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1 Introduction

Most of the literature on dynamic models for panel data with continuous variables are concerned
with single-equation models. Important exceptions include Holtz-Eakin, Newey, and Rosen (1988),
who analyze an instrumental variable (IV) estimator for a vector autoregressive (VAR) model, and
Binder, Hsaio, and Pesaran (2000), who study inferences based on the Generalized Method of Moments
(GMM) and Maximum Likelihood (ML) in a similar model. The purpose of the present paper is to
analyze a dynamic model with a more general latent structure than in previous studies. The point
of departure is a VAR model with a two-way latent structure with both subject-specific and time-
specific effects, the latter being modelled as a latent time series consisting of a persistent and a
transient component. Maximum likelihood estimators are developed with respect to computational
procedures and asymptotic properties based on a state space representation of the model.

In an illustrative example, the proposed method is applied on a micro panel data set to study
the relationship between labor demand and real wage in manufacturing firms for the period 1976-96.
Focusing on forecasting of aggregate sectorial variables, it is first demonstrated that the in-sample
predictions from an estimated micro model are similar to those from the aggregate version of the
model. Next, the models are estimated on data for 1976-86, and then used to calculate one-year-
ahead forecasts over the remaining out-of-sample period. The micro model performs well also out-of-
sample, but the aggregate model fails dramatically. Furthermore, while the parameter estimates of the
micro model are remarkably stable over time, the estimates of the aggregate model become strikingly
different when the estimation period changes from 1976-96 to 1976-86. The discrepancies between
the two approaches are mainly due to the role of industry-wide latent variables, and illustrate the
important role of panel data for extracting commonalities across a panel of observation units. Similar
observations have previously been made by macro economists; see Quah and Sargent (1993).

The main theme of this paper is to demonstrate the usefulness of state space formulations and the
Kalman filter for analyzing dynamic panel data. Although state space models have been applied to
panel data earlier; see Jones (1993) and Fahrmeir and Tutz (1994), they have not been explored in
the context considered here, with latent structure both across observation units and along time.

So far, GMM estimation based on instrumental variables has dominated the econometric literature
about dynamic panel data (see Arellano and Bover (1995) and Ahn and Schmidt (1995)). Such meth-
ods can be very inefficient in models with near unit roots, as pointed out by e.g. Blundell and Bond
(1998). Moreover, the specific choices of instruments in applications tend to be somewhat arbitrary.
Maximum likelihood estimators have also been studied; e.g. by Anderson and Hsiao (1982), Jones

(1993), Icaza and Jones (1999), and Binder, Hsaio and Pesaran (2000), but have been less popular in



applications; apparently because of computational obstacles. An interesting recent discussion about
the merits of likelihood based methods in panel data models is found in Sims (2000).

For the random components layout proposed in this paper, the situation is more complicated
than for the “workhorse” panel VAR model with fixed time effects and random individual effects.
Nevertheless, it will be shown that likelihood methods can be attractive in this context, both from a
theoretical and a computational point of view. In particular, it is demonstrated that a Helmert-type
orthogonal transformation of the variables permits us to concentrate the likelihood function into a
simple state space form. The dimension of the state vector is low and independent of the time and
cross section dimensions. Thus there is no “curse of dimensionality” associated with the method
when N and/or T is large. An iterative ECM algorithm (see Meng and Rubin (1993)) is proposed
for computing the maximum likelihood estimator, and its convergence and asymptotic properties are
assessed.

The rest of this paper is organized as follows: Section 2 presents and motivates the model; Section
3 establishes an implicit representation of the likelihood function in terms of a state space model;
Section 4 presents the ECM algorithm which is used to estimate the model and discusses initialization,
implementation of rank restrictions on covariance matrices, and initial conditions; Section 5 applies
the model on a micro panel data set and discusses forecasting and aggregation; Section 6 establishes
consistency and asymptotic normality of the ML estimator when T is fixed and N goes to infinity and
provides Monte Carlo evidence about finite sample properties, including cases with large T'; Section 7

concludes.

2 The Model

The starting point of the analysis is a vector autoregressive VAR(k) model with a two-way random

components structure:

k m
vi =Y Ty, i+ > Ajai_j+ fi+ v+ (1)
j=1 =0

Fori=1,.,Nandt=1,..,T; yi is a p x 1 vector of endogenous variables on subject i at time t;

xy is a g x 1 vector of exogenous variables, and f; is a latent time series which is composed of a pure

random walk p, and a transient component 6;:

Jt = po + Ty + Yo, (2)



where

- { 0 t=1
¢ Mg +mp t=2,.,T
e~ INP(()?IP) (3)

5 ~ IN,(0,I,)

where 0 denotes a vector of zeros of appropriate dimension and I, is the identity matrix of order p).
p

Finally, ! and v are p-dimensional standard normal variates:

el ~ IN,(0,%) (4)

vt~ INRH(0,9), (5)

with €}, v/, p, and &, being independent of each other for every (i, j, t, s, u).

The model contains the following unknown parameters: matrices of regression coefficients II; and
A;, with dimension p x p and p x ¢, respectively; an intercept vector pg; lower triangular loading
matrices I' and Y, and a random effects covariance matrix ). Since any initial value p; can be

absorbed into the intercept (i in equation (2), p; = 0 is chosen as an identifying restriction. Because
Var(fi) = (t—1IT + 1Y,

I and T are identified as the unique Cholesky factors in a covariance matrix decomposition of the time
latent variable f;, provided these matrices are positive definite. Rank restrictions will be considered
in Section 4.5.

Two interesting special cases emerge if we set (i) Q@ = 0 — no individual effects, or (7)) T =Y =0
— no stochastic time effects. In the first case, maximum likelihood estimation can be carried out quite
straightforwardly, since the model then is easily seen to have a state space representation with state
variables (u,,d;) and measurement-type equation (1). In the latter case, the likelihood function has
an attractive explicit form, as will be demonstrated in Section 3.

Let 1T = [My,...,II;] and A = [Ao, ..., A;y]. We partition the vector § of unknown parameters as
0 = (8,¢), where 8 = (vec(Il)’,; vec(A)’, vech(2), vech(Q)") and ¢ = (ug, vech(T')’,vech(Y)"). Thus ¢
contains the parameters of the latent time series, while 5 contains all other parameters. Clearly, we
cannot estimate (i, I' and T consistently with fixed T' (however, if T = 0 the intercept vector p is
identifiable from cross sectional data alone).

The non-stationarity of f; does not affect large-N asymptotics, as is demonstrated in Section 6.
For large-N and large-T asymptotics, which would allow us to make inference about ¢, the situation

is much more complicated. Conventional limit theorems do not allow multi-index asymptotics, and



the relatively few existing results in this field (see Phillips and Moon (2000) for an overview) are
not applicable to the case with both serial and cross-sectional dependence. However, the Monte
Carlo evidence presented in Section 6 are encouraging and suggest that conventional normal-theory
approximations may be valid also in situations with large N and T

To motivate equation (1)-(2), it is instructive to look at the aggregate version of the model. If we
denote by y; and x; the mean of 3! and x} over an ”infinite” number of fixed observation units, we

obtain

k m
e =tio+ Y My + > Ay +Tuy + e, (6)
j=1 =0

where e; ~ ZN (0, YY’). Hence, it is seen that if A; = 0 for all j and I = 0, the VAR(k) model is
obtained. On the other hand, if T" # 0, the stochastic trend p, can be interpreted as an intercept
correction (see Clements and Hendry (1996)). Another interesting case emerges if A; = II; = 0 for
all j — the so-called local level model (see Harvey (1989)). Thus, by imposing different parameter
constraints it is seen that a number of commonly applied time series models are obtained through
aggregation of the model.

In the literature about dynamic panel data much effort have been made to specify proper initial
conditions (see Anderson and Hsiao (1982) and Blundell and Bond (1998)). When deriving the
likelihood function in the next section, we will condition on the initial observation vectors Yj =
{v8, ..,yLk} and X} = {z},..,2i_,}, and assume that these are ancillary statistics with respect to
6 (see Johansen (1995)), and independent of the individual effect v*. However, the latter assumption
may be unrealistic and is relaxed in Section 4.6.

Let Fy = vec|fi, ..., fi] and H}_; = {(2%,y),s < t}. Ezvogeneity of z} with respect to 6 requires
that ! is conditionally independent of v* and F; given H; ;, and independent of # in distribution
(cf. the definition of sequential exogeneity in Gourieroux and Montfort (1995)). If for any random
variables X and Y, we let g(Y|X) be generic notation for the conditional density of Y given X, we

can state this requirement formally as

g(xiayﬂHZ—la Ftaoi; 9) = g(y;‘x;a HZ—la Ftaoi; e)g(l.”HZ—l) (7)



If (Yg, X{) are exogenous w.r.t. 6, and L() is the likelihood function, we have by (7 )
T

/{H/[ngt’yt|Ht 1 B vt 9)] g(v*;0)d }Hg ft|Fi=1;0)dFr

t=1

X HQ(YOZvXé)

i=1

T

/{H/[Hg yt|xt7 . 1,Ft,v 9)] vl ;0)d }H (fe|Fi=1;0)dFr (8)
t=1

XHHQ vy Hy_y XHQ Y5, X5)- (9)

i=1t=1

Estimation based on the partial likelihood — the factor (8) only — is therefore fully efficient provided
(i) g(xi|H}_;) and g(Y§, X§) contain no unknown parameters or, if they do, these parameters and 6
are variation free, and (7) (Y¢, X{) and v' are independent. However, the latter restriction can be
relaxed. In Section 4.6 we assume instead that (Y, v") have a joint normal distribution.

