen-

tives for technology improvements. The fact that one company, APCI, has

appeared to control the business for nearly 30 years, may well have eased

their efforts of cost reductions. Indeed, it seems like the unit price of an LNG

plant has fallen after the return of the Philips/Bechtel technology in 1999

and the introduction of the Shell and Linde technology later on. However,

this finding may be a consequence of shrinking mark-ups rather than cost

reductions, which is also supported by our estimation results. We generally

find robust and significant evidence of mark-up pricing in all of our model

simulations. Hence, the apparent fall in LNG liquefaction construction costs

the last decade is most likely to originate from increased competition between

different liquefaction technologies.

If our model draw the right conclusions it is not reasonable to believe that

the current cost reductions will continue in a longer term, as the price of LNG

plants sooner or later will approach marginal costs of production. However,

competition in itself may trigger technological change, and only after we have

seen a substantial number of new LNG projects come on stream, we may

draw more robust conclusions with respect to where we are on the LNG plant

construction experience curve.

4 In order to investigate even further a possible experience effect within our dataset we

also estimated a model where we assumed some sort of tacit collusion among the LNG tech-

nology suppliers after the reintroduction of the Philips technology. That is, we assumed

that they didn’t restore to marginal cost pricing, but kept the monopoly price. This model,

however, provided almost identical results as compared with our formal Bertrand compe-

tition model. Not surprisingly, our tacit collusion model also showed considerable lower

explanatory power.
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Appendix 

Table A1. LNG plant dataset  
  LNG plant  Country Start- 

up  Technology # trains Capacity/ train 
(mty) 

Capital unit costs 
(2003$ bn/mty) 

1  Camel, Arzew GL 4Z  Algeria 1964 Prico 3 0.37 0.219 
2  Kenai, Alaska  USA 1969 Phillips 2 0.70 0.203 
3  Marsa El Brega  Libya 1970 APCI 4 0.65 0.163 
4  Skikda, Phase 1  Algeria 1972 Teal 3 1.10 0.235 
5  Lumut  Brunei 1972 APCI 5 1.06 0.253 
6  Adgas, Das Island  Abu Dhabi 1977 APCI 2 1.50 0.414 
7  Arzew, GL 1Z  Algeria 1978 APCI 6 1.21 0.415 
8  Arun, Phase 1  Indonesia 1978 APCI 3 1.40 0.532 
9  Arzew GL 2Z  Algeria 1981 APCI 6 1.27 0.439 

10  Bontang, Phase 2  Indonesia 1983 APCI 2 2.00 0.416 
11  MLNG I, Bintulu  Malaysia 1984 APCI 3 2.00 0.495 
12  Arun, Phase 2  Indonesia 1984 APCI 2 1.65 0.505 
13  Arun, Phase 3  Indonesia 1986 APCI 1 1.50 0.342 
14  Burrup Northwest Shelf  Australia 1989 APCI 2 2.00 0.452 
15  Adgas, Das Island 3  Abu Dhabi 1994 APCI 1 2.30 0.450 
16  MLNG II (Dua)  Malaysia 1995 APCI 2 2.60 0.403 
17  Qatargas, T1+2  Qatar 1997 APCI 2 2.00 0.545 
18  Qatargas 3  Qatar 1998 APCI 1 2.00 0.303 
19  Bontang, T7  Indonesia 1998 APCI 1 2.60 0.429 
20  Bontang, T8  Indonesia 1999 APCI 1 2.95 0.261 
21  Atlantic LNG, T1  Trinidad& Tobago 1999 Phillips 1 3.20 0.244 
22  Bonny Island, T1+2  Nigeria 1999 APCI 2 2.95 0.421 
23  Rasgas, T1+2  Qatar 1999 APCI 2 2.60 0.314 
24  Qalhat, T1+2  Oman 1999 APCI 2 3.00 0.275 
25  Bonny Island T3  Nigeria 2002 APCI 1 2.95 0.289 
26  Atlantic LNG, T2+3  Trinidad& Tobago 2003 Phillips 2 3.20 0.175 
27  MLNG III (TIGA)  Malaysia 2003 APCI 2 3.80 0.211 
28  Burrup Nortwest Shelf, T4  Australia 2004 Linde 1 4.20 0.205 
29  Damietta  Egypt 2005 APCI 1 5.00 0.208 
30  Bonny Island, T4+5  Nigeria 2005 APCI 2 4.00 0.217 
31  Idku ELNG, T1  Egypt 2005 Phillips 1 3.60 0.255 
32  Atlantic LNG, T4  Trinidad& Tobago 2005 Phillips 1 5.20 0.231 
33  Rasgas, T3+4  Qatar 2005 Philips 2 4.70 0.255 
34  Qalhat, T3  Oman 2006 APCI 1 3.30 0.189 
35  Darwin LNG  Australia 2006 Phillips 1 5.00 0.200 
36  Idku ELNG, T2  Egypt 2006 Phillips 1 3.60 0.153 
37  Snøhvit  Norway 2006 Linde 1 4.11 0.279 
38  Tangguh  Indonesia 2007 APCI 2 3.50 0.200 
39  Bioko Island LNG  Equatorial Guinea 2007 Philips 1 3.40 0.260 
40  Sakhalin II  Russia 2007 SDMR 2 4.70 0.213 
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