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Abstract:

Over-shrinkage is a common problem in small area (or domain) estimation. It happens when the
estimated small-area parameters have less between-area variation than their true values. To deal
with this problem, Louis (1984), Ghosh (1992) and Spjgtvoll and Thomsen (1987) have proposed
various constrained empirical and hierarchical Bayes methods. In this paper we study two non-
Bayesian methods based on, respectively, the synthetic estimator and a variance-component model.
We show first that the synthetic estimator entails loss of dispersion in general, from which it follows
that the coverage level of the confidence intervals could be far below the nominal level of confidence,
when these are derived from the sampling error alone. A bivariate variance-component model at the
area-level, as well as its simplification, can greatly improve the efficiency of the confidence intervals.
However, super-population approaches as such are unable to capture the distribution of the true
area-parameters. We develop a finite-population approach based on an empirical finite-population
distribution function of the area-parameters, which provides the necessary adjustment. The various
methods will be illustrated using the data of the Census 1990. Finally, we notice that several
European countries will base the upcoming Census on their administrative register systems, instead
of collecting the information in the field. Improved small area estimation methods may prove to be
valuable for assessing the quality of such Register Counting.
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1 Introduction

Over-shrinkage is a common problem in small area (or domain) estimation. It happens when the
estimated small-area parameters have less between-area variation than their true values, which makes
the small areas look more like each other than they actually are. In Louis (1984), Ghosh (1992) and
Spjgtvoll and Thomsen (1987) various constrained empirical and hierarchical Bayes methods have
been developed. Judkins and Liu (2000) compared these methods in details. Over-shrinkage occurs
also with many non-Bayesian methods. Take for instance the synthetic estimator (Gonzalez, 1973).
When combined with post-stratification, this amounts to a group-mean model (Holt, Smith, and
Tomberlin, 1979). Since the group-mean, or the post-stratum mean, will actually vary from one
area to another, assuming them to be constant generally leads to loss of variation in the resulting
estimates. Modeling the mean of a binary variable through the logistic regression models presents