Let Z} denote the sum of the latent variables in (1):

= ft —+ Ui + Ei
. k . m .
:yé—zﬂjyéﬁ- _ZAﬂCL]" (10)
=1 =0

We see that Z} has a rather complicated, but identifiable, covariance structure in the time- and cross

section dimensions:

t—1IT' + XY +Q+% t=s,i=j

i iy ) (A =1IT" + 0 tAs, i=j
COV(ZS7Zt)_ (t )FF/—FTT/ t=s, 27&] (11)

((sAt) = 1)TT t#s, i J.

3 The Likelihood Function

The purpose of this section is to derive a representation of the likelihood function which is convenient
for estimation purposes. Of course, the likelihood function corresponding to (1)-(5) is that of a multi-
variate normal distribution with covariance structure (11). Unfortunately, this is a p7'N- dimensional
distribution, which is a highly complicated function of the unknown parameters. Furthermore, there
is no simple factorization of the density into conditionally independent terms due to the two-way ran-
dom components structure. Instead, an indirect representation of the likelihood function is proposed.
It will be shown that a particular orthogonal transformation of the variables enables us to represent
the likelihood function implicitly on a state space form with a 4p-dimensional state vector, regardless
of N and T. In Section 4, this state space form is used when developing an algorithm for maximizing

the likelihood function.



3.1 The Helmert Transform

Define the orthonormal T' x T" Helmert-type matrix

W = [’Ll)l,..,’LUT}7

with
I3 /
Vg x [t -11,0,.,0 t=1,.,T-1
we = 12 (12)
[L L} t=T
VT T )

where the 1 is in the ¢ + 1’th position of w;. Furthermore, define p x T matrices
Z' =244, ... Zy]
f = [fla ) fT}
B =gl ... eb).
Since (10) holds for t =1, ..., T, we have for i = 1,..., N :
(Zi — f) = [vi, ...,vi}(pr) + E’
:hmmﬁﬂwwﬂ. (13)
Postmultiplying (13) by W gives an equivalent formulation
ZW = fW + [0,...,0, \/Tvi] + ¢ (14)

with
¢ = E'wW.
Since W is orthonormal, and €} and ¢ are normal and independent when s # ¢, the distribution of Qi

is the same as the distribution of E* (see Anderson (1984), p. 68). Thus, by (4),

Ct = Eiwt
is mean zero Gaussian with
T -7 0 t # S
B ={ 3 70 (15)
Define
i Ziwt t= 1, ,T -1
2 = { T—1/2 7iq t=T (16)
Then it follows from (14)-(15) that
; ; Np(fwe, X) t=1,...T-1
3 (3 N ) i Y ) 1
zl(f,v) { Ny (T2 fwp +0/, T7'S)  t=T, {an



where z{ and 2! are conditionally independent given f and v* whenever s # t. We can use (17) to
obtain the conditional density of z{|f. By the rule of iterated expectation, E(2i|f) = E(E(z{|f,v?))
and Var(z|f) = E(Var(zi|f,v")) + Var(E(zL| f,v')). Hence, by normality, (5), and (17)

z§|fw{ Np(fwe, X) t=1,.,T—1

Np(T V2 fwr, Q+T718) £ =T. (18)

Conditional on f, the z} are independent random variables for i = 1,..., N and t = 1,..., T

From (18) and (3), the marginal probability density of z} is implicitly given by the following

equations:
S fw, + & t=1,...T—1
LTV Pfwur+ & t=T
fe = o+ Ty + Yoy
/0 t=1
ILLt N /‘Ltfl +77t t:2,,T (19)
ne -~ INp(0,1p)
6t~ IN,(0,1,)
&~ IN,(0,Zy),
where

_ [ t=1,.,T—1
T QT t=T.

(20)
The relation between 2! and the observed variables y! is given by (10), (12), and (16), and thus involves
the unknown parameters 3. z} is therefore a latent variable.

Equations (19) provide an implicit form of the likelihood function of the data Y = {y};; for all
(4,t), although it is not immediately clear that this is a particularly useful representation for estimation
purposes. However, it is shown in the next sub-section that the choice of transformation matrix W
leads to a simple state space representation in terms of the variables p,, &;, and 2.

If W instead was chosen as the matrix with last column equal to T 3wy and t'th column equal
to 1y — T 2wy (t <T), where ¢; is the t’th column of the identity matrix, the transformation in (14)
would correspond to be the familiar ”within” and ”between” transformations: The last column would

contain the individual means of the variables and the other columns the deviations from the means.

However, this transformation would not be orthogonal.

3.2 A State Space Representation

Equations (19) bear a resemblance to a state space form. Moreover

Jir(f =1 fs) t=1.T-1

fwy =
ﬁZstlfs t=T.



We see that each of the transformed variables fw; for ¢ < T only involve fi,.., fy+1 — and in a
very appealing way: fw; is (except for a scale factor) the difference between f;y; and the mean of

fi, ., fr. In fact, the variable fw; can be written as a linear combination of VAR(1) processes. To see

this, define
[0 & o o] t=0
Xt = / / t ’ t ;1!
[ Pip1 Otp1 Doemi Ms  Dgq M ] t=1,..,T.
Then, from (19)
=14+ Gy + €& t=1,..,T

21
= Fog1+we t=1,..,T, (21)
where
_ po t=T
™= {0 else
G = [ “’LIF “rLlT t(tﬁrl)r t(t-tH)T] t=1,.,T-1
[0 0 T7'T T 'A] i
I, 0 0 O
- 0O 0 0 O )
P =l o1 o0
0 I, 0 I,
_77t+1
wy = 6t8_1 fort=1,..,T
. 0

Note that, by (3), w;is i.i.d. normal, with mean zero and singular covariance matrix

Elww)) =Q = fort=1,..,T.

o o o5
o o5t o
oo oo
oo oo

The importance of (21) is that, regardless of T' and N, the dimension of the state vector oy is only
4p, where p is the number of equations.
To obtain a state space representation for the complete set of N subjects, we only need to stack

observation- and coefficient matrices:

Zr =1+ G+ & t=1,...T

2
O[t:FOét,1 + wy t:17...,T7 ( 3)

where
Zt* = (Zt1/7 - Ziv /)/
75 = (1} 1)

Gi = (G, ...GY)

5: :( %Iv'v éV/)/‘

10



Thus, by (20),
In®X% t=1,..,T—1

To formulate the 2} in (21) in terms of the observable variables y?, we must examine the relationship

between 2z} and yi. We start by defining a "moving average” operator. For any time series x!, define

s—1
1 .
v=0

Xi;s is thus the mean of the latest s observations up until time ¢t. Next, define

Ylt { \/ yt+1 yi;t) t=1,...T—1
Y. t=T
. ) ) ’
\ T Y1) s o Wb kg1 — Yins ’} t=1,..,T—1
YOt _{ . Zt 1,t)” ( t—k+1 t k,t) (26)
[yT 1T 5o Y7 } t=T
i i /
Xo { $t+1 - xt )5 (xt—m,-‘,-l - xt—m;t)l] t=1,.,T-1
t =
WT,T N t="T.

From (10), (16) and (26) we can rewrite 2} as
=Y/, — 1Yy, — AX(, fort=1,..,T. (27)

Since 2} depends on 3, we will use the notation z{(3) to mean the left side of (27) as a function of 3.

Above a state space model with «; as state vector and z} as ”observation” vector has been es-
tablished. Since z{ depends on the unknown parameters 3, the state space form cannot be used to
maximize the likelihood function directly as in Harvey (1989); Ch. 4. Instead I will propose an in-
direct maximization method, which is similar to that described in Fahrmeir and Tutz (1994); Ch. 8.

This method is the subject of the next section.

4 Estimation

The main tool in the estimation of the model (1)-(5) based on the state space formulation (23),
is a generalization of the EM (Expectation Maximization) algorithm, called the ECM (Expectation
Conditional Maximization) algorithm by Meng and Rubin (1993). The EM algorithm was originally
developed by Dempster, Laird and Rubin (1977) as a tool for estimating models with incomplete or
missing data, when the likelihood of the complete data has a simple explicit form. In our case, v is the
observed (incomplete) data and the state vector oy is "missing.” Conditional on F = veclfy, ..., fr],

the explicit likelihood of the y! is a relatively simple multivariate normal distribution given by (18).

11



But the likelihood of the ”incomplete” data is complex, since we have to integrate out the high-
dimensional vector F', leading to a likelihood function which is a highly non-linear function of the

unknown parameters.

4.1 The EM and ECM Algorithm.

For general random vectors z and «, let z denote the incomplete data and a the missing data.
Furthermore, let g(z, a; 0) be their joint density (i.e. the ”complete data” density), and g(«| z; ) the

conditional density of « given z. The ML estimator, 6, is the maximum of the log-likelihood L(#) of

the observed data, where

L(#) =1ng(z;0). (28)
Since
9(z, a; 0)
2;0) = =—"—"-+=,
950 = Gal=0)
(28) can be rewritten as
L(#) =lng(z,0;6) — Ing(a| 2 0). (29)

Taking the expectation on both sides in (29) with respect to the conditional density of « given z,

evaluated at an arbitrary parameter value ¢, gives:
L(0) = M(0l6") — H(6] &), (30)
where

M(016") = E{lng(z, a;0)|2 0"}

H(0]0') = E{lng(a|z;0)|2 0"}

It is shown in Wu (1983) that the following algorithm will converge to a stationary point of the

likelihood function under quite general conditions:
Let (Y be given. Form =1,2, ...

(i) E-step: Compute M (6] (™).

(ii) M-step: Set 81 = argmax M (6] 6™).
o

(i1i) Set m =m+ 1, and go to (7).

Since by Kullback’s inequality H(6]6"™) < H(6™|0™) for all 6, it is easy to verify that {L(6(™))}

is an increasing sequence of likelihood values.

12



It will be more convenient for us to replace the maximization in the M-step by a conditional
maximization (CM) procedure: For a fixed partition of the parameters, the maximization is partial;
that is, with respect to one group of parameters at a time, keeping the remaining parameters fixed
at their current values. This partial maximization procedure guarantees that M (V]9 >
M (G(m)\ﬁ(m)) and therefore preserves the ascent property, and thus stability, of the EM algorithm.
The convergence might, however, be slower.

The EM (ECM) algorithm does not require calculation of the log-likelihood L(#) — only of the
function M (Q\G(m)). An important property of the algorithm is that

AL(O"™)  aM(8|6™)
a0 96

(31)
9:9(717,) ,

which follows from the fact that 8™ is the maximizer of H(A|6(™), and hence a stationary point.
The Hessian of L(6) at 6 can therefore be obtained by numerical differentiation of %g@ o This
result is important, because it yields a computationally simple estimator of the covariance matrix
of 0. Tn my experience, it also yields more accurate covariance estimates than the SECM algorithm

proposed in Meng and Rubin (1992).

4.2 The E-Step

To perform the E-step of the ECM algorithm, we have to evaluate

N(T - 1)

M(6]6™) = — mm—gmm|

- %E {Z (20(8) = 1o — Gr(T, T)ar) Q7 (25(8) — pog — Gr(T, Yar) | Y; 9“”)} :
- (32)
where Q = Q + T7'%, G4(T, ) denotes G; as a function of T' and T (see 22), and we have ignored
uninteresting constants. In equation (32), the expectation is with respect to the latent variables
(a1, ..., ar), conditional on the data Y, and with 8 evaluated at o(m),
Since M (0] 6™) is quadratic in (ay, ..., ar), to evaluate the expectations in (32) we only need to
calculate the conditional moments
agr = BEla|Y;6"™}

/ (m) (33)
Vir = Ella —ayr)(ow —ayr)' [ Y67}

When 0 = 0™ we can calculate z{(™) from (27). The state space form (23) can then be used

with z¢ replaced by zf(8™)) to derive (33) by means of the Kalman filter. Following the exposition in

13



Fahrmeir and Tutz (1994), p. 264, the filtering recursions can be described by the following algorithm:

Kalman filtering:

a0|0:0
0O 0 0 O
o, 00
Yoo=1¢ o 0 o
0O 0 0 O
Fort=1,..T:

Agjt—1 = F ap—1)t—1

Vi1 = F Vs F' 4+ Q
Ky = Vi1 GY'[Gi Vi1 G + DA
ayje = ag—1 + Ke(Zy — 70 — Giag—1)
Vie = Viji—1 — KeGy Vije—1,

where all parameters are evaluated at 6 = 6™, Note that no inversions of high dimensional matrices

are needed, since, from a well-known matrix inversion lemma (see Anderson and Moore (1979), p.

138),
[GiVi Gy +5) 7 =5, — E;IG;‘(VJ;I +aysstenTiar et (34)
with
sl _ In %71 t=1,.,T—-1
¢ INw(Q+T'S) 1 t=T.

The required conditional expectations ayr and variances Vy 1 are obtained in subsequent backward

smoothing recursions (see Fahrmeir and Tutz (1994) p. 265):

Kalman smoothing:
Fort=1T,..., 2:
ay—17 = ag—1jt—1 + Be(ayr — ayp—1)

Vicyr = Viewje—1 + Be(Vyyr — Vip—1y By,

where

By = ‘/271@71:(/‘/“;1_1-

4.3 The CM-Step

In the m’th CM-step, after a;7 and Vjr have been evaluated in the preceding E-step, we update ¢

to obtain ™Y, However, maximization of M (A]6"™)) would require iterative methods. To avoid

14



iterations, we partition 8 such that a closed form solution for the optimum with respect to each subset
in the partition of € can be found when the remaining parameters are fixed at its current value. Define
01 = (ug, vec(IT) ;vec(A) ,vech(I") ,vech(Y)') and 02 = (vech(X),vech(?)’). Thus 6 = (61,62) is a

partition of 6. Let M (61, 602]|0) = M (6|0). The conditional maximizations then consist in finding:

Ggmﬂ) = argmax M (04, 9§m)|9(m)) (35)
0,

o™t = argmax M0\ 6,)00™). (36)
0

Conditional maximization w.r.t. 61 in (35) is equivalent to maximization of the quadratic function

N T-1

i i i ! sv(m)~! i i i
== > (Vi — Y, — AX§, — Gu(T, V)ayr) U™ (VY — Vg, — AXG, — Go(T, Yayr)
=1 t=1

(YIT Ho — HY()iT - AX(i)T - Gr(T, T)aT\T) Q(m)il (YfT — Mo — HYoiT - AXéT - Gr(T, T)aT\T)

'MZ

i=1

!

—1 N
tr ST G, TVGo (DY) + Y tr Q007 Gp(D, 1) Ve G (T, X)) (37)
1 =1

WE

1t

s
Il

By setting the derivative of ¢(61) equal to zero, we get linear 1. order conditions. The updating of 6
n (35) is therefore trivial.
Conditional maximization with respect to 03 = (vech(X)’, vech(€2)") in (36) is equivalent to maxi-

mization of

N T-1
r(f2) = —N(T =) |2 = NIn|Q+ T3 = 3 3 o 57 (RiR! + G viam )
i=1 1

=1 t=

N
=Yt @+ T (S0 + GE VG (38)
i=1
where
Gngrl) _ Gft(r\(erl)7 T(m+1))
Ri = Ylit - H(mH)YOit - A(mH)XSt - GEmH)GtIT
st = YfT - #(()mﬂ) - H(m+1)Y()iT - A(mH)X(i)T - G(Tmﬂ)aT\T-
Hence
somty L iTi <RiRi 4+ Gy, G(’”“)’) (39)
NT-1) 3= o ' e
L\ (m+1) (m+1)) _ 1
m—+1 Qi m+1 m-+1)/ m-+1
o +>—N;(ss’+GT Vpyr GEHY") — om0, (40)
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Unfortunately, Q0"+ may not be positive definite. This potential problem is addressed in Section
4.5 by reparametrizing ¥ and  in terms of their Cholesky factors, and then maximizing r(62) by
iterative methods.

We can sum up the ECM algorithm as follows:
Let 6 = (951),99)) be given. For m = 1,2, ...
(i) The E-step: Run the Kalman filter with 6 evaluated at 6™ and compute ayps Vyp and By.

(i) The CM-step: Set

Ggmﬂ) = argmax M (64, 9§m)|9(m))
0,

9%m+1) = arg max M(95m+1),92|9(m)).
0

(1it) Set m =m + 1, and go to ().

The general convergence properties of the EM and ECM algorithm are studied in Wu (1983) and
Meng and Rubin (1993). Under regularity conditions (5)-(10) in Wu (1983), Theorem 3 in Meng and
Rubin (1993) states that the ECM algorithm converges to a stationary point provided the partition of
the parameter space is space filling, which follows in our case from the fact that cyclical maximizations
over a fixed partition of the parameter vector is always space filling (see Meng (1992) for a proof).
Wu (1983) shows that his conditions (5)-(8) and (10) are always satisfied for curved exponential
families (see Barndorfi-Nielsen and Cox (1994)), and therefore in our case because of normality. The

remaining regularity condition to be checked is his condition (9):
Qél) ={# €O:L(H) > L(BWY) is compact and in the interior of O}, (41)

where © is the parameter space. In fact, the compactness condition (41) is required for any numerical
algorithm to ensure convergence to a stationary point. However, it is well-known that (41) could fail in
latent variables models when ©(!) includes points where some of the covariance matrices are singular;
i.e. either 2, I or T have reduced rank. To remedy this problem, one may impose rank restrictions
in such a way that the remaining free parameters satisfy (41). (See also Harvey (1989); Ch. 4 and
5, for a discussion of a similar problem in the context of structural time series models.) Fortunately,
using (31) it is always possible to cheque whether a limit point of the ECM algorithm is a stationary
point or not. Moreover, by numerical differentiation of the gradient vector it is also possible to find

out whether the point is a local maxima.
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4.4 Initialization of the ECM Algorithm

To ensure that the ECM algorithm gives a consistent estimator of the parameters 8 in the case of
finite-T" asymptotics, we can use an IV-based estimator to initiate the algorithm. This method requires
that the true parameter 3, is an interior point of the parameter space €13, and that the roots of the
autoregressive polynomial I, — 25:1 I1; 27 are outside the unit circle (see Binder, Hsaio and Pesaran
(2000)). Of course, consistent estimation of the ¢-parameters is not an issue as long as we hold T'
constant. Hence initialization of ¢ will not be considered here.

To obtain an initial estimate of 3, we difference (1) to get
k m
Ayi = TGAy ;=Y AAx)_;— Afy = Aef fort =2,...,T,
j=1 j=0

where Ay} =y —y! |, etc. We then have the following orthogonality conditions for i = 1,..., N:

E{(ei iy —chyi )/} =0 t=1,.T-L1l=1,.t+k-1
E{(ei,—epzi )/} =0 t=1,.T-L1l=1,.,t+m-1

These are identical to the orthogonality conditions used by Holtz-Eakin et al. (1988). Furthermore,

using the notation in (25), we have

k m
F y%,T_ZH]Z/%—]7T_ZAJ:U’ZT—J,T_'}(.T7T =0 for i = 1,...,N.
J=1 7=0

The GMM method proposed in Holtz-Eakin et al. (1988) is applicable if we treat the realization of
f as a matrix of fixed effects. The method yields estimates (IT'V', ATV, fIV) say, which is consistent

as N — oo with fixed f. The rest of the parameters in 3 can be initiated as follows:

N T-1
1 i i i i i i
V= N(T - 1) Z Z(Yu - HIVYOt - AIVXOt - flth)(yu - HIVYOt - AIVXOt - flth)/
i t=1

N
1 ) ) . . ) .
QN = =3 (Vi — 1Yo — ATV XG = T3 WV wr) (Vi = VY5 — ATV X =772V wr )

1
_ylv
T

Hence g7V = (MY, ATV SV Q1) is a consistent estimator of 3 with fixed f. By dominated conver-
gence it is also a consistent estimator of 8 when T (but not f) is fixed. In my experience, BTV tends to
be far away from the optimum of the likelihood function L(6). To improve the initial value, I propose
to use A1 as a starting point for an iterative ascent method for maximizing the conditional likelihood
(18). Then any limit point 3% of this method will be a consistent initiator of the ECM algorithm. In

my experience, 3 is typically close to the ML estimator E (see also the proof of Lemma 3, Appendix

A).
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4.5 Parameter Restrictions

In this sub-section we will briefly consider implementation of parameter restrictions. Such restrictions
are important for several reasons. First, the full model may contain too many parameters relative
to the information in the data. This can be seen as a practical identification problem, causing slow
convergence of the estimation algorithm and large standard errors. Second, in some analyses parameter
restrictions, such as e.g. cointegration, may have a theoretical foundation. Third, as mentioned above,
the ECM algorithm described in Section 4 does not ensure that the estimate of the covariance matrix
Q is positive definite.

We shall first consider the case where A; = ITI; = 0 for every j. Model (1)-(2) then reduces to a

panel data version of the local level model

yi = o+ Ty + Y6+ +¢f (42)
By = gty (43)

Assume that I is a p X r matrix of rank r < p, with positive diagonal elements and zeros above the
diagonal, while y, is an r-dimensional random walk. Then there exists a p x (p — ) matrix v of full
rank, such that v'T’ = 0. From (42) it follows that v'y} = v/ + v/ Y +v'v* + el is a (p — r)-vector
of stationary variables; i.e. the columns of v are cointegrating vectors. Nyblom and Harvey (2000)
present tests for the rank of T in the aggregate version of the model (42)-(43). These results may be
useful also in the present context given that T is large: one may first determine the rank of I" based
on aggregate data, and then estimate the unknown parameters from panel data. For the latter task,
no adjustment of the algorithm presented in Section 4 is needed, except that the number of columns
in T" is 7 rather than p.

In applications it is of equal importance to consider rank and definiteness restrictions on the
estimator of the random effects covariance matrix . In my experience, the conditional maximization
formula (40) may yield non-definite estimates Q. To remedy this problem, we can reparametrize (2
and ¥ in terms of their Cholesky factors:

Q=uU’ "
Y =LL (44)
for lower triangular matrices U and L. This reparametrization complicates the CM-step, since we no
longer get closed form solutions when maximizing (jointly) with respect to U and L. Fortunately,

analytic expressions for the derivatives of the objective function (38) with respect to U and L are

available (see Liitkepohl (1996)), and efficient quasi-Newton algorithms can be used to solve this sub-
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problem. It is sometimes also desirable to implement rank restriction on U, so that U is a p X r
matrix with rank r, » < p, and with zeros above the diagonal. Technically, such restrictions are

straightforward to implement. (See Section 5 for an application.)

4.6 Initial Conditions

Now the initial condition assumption that Y§ = {yi,..,y:_,} is independent of the subject-specific
intercept v* will be relaxed. This independence assumption may be unrealistic because of the following
reason: Since v’ determines the level of yi for ¢ > 1, the level of the initial value Y may also depend
of v*. A mnatural way to introduce such dependence in our model is to assume that v* and Y§ have a
joint normal distribution and that v|Y{ is conditionally independent of Y for j # i (see Sims (2000)).

Hence, imposing the identifying restriction that v’ has unconditional mean equal to zero, we get
L k .
v'lYe MN(];Bj(ij — 1), 9Y), (45)
where fi;_; is the unconditional expectation of Y ;i Bj are regression coefficients; and () is the
conditional covariance matrix given Y derived from the joint distribution of (v?, Yg).
To derive the likelihood under (45), we only need to redefine z% in (16) as

Zp =T Z'wr — Y Bi(yi; — fia ),

k
Jj=1

where i, _; can be estimated from the sample mean of yi_j. Hence,
. . .k . _ B
Zrl(£, 0 Y0) ~ NI P for +0° = 32 Bi(yi -y — ), T7'D),
J:
and

2ol Yo - N(TV2 fwr, T7'S + Q).

The state space- and likelihood representation of the model are unaltered, except that the def-
inition of 2% has changed. The necessary modifications of the CM-step of the ECM algorithm are

straightforward.

5 Application: A New Look at the Aggregation Problem

The model and estimation procedure outlined in the previous sections will now be applied on a real
data set. The data consist of a balanced sample of 111 Norwegian manufacturing firms from the sector
mineral products observed during the period 1976-96. At issue is the determinants of the wage and

employment process at the plant level. We shall analyze a bivariate model (p = 2), with
y; = (log-real wage, log —employment)/
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as endogenous variables, and with no exogenous variables. The application serves two purposes: to
illustrate the ECM algorithm and to assess the merits of the micro model with regard to making
forecasts about aggregate variables — and compare with predictions from an (exact) aggregate model.

The aggregation problem has a long history in econometrics. Classical contributions include Theil
(1954) and Grunfeld and Griliches (1960). Aggregation of non-linear structural models have been
treated for example in Caballero and Engel (1999) and Caballero, Engel and Haltiwanger (1995),
while Pesaran (1999) studies aggregation in autoregressive models. Although it is outside the scope of
this paper to analyze the problems of aggregation in depth, this section will provide some new insight
into this topic.

We shall look at aggregate variables of the type y, = % Zi\;1 yi, where y! is assumed generated
by the model (1)-(5). Specifically, we will study the problem of predicting ;11 from two different
information sets: (i) the aggregate information set F® = {yo,...,y:—1}; and (%) the disaggregate
information set F& = {yg,..,y; i = 1,..., N} consisting of all the micro variables up until time .

We will analyze a VAR(1) specification of the model. Thus k& = 1, T' = 20, and N = 111. This
specification is not rejected when testing against the alternative & = 2 using a Wald-test. For known
parameters 6, assuming that N1 Zfil v® ~ 0, the optimal predictors in the mean squared error sense

are the conditional expectations (see Lehman (1983), p. 54):

Uir1 = po+ Uy, +TE{py 4|70}
giﬂ = po+ 1y, + FE{:u’t-&-l‘}—g; o},

where E{y, | F¢; 0} and E{p,, | F{; 0} are outputs from the Kalman filter. Note that there may be a
substantial discrepancy between the two predictors, because F¢ and F¢ contain different information
about ;. Undoubtedly, given that the model is correctly specified and € is known, ﬂfH is the most
accurate predictor, being based on the largest information set.

In practice, 8 is not known and must be replaced by estimates gd and 8" based on panel data
and aggregate data, respectively. The prediction functions which can be applied are therefore the

estimated relations:

Ut = Ho +1%, + TCE{u,| 70 }
~d o =~ ~d
Uy = g+ %,y + TYE{p|Fh0 ).

~d ~
Due to specification errors and estimation uncertainty, systematic differences between 6 and 9" are
likely to occur even in samples with large N and large T. Moreover, identification problems could
arise because the aggregate model cannot distinguish between idiosyncractic shocks ei and industry-

wide (common) shocks é; and 7,. For example, if the variables are I(1) one would expect that from
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aggregate data it is nearly impossible to determine whether the stochastic trend is due to accumulation
of common shocks, or to a unit root in the autoregressive polynomial.

An important aspect of the aggregation problem is that of parameter stability. Is there any evidence
that either Ed or 8" is the more stable estimator as new time periods are included in the sample used
to estimate 6?7 In fact, Grunfeld and Griliches (1960) argue that in the presence of specification errors,
aggregation of economic variables may reduce such errors. However, some evidence to the contrary
will be presented below.

Let us now turn to the implementation of the micro model. To estimate its parameters, the ECM

algorithm was written as a GAUSS program. The algorithm was iterated until

AL(O™)| M (0]6™)

= 1
20 a6, <01

9=0(m)

J J
where 6; is the j'th component of §. Convergence was obtained after approximately 750 iterations,
with m]ax\ﬁg-mﬂ) - Gg.m)\ < 0.00001. This took about 20 minutes on a Pentium 750 Mhz PC, using
the maximizer of the fixed effect likelihood to initiate the algorithm (See Section 4.4). I found that
the point of convergence was insensitive to the choice of starting point.

The estimates of the micro model using (i) all the data, and () data for 1976-86 only, are shown
in Table 1, column 2 and 4, respectively. Standard deviation estimates (squared roots of the inverse
negative Hessian of the log-likelihood function) are reported in parenthesis.

As described in Section 4.5, the covariance matrices were reparametrized in terms of Cholesky
factors, i.e. ¥ = LL' and Q = UU’. The reparametrization slowed down the speed of each CM-
step, since (U, L) had to be updated iteratively (see (38)), using a quasi-Newton algorithm. But
after approximately 50 ECM iterations, the updating of U and L were quick; the effect of superlinear
convergence for the quasi-Newton method was then already at full force. The estimates of both U (32)
and Y22 (i.e. component (2,2) in U and Y, respectively) both tended to zero, indicating that the
rank of Q as well as the number of components in 6; is 1. Fortunately, the same estimates were
obtained regardless of whether these rank restrictions were imposed a priori or not.

Estimates for the aggregate model are reported in Table 1, column 3 (full sample) and column 5
(partial sample). The error term in the aggregate model is:

1 &,
et:T6t+NZE;.

=1
Note that the Cholesky factor L in the covariance matrix of ! and the loading matrix Y of §; cannot
be identified from aggregate data. In Table 1; column 3 and 5, the estimated Cholesky factor in the
covariance matrix of e; is reported in the Y-rows. However, the micro estimates (column 2 and 4) and

macro estimates (column 3 and 5) are not directly comparable for these parameters.
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Although the loading matrices T and Y are difficult to estimate when T' = 20 (see Section 6 for
some Monte Carlo evidence), it appears from Table 1, column 2, that the matrix components INCRON
I'22) and Y1 are significant in the micro model. In particular, the sector-wide stochastic trend g,
seems to be an important determinant of y!. On the other hand, turning to the estimated aggregate
relations, we find contradictory evidence: the estimate of I' reported in column 3 is zero. On the
other hand, the largest eigenvalue of Ie is 0.98. Hence, also from aggregate data we find evidence
that shocks have a high degree of persistence.

While there is a striking similarity in the estimates of the micro relations using (i) all the data, and
(ii) data for 1976-86, only, the opposite is true for the aggregate model. Figure 1 offers an explanation
of this: After 1986 there is a structural break in the data, as the industry enters a long recession
period with declining employment. Moreover, the recession appears to influence real wages to a lesser
extent than employment, causing a change in the pattern of co-movements of employment and real
wage at the aggregate level. The parameters of the aggregate model are clearly not invariant to this
break, while the parameters of the micro model are remarkably stable, indicating that the break is
appropriately accounted for by the latent trend . The ability of the micro model to identify industry
wide and idiosyncractic shocks seems to be the basis for parameter stability. As we shall see, this has
severe consequences for forecasting.

To compare predictions from the two models, the measure R? defined as

~tr(Var(ye — 4t))
tr(Var(y:))

was calculated, where 3, = 7 and 7; = 3¢ for the aggregate and disaggregate model, respectively.

R?=1

The in-sample predictions from the micro and aggregate model are in agreement with previous studies
(see Grunfeld and Griliches (1960)): the macro model fairs slightly better, with R? = .88 versus
R? = .86 for the micro model. This is not surprising, as the aggregate model contains much more
parameters per data point. On the other hand, when R? is calculated for 1987-96, with estimates
obtained from the 1976-86 data, the results become markedly different. In the micro model, R? = .76,
but in the aggregate model a dramatic prediction failure occurs, with R? = —.03. The variance of the
prediction errors is larger than the variance of y; itself! The complete failure of the aggregate model
out-of-sample is also evident from Figure 2.

The application has revealed two striking results: () the parameter estimates of the micro model
remain largely invariant despite a distinct structural break in the data generating process after 1986,
and (%) the out-of-sample forecasts from the micro model fit the data well, while the aggregate model
fails dramatically. The lesson from this seems to be that the Kalman filter utilizes micro data in an

efficient way to identify persistent industry-wide shocks as opposed to firm-specific shocks.
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Figure 2: Out-of-sample predictions.
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Complete Data: 76-96 Incomplete Data: 76-86
Param. | Micro model | Aggr. Model | Micro Model | Aggr. Model
Est. S.d. Est S.d. Estimates Estimates
] 293 12 [ 123 .98 2.87 1.97

p? | -124 15 | 275 173 -1.14 -4.16
IR 43 .02 81 .16 43 .85
@1 .26 03 | -42 27 .24 .80
12) .04 01 | -06 .12 .06 -.40
1(2:2) .97 .01 .82 .16 .96 .96
r&y | .020 .007 | .000 - .021 .000
rH | 009 .025 | .000 .009 .000
r2 | 053 .020 | .000 012 .000
Y&YH | 016 .008 | .03  .005 .002 .016
Y@L | -011 .023 |-.008 .013 -.008 -.007
T(22) - 057 .009 - -.023
v | -076  .008 - -.09 -
U@ | 037 .009 - .055 -
L&Y | 180  .003 - 157 -
L2 | _053  .005 - -.042 -
L2 | 243  .004 - .200 -

R2 .862 .887

Table 1: Estimates.

6 Inference

Let @N = (B N @ ) be the estimator of 6§ generated by the ECM algorithm described in Section 4. In
this section consistency and asymptotic normality of B N are established for the case when N — oo
and T is fixed. This type of (semi-) asymptotics is often the most relevant in applications, as panel
data sets typically have small T relative to N — although there are important situations where this
is not the case, e.g. if he units are countries or industries or we have other types of aggregate data.
Monte Carlo results are presented to evaluate the finite sample properties of both B N and $ N-
When T is fixed, consistent estimation of ¢ is not an issue. Thus, the semi-asymptotic limit
theorems provided in this section are not helpful for making inferences about the parameters of the
latent time series. However, well-known result for non-stationary state space models (see Harvey
(1989); Ch. 4) can be used to establish lage-T" asymptotics for $ ~ when N is fixed. The Monte Carlo
results indicate that these results can be extended to cases where both T and N become large, but
I have not been able to establish asymptotic theorems for this case. Certainly, that is a challenging

and important topic for future work.
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6.1 Asymptotic Results

We start by introducing some new notation: [*(3, F) is the log of the conditional density of (21, .., z%)

given F (defined in (18));

I'(B,F) = —% In || — %ln |Q+T 'S — 15" + constant, (46)
where
. T71 . .
§'=2 (s — fw)'S Nz — fwn)
t=1
+ (2 = T2 fur) (Q+ T'E) " (o — T2 fwr); (47)

B is the preliminary estimator described in Section 4.4; (% is the true parameter; N € Qy is
some arbitrary initial estimate of ¢; and L(5,¢) = L(0) is the log-likelihood function based on unit
i=1,..,N.

Condition 1 (i) (8,¢) € Qs X Qp, a compact and convexr subset of R™, with B, being an interior

point of Qg. (ii) All roots of the autoregressive polynomial I, — 25:1 ;27 are outside the unit circle.

The assumption that © = Qg x Q, is compact may be restrictive when no natural compactification
of the parameter space exists. In particular, it means that the maximizer in each CM-step may not
be an interior point. Nevertheless, the solutions of the conditional maximizations (35)-(36) are still
well-defined (but may not coincide with the solution of the 1.order conditions).
Define the conditional information matrix
I=-E { R L F} , (48)
Fp ) FF ’

that is, conditional on F = F°, and the negative Hessian of the log-likelihood function

A ~1| Los(Byon)  Los(Br.ow) |
N L¢B(ﬁN7¢N) L¢>¢>(ﬁN;¢N)

The main results of this section are stated as Proposition 1 and 2. Proofs are provided in Appendix

A and B, respectively.

Proposition 1 (Consistency) Let Oy = (BN@N) be any limit point of the ECM algorithm. Then

~

By 18 a consistent estimator of 3°.

The compactness of © implies that a limit point §N exists. Any limit point B  1s consistent for
(°. To ensure that a limit point of the ECM algorithm is consistent, the estimator used to initiate
the ECM algorithm must also be consistent. Condition 1 (i) ensures that the initiator proposed in

Section 4.4 satisfies this requirement.
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Proposition 2 (Asymptotic normality) Conditional on F = F9, \/N(BN -89 2 N(0, I58) where
IP8 is the B-block of the inverse information matriz I-1. If with probability tending to one, @N s a
(local) mazximizer of L(0) in the interior of ©, a consistent estimator of I°P is ﬁ,@,@, where HPPis

the B-block of H~!.

Proposition 2 is conditional on F' = F°, meaning that F is random ex ante, but fixed at its actual
realization F© in repeated samples as N — oco. On the other hand, if F is re-drawn in repeated
samples (with T fixed), the asymptotic distribution of VN (8, — %) will be A’(0, E{I??}), where the
expectation is with respect to the marginal distribution of F.

An interesting question is whether (N H )~! provides an approximate covariance matrix estimator
for (B N $ ~) When both N and T are (moderately) large, and thus can be used to make inference

about ¢. Some Monte Carlo evidence of this is provided in the next subsection.

6.2 Monte Carlo Results

Monte Carlo simulations are very costly in terms of CPU time, especially when both N and T become
large (e.g. > 80). Therefore, data were simulated from one model only. To have realistic parameter
values, the estimated micro model reported in Section 5 — a bivariate VAR(1) model with no exogenous
covariates — was used to simulate all the data. In the simulations, N = 20, 40, 80 and 160 was combined
with T' = 20,40, 80 and 160, to produce 16 different designs (i.e. combinations of N and T)).

In each Monte Carlo simulation, a sample of N starting values were drawn from the empirical
distribution of initial values (see Section 5) with replacement. Then, N random effects v, NT
idiosyncractic effects ¢, and time effects 1, and §; were simulated using a random number generator.
Thus, the latent time series was re-drawn in each Monte Carlo sample (with N and T fixed). ML
estimates gm for m =1, ..., M were calculated by the ECM algorithm, where M is the total number
of Monte Carlo replications (given N and T'). Results for the two types of parameters B and % are
reported in Table 2 and 3, respectively, where mean and s.d. are the mean and standard deviation
of gm in the Monte Carlo sample, and s.d is the mean of the standard deviation estimates based on
the inverse Hessian of the negative log-likelihood (i.e. (N H )~1). Because M is finite, the reported
mean, s.d. and s.d. all are subject to sampling errors. In particular, referring to the 90% confidence
level, the last digit of each entry in the tables has a margin of error of at most +1.5 point for the
B-parameters (Table 2) and +2 points for the ¢-parameters (Table 3). A different M was chosen for
each design to meet these error bounds. A further substantial reduction in the margin of error would
require implementation of the estimation algorithm in a much more efficient programming language

than GAUSS, preferably Fortran — a task which I have not attempted to undertake for the present
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paper.

From Table 2, it is clear that the asymptotic limit theorems provided in the previous subsection
are valid in the present context. Even in the smallest sample with NV = 20 and T" = 20, the bias of B is
very small. Furthermore, there is excellent agreement between the actual standard deviations of the
estimators (s.d.) and the standard deviation estimates obtained from (N H )7L ( S/E) It is noticeable
that both these results hold along the diagonal path with T = N, despite unpublished results cited
in Phillips and Moon (2000) regarding dynamic panel regression models where the ML estimator of
the autoregressive parameter has a negative asymptotic bias along the diagonal path. We notice that
when N and T both are doubled, the standard deviations are cut in half, indicating that B converges
to 3° at the rate of v NT.

As anticipated, the bias and standard deviation ofa are much larger. For example, with T" = 20 and
N = 160, there is a substantial bias in the ['-parameters, particularly for I'*?) which has a downward
bias of more than 40%. However, for T' > 40 the situation improves substantially — especially when N
is large — both in terms of bias and in terms of agreement between s.d. and s.d. We also notice from
Table 3 that going from N =T =80 to N =T = 160 cuts standard deviations roughly in half, while
the biases vanish, indicating that along the diagonal path $ is v/ NT-consistent. However, a much

more careful study is required before we can reach a definitive conclusion.
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Parameter (3): oty geh gt g2 gty yeh Lo Len 12
True Value (°): 430 256 .036  .967 -.076 .038 .179 -053  .243
T=20 N=20 mean | .428 255 .037 963 -071 .034 .178 -053 .241
sd. | .051 .063 .016 .014 .018 .019 .007 .012  .009

sd. | 050 066 014 .014 017 .020 .007 .013  .009

N=40 mean | 429  .255 .036 .966 -075 .037  .179 -.053  .242
sd. | .033 .047 .011 .010 .012 .015 .005 .010  .006

sd. | 035 .045 009 .009 012 .014 .005 .009 .006

N=80 mean | 425 260 .036 .966 -.076 .039  .179 -.053 .242
sd. | .026 .034 .008 .007 .009 .011 .003 .006 .004

sd. | 025 033 007 .007 .009 .010 .003 .006 .004

N=160 mean | 431 260 .035 .967 -.076 .034 .179 -.053 .243
sd. | .017 .020 .005 .005 .006 .007 .003 .005 .002

sd. | 017 023 005 .005 .006 .007 .002 .005 .003

T=40 N=20 mean | .424 252 .035 965 -.075 .034 .179 -053  .240
sd. | .048 .065 .017 .012 .016 .019 .006 .012  .008

sd. | 050 066 .014 .014 018 .020 .007 .013  .009

N=40 mean | 431 256 .036  .966 -075 .037 .179 -.053 .242
sd. | .024 .03 .007 .007 .010 .010 .003 .006 .004

sd. | 024 033 007 .007 .009 .010 .003 .006 .004

N=80 mean | 430 255 .036 .967 -.075 .037 .179 -.053 .243
sd. | .015 .022 .005 .004 .007 .006 .002 .004 .003

sd. | 017 022 005 .005 .007 .007 .002 .004 .003

N=160 mean | 431 253  .036 .967 -075 .038 .179 -.053 .243
sd. | .010 .017 .003 .003 .004 .005 .002 .003 .002

sd. | 012 016 .004 .003 .005 .005 .002 .003 .002

T=80 N=20 mean | .431 258 .036  .965 -.075 .037 .180 -.053  .242
sd. | .026 .029 .005 .007 .014 .012 .003 .007 .005

sd. | 023 033 005 .006 014 .011 .003 .006 .004

N=40 mean | 430 256 .036 .967 -.076 .037 .179 -.053 .243
sd. | .016 .022 .004 .004 .008 .007 .002 .004 .003

sd. | 016 .023 004 .004 .009 .007 .002 .004 .003

N=80 mean | 432 253 035 .967 -.075 .037 .179 -.053 .243
sd. | .012 .07 .003 .003 .006 .005 .002 .003 .002

sd. | 012 016 .003 .003 .007 .005 .002 .003 .002

N=160 mean | .432 251 .036 .967 -.075 .037 .179 -.053 .243
s.d. | .009 .013 .002 .002 .004 .004 .001 .002  .002

sd. | 008 011 002 .002 .005 .004 .001 .002 .002

T=160 N=20 mean | .433 253 .036 .967 -.074 .038 .179 -053 .242
sd. | .014 .003 .003 .004 .010 .009 .002 .004 .003

sd. | 016 .003 003 .004 .012 .009 .002 .004 .003

N=40 mean | 430 .255 .036 .967 -074 .038 .179 -.054 .242
sd. | .012 .07 .002 .003 .009 .007 .002 .003 .002

sd. | 011 016 .002 .003 .009 .006 .002 .003 .002

N=80 mean | 435 .253 .036 .967 -.075 .037 .178 -.052 .243
sd. | .010 .016 .002 .003 .007 .005 .001 .003 .002

sd. | 008 011 002 .002 .006 .004 .001 .002 .002

N=160 mean | 431 256  .036  .967 -076 .037 .179 -.053 .243
sd. | .007 .006 .001 .00l .005 .003 .001 .002 .001

sd. | 006 .008 .001 .001 .004 .003 .001 .002 .001

Table 2: Monte Carlo Results for 3.




Parameter (¢): u(()l) //,(()2) rey  rehH o ey yEn
True Value (¢°): 2093 -1.24 .020 .009 .053 .016 -.011
T=20 N=20 mean | 2.95 -122 012 .015 .017 .016 -.008
sd | .27 .33 010 .034 .024 013  .028

sd. | 27 34 008 .030 .027 .020  .029

N=40 mean | 2.904 -1.23 014 .01l .030 .016 -.008
sd | 18 .24 009 .026 .023 .011 .024

sd. | 19 23 008 020 .028 .021  .034

N=80 mean | 2.96 -1.26 .016 .01l .032 .014 -.008
sd | .14 18 010  .025 .024  .009  .022

sd. | 13 17 007 .02 .017 .011  .018

N=160 mean | 2.93 -1.26 .015 .011 .030 .016  -.009
sd | .09 .11 .008 .031 .023 .009 .017

sd. | .09 12 006 .021 .016 .008  .018

T=40 N=20 mean | 2.97 -121 014 .016 .017 .015 -.011
sd | .27 34 010 .035 .023 013 .02

sd. | 27 34 009 .02 024 021 .031

N=40 mean | 2.94 -1.23 .016 .009 .043 016  -.008
sd. | .13 17 007 016 .015 .009  .020

sd. | 17 18 006 015 .018 .010  .018

N=80 mean | 2.94 -1.23 .018 .009 .044 015 -0I1
sd. | .09 11 006 .015 .014 .007 .014

sd. | .09 12 .006 .016 .011 .008  .013

N=160 mean | 2.93 -1.22 018 .010 .046 .05  -.009
s.d | .06 .10 .006 .018 .010 .007 .01l

sd. | .06 .09 .005 .017 .010 .008 .014

T—=80 N—=20 omean | 2.93 -124 019 .011 .046 .017 -.010
sd | .14 16  .006 .012 .014 .009 .019

sd. | 12 17 005 012 .010 .012  .020

N=40 mean | 2.904 -124 018 .008 .050 .016  -.009
sd | .09 .12 .004 .009 .008 .007 .0l4

sd. | .09 12 005 .013 .010 .008 .015

N=80 mean | 2.92 -122 .019 .010 .048 017 -0I1
s.d. | .06 .09 .004 013 .009 .005 .01l

sd. | .06 .09 .004 011 .007 .005 .010

N=160 mean | 2.93 -1.22 019 010 .048 .06 -.012
s.d. | .05 .07 .004 .008 .007 .005 .009

sd. | .05 .06 .004 .012 .007 .005 .010

T—160 N—20 mean | 2.92 -1.23 .019 .010 .049 .016 -.009
sd. | .08 .12 .003 .009 .006 .009 .017

sd. | .09 .13 004 013 .007 .008 .014

N=40 mean | 2.93 -1.24 020 .007 .050 .014 -.011
sd. | .07 .10 .003 .007 .005 .006 .01l

sd. | .06 .09 .003 .010 .005 .007 .012

N=80 mean | 2.91 -1.22 .019 .008 .051 016 -.011
s.d. | .06 .09 .003 .006 .005 .005 .010

sd. | .05 .06 .003 .009 .005 .004 .009

N=160 mean | 2.93 -1.24 020 .009 .052 .06  -.012
s.d. | .04 .04 002 .005 .003 .003 .006

sd. | .03 .05 .003 .009 005 .003 .007

Table 3: Monte Carlo Results for ¢.




7 Conclusions

The model considered in this paper generalizes some of the most popular and commonly applied
dynamic panel data models in the econometric literature. In particular, by allowing random time
effects a feature of potential interest in many econometric applications is incorporated, for example
in the context of combining micro data and aggregate data for forecasting purposes. Contrary to
the ”common wisdom” (expressed by e.g. Matyas (1996), p. 64), it has been shown that likelihood
methods can be powerful tools for statistical inference in very complicated random components models,
and yet computationally attractive. Maximum likelihood estimation of models with a one-way error
structure is an almost trivial special case of the approach.

Many important problems remain, however: The paper throughout assumed a balanced design with
no missing observations, but most economic panel data sets lack both these properties. The above
model framework can be extended to allow certain types of unbalanced panel data sets, e.g. rotating
panels (see Bigrn (1981)). This is a topic which will be addressed in future work. Another challenging
issue for future work is the assessment of finite sample and asymptotic properties of estimators when

both N and T becomes large, e.g. along a diagonal path.

Appendix
A. Proof of Proposition 1

To prove this proposition, a preliminary result is needed:
Lemma 3 For any sufficiently small 6 > 0, P( sup L(B,¢) > L(Bxn,PNn)) — O.
|8—B°1=6, p€Qy
Proof. It is sufficient to prove the lemma with ”frozen” F = F9, since the unconditional case
follows from the dominated convergence theorem. The main idea of the proof is to show that as-
ymptotically the exact likelihood is equivalent to the fixed-effect profile likelihood, i.e. where F is
considered as a fixed effect which is ”maximized out” of the likelihood.

Let P(¢, F) be the marginal density of F as a function of (¢, F'). We then have
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N .
£(6) =1 [ exp(3- 16, F)) P, F)F
=1

N .
zln/exp(Zﬁ(ﬁ,F) +In P(¢, F))dF
—In / exp(Q(B, F) + In P(6, F))dF
—In / exp(S(6, F))dF, (49)
where Q(8, F) = S_N , Ii(8, F) and (0, F) = Q(8, F) + In P(¢, F). Let
Fn(0) = argmax S(6, F).
F
Because S(6, F') is quadratic in F' (see 47), we have
S(0,F)=5(0,Fn(0)) — %(F — Fn(0)) (=H(0))(F — Fn(0)), (50)
where H(0) is the Hessian:
H(0) = NV?I'(3, Fx(0)) + VZ1In P(¢, Fx(9)), (51)

with v2 denoting the second derivative w.r.t. F. Note that H(6) does not depend on the data, nor
on Fn(0).

The formulation (50) allows us to solve the integral in (49):

L(6) = Q(B, Fn(0)) +In P(6, Fn (6)) — %m\ — H(0)] (52)

— ignoring uninteresting constants. We will study the limit behavior of %L(G) as N — oo. Starting
with the first term in (52), we get
L QU Fe(6) = L 30, Fw9) & B, PP, (53)
N N p
where FY is the actual realization of F. The proof of (53) follows immediately from the proof of (67)
below.

Define the conditional profile likelihood

Q" (8) = max Q5 F). (54

If we regard the realization F0 as a vector of fixed effect parameters, the maximizer of Q(ﬂo, F) with
respect to F is a weighted least square estimator for F© in a linear model, and is therefore consistent.

A fortiori

SQU() B B, F) ). (55)
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Conditional on F = FO, li(ﬁo, F9) are i.i.d. random variables. It is therefore possible to generalize a

classical result (see Lehman (1983), p.430) to the profile likelihood QP (5°):

1 1
P —QF(8) — =QP(8%) > —¢) = 0 6
(|5528:5NQ (B) ~@ (67) > —¢) (56)

for sufficiently small § and . To show (56), a second order Taylor expansion of %QP (6) is sufficient.

We have
10QP(8%) _ 09Q(8°, F°)
N a3~ a5 oW
LPQRE) | 1PQEAE) 1P E) [10°Q(° F)] T L )
N 0808 N 0soF N 0poF [N OFOF ] N orag oW
(57)

By standard arguments, %M%l Kt 0, while the first order term in the expansion of %%ﬁ—ol
tends to a positive definite matrix. The remainders in (57) are due to the argmax being o,(1) away
from F°. Provided we can show that the third order terms in the expansion of %QP (B) are uniformly
bounded in probability over the set {3 : | — 3°| < 6}, equation (56) follows from the arguments in
Lehman (1983), p. 430 (with QF () in place of L(6)). But this is true because of continuity of third
derivatives, and because the argmax in (54) is a regression estimator which is the mean of N i.i.d.

terms which are continuous functions of f3.

We have from (53) and (55)
S Ex(6) = 1.Q7(3°) + 0,(1) 8)

Define
M = N5 (8°) x Qq,

where N (60) is a closed sphere in Qg with radius 6 and centre at 5°.

We shall now investigate the second term in (52). We will see that (i) + In P(¢, F(8)) converges
to zero in probability evaluated at § = 6°, and (i1) that this term, for fixed N, is uniformly upwards
bounded on M by a constant that goes to zero as N — oo. Part (i) follows from Fi (6°) EF 0. which
implies

1 0 oy P
N]nP(qS ,Fn(6%)) = 0. (59)

Regarding (), In P(¢, Fn(6)) depends on Fiy(6) only through a non-positive quadratic form.

Because of the smoothness of In P(¢, Fiy(6)) in ¢, and compactness of M:

L oup n P(6, Fu(6)) <

— —0 60
Noenmr - N (60)
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for some constant C < oo.

Finally, consider the last term in (52). We have

1 1, —H()
Nln|—H(9)| —Nln|

1 1
=< IVZV(@FN(G)) + VR P(6, Ex(0))

T
p n N

|+ =
T
+ ”W In N (61)
(recall that H(#) has dimension pT"). Since %T InN—0
%ln| —H(©") Eo. (62)

Due to compactness of M, smoothness of the functions involved, and the fact that the Hessian H(6)

does not depend on the data, nor on Fx(6), |[V?I(3, Fx(0)) + £ V?In P(¢, Fx(6))| is bounded on M.

Hence
1
sup |—=In|— H(9)| Zo. (63)
oem | N
By (52), (60), and (63)
1
wp L0 <% s QB En(0) +rx
|8—B°]=6,peQy |B—B°]=6,peQy
1
< sw QY(B)+r, (64)
N 5_po|=s
where ry 5 0. By (52), (58), (59) and (62)
Loy 1 p oo
CL(E) = Q7 () + o0, (1). (65)
We shall now see that the limit behavior of - L(f%) is the same as that of %L(GO). From (52):
1 * 1 * * 1 * *
N LON) = QBN Fn(On)) + 5 m P(d, Fn (0))
1 x

By almost identical arguments as above, the second and third terms in (66) vanish, whereas

1 * * P i

QBN Fn(03) = E{I(8°, F?)|F°} (67)
(to be proved below) and therefore

L) = L") + 0,(1). (68)

The proof of (67) goes as follows: Fy (0} ) satisfies the 1. order condition

1 08(0n, F) Z ol( BN,
N OF  |p_pye, N

F=Fn(0})
1 3lnP(¢N, F)
N oF F=Fy(03)
=0. (69)
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As By 5 8°, X
%735(2%,@ EE{ialZ(gF’FﬂFO}. (70)
Hence, the first order condition for maximizing S(Gy, F) w.r.t. F converges pointwise (for given F')
to the first order condition for maximizing E{l*(6°, F)|F°}. Because of the linearity of equation (69),
the argmax also converges (see Lehman (1983), Lemma 6.4.1, p.432). Hence Fy(0Yy) L FO. If we
replace @7 by % in (69) and (70), we get a proof of (53) as well.
From (65) and (68)

1 1
N LN = @7 (67) + e, (71)
where € £0. In particular,
TN —en = op(1), (72)

where 7y is defined in (64). For a sufficiently small e > 0, and conditional on F°, we then have

1 1
P( sup —L(0) — =L(0y) > 0)
18-691=8,pe2, N

1 1
=P sup —L(0) — =L(Oy) >0N[—ec+ry —en >0])
16-1=8,6e024 N

1 1
+P sup —L() — =LOy) >0N[—c+ry —en <0
‘@—,@0‘:6,(7)39@]\[ N

< P(ry —en >¢)

+ P ( sup iL(@) — lL(G}"\,) >—e+ry — 5N>
1600 1=8,6e0, N N

= P(’I“N — &N > E)

1 1
+P sup —LO)—rny— (=
<B—ﬁ°—6,meﬂ¢ N N

L(R)—-5N>>>_g>
SP(TN_€N>5)

su i P ,l P/ a0 . .
+P<Bﬁ°p—6NQ 0) - 5@ B> >(by'(64) d (71)

— 0 (by (56) and (72)).

PROOF OF PROPOSITION 1: Consistency of E n Wwill now be proved. Assume, on the contrary,

that B v is not consistent. Then there exists § > 0 such that

lmﬁmP@N¢Nuw»>o, (73)
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where N (8°) is a closed sphere in €5 with radius 6 and centre at 3°. Each time g = B € Ns(6°)°;
the interior of Ns (3°), which happens with probability tending to one, and B ~ & N5 (8%), there exist
B and gD such that 8™ e Ns(8°)° and gD ¢ Ni(3°)°. At the start of the m’th
CM step 80 = (6™ 65™) is given. In the first phase of this CM step g(f;) is maximized (see
(37)), and we obtain an intermediate point §"1/2) — (95’”“),93")). In the second phase, we
obtain (MY = (Ggmﬂ), 9§m+1)) by maximizing 7(f2) (see (38)). If the intermediate point (m+1/2)
is outside Ng(ﬁo)o, but 67 is inside, consider the straight line from 9§m) to 9§m+1)’ and define
h(c) = q(6\™ + cs) where s = 8™ — 6™ Because q(6;) is concave with a maximizer at 6"
h(c) is concave with a maximizer at ¢ = 1. In particular, A'(c) > 0 for all ¢ € [0,¢|, where ¢ < 1 is
defined by 8 = (0™ +2s,65™), 8 = (B, 9), and [B — 5°| = 6.

On the other hand, if 8 */?) s inside Ns(5°)° and 9(m+1) is outside, we consider the function
r(f2). This function is concave in the parameters ¢ = (vech(S1), vech(Q1)), where 6 = g()
is one-to-one, with Ggm) = g(™)) and ngﬂ)) = g("™*tY)). Define h(c) = r(g(¢"™ + cs)) where
s = p(m+1) — (M) Since h(c) is concave with a maximizer at ¢ = 1, h/(c) > 0 for all ¢ € [0,¢], where
6= (0" g(pl™ +2s)), 8= (3,8) and |3 — °| = defines ©.

In either case, there is a trajectory connecting both conditional maxima generated in the m’th

CM step, such that M (9|9(m)) is increasing along this trajectory as long as we are inside N (ﬁo). Let

On = (Bx, ¢x) be the point where the trajectory first crosses Ns (ﬁo). Thus |8y — 60\ =06, and

L(By.by) = M(0]6"™) — H(B0"™)
> M(9"™1[60™)) — H (9™ |60
= L")
> L(Bxn, o )-
Define a new estimator

(Ba.dn) = Brvodn) if By ¢ No(8”) and Gy € N5 (5°)°
A (B, dN)  else.

If 3  1s inconsistent

N |B—B°|=8, p€Qy

0.< timsup P (L((B, b)) > L(F, ¢)) < limsup P ( sup  L(3,6) > L(ﬁ?‘v,qS?v)) :

but this is impossible, because of Lemma 3. m
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B. Proof of Proposition 2

We need two preliminary results. The first is a corollary from the convergence theorem of Wu (1983),
about the generalized EM (GEM) algorithm. Since ECM is a special case of GEM (Meng and Rubin
(1993), Theorem 1), we have:

Theorem 4 (Wu, 1983). Let a solution set L be given, and let 6™ € © be a ECM sequence generated
by the mapping (™Y € V(G(m)). Suppose that (i) v is a closed point-to-set map over the complement
of L, and (ii) L(G(erl)) > L(G(m)) for all ™ ¢ L. Then all limit points of {H(m)} are in L, and

L(0"™) converges monotonically to L(A) for some 6 € L.

The next result characterizes the limit points of the ECM algorithm.

Proposition 5 [f/é = (B,a) s a limit point of the ECM algorithm, then with probability tending to

one %’ij =0 and L(ﬁ(m)7 qﬁ(m)) converges monotonically towards L(B,g) [f$ 18 an interior point
OL(B,d) _

of Qgp, then Ja(b—l =0.

Proof. We will use the convergence theorem of Wu with £ = {(B7 %) : MLB’C;;@ =0 @%‘iﬁl =0
if $ is an interior point of Q,}. (i) is easily seen to be satisfied because M (9|9(m)) is continuous in

6 and 6™ and © is compact. It remains to show (ii): Assume that 0™ ¢ £ and 8™ e Ny (3°)

(m) 4(m) (m) . . .
for all m. Then, either 2B _¢"") a@’d) = g—ZJ—‘—ZaM %99 opim # 0 for an interior point 8™ of Qs or
(m) j(m) (m) . . B . /
oL(B a(p’(b ) g—g 3M(%|09 ) + 0 for an interior point ¢(™ of Q4. In the first case ]W(G\H(m))

0=0(m)
can be increased during the m’th CM step by changing 5. In the second case, M (9\9(7”)) can be

increased by changing ¢. Hence L(6™+Y) > L(#™). The conclusion now follows because 3™ e

N (ﬁo) with probability tending to one by the arguments used in the proof of Proposition 1. m

PROOF OF PROPOSITION 2.

Let By = B° + S, F = FO4+ o and § = E{t|Y;0}. By Proposition 5, 2E5x0n) —

g—g M%H—Nl b = 0 with probability tending to one. Hence

B { Qa0 %)+ Qs PR + 5 Qor (. PO+ 0,(IY30

VN
Q8 F) + Qs 8 P+ 5 Qor (8 FO)+ 0,1

; (74)

o

where the remainder vanishes on a set with probability tending to one by consistency and the argu-

ments used in the proof of Lemma 3. The conditional expectation t is the stationary point on the
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”complete data” log-likelihood given 6. Therefore

1
VN

Then, from (74) and (75),

Qe(, F°) + Qs FO)5 + +Qrr(8”, O+ 0,(1) = . (75)

51,01 [ Qs F°
[ ?} =7 lﬁ [ Qr(8°, FO) } T opy
where
J__i[%(ﬁ o) QﬂF(ﬁO,FO)] (76)
N | Qrs(8° F%) Qpp(8° F°) |-

Since Q(ﬁo, FY%) = Zﬁl li(ﬁoa FO),

JE—E{

By a standard result
1 (8°, FO) ] 0}
Var A FOY =1,
L |
so it follows from the central limit theorem that, for F = F©,
VE @y - )
VN(Fy — FO)

Uy (8%, FO)  1p(B°, F°)
ba(B% FO) 1L (8%, FO)

|F0} =1

2 N, I,

where ﬁN =F04 %The first part of the proposition thus follows.

To prove the second part, we first note that

_ -1 _
(J7) = W(Qﬁﬁ(ﬁoa F°) = Qpr(8°, FO)Qpr(8°, FO)Qrs(5", F°))
-1
= (7 @5(0%) + 0p(1), (77)
where the second equation follows from the envelope theorem and from differentiating the first order

condition for maximizing Q(3°, F) with respect to F (see Barndorff-Nielsen and Cox (1994)). The

remainder is due to the maximizer being 0,(1) away from F°. Define

£(8,6,F) = Q(8,F) + I P(6, F) - 3 n| ~ H()| (78)
L*(8, F) = max L(3, ¢, F) (79)
L () = max L*(8, F). (80)

By reversing the order of maximization in (79)-(80), while noticing that Fn(6) is the maximizer of
(78), we see that
L7(8) = max L(B,¢).
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— i.e. the log-likelihood profile. By (79)-(80),

SHEEA() = S5 (Lag(B ) — Lie(8, FO)Lip(8, )™ Ling (8, F)) + 0, (1),

and by (78)-(79) and direct calculations

1 1
~Ls(6°. F%) = - Qas(8°, F°) + 0p(1)
e (5 F) = 3 Qur(8°, F) + 0,(1)

S L F) = - Qrr(8, %) + 0,(1)

Hence, using (77)
_ -1
(799) 71 = LLE(E) + 0,(1).

A consistent estimator of 17 is therefore H59 , since H68 equals _Wngﬁ(B )1, and E  1s a consistent
estimator of 60.
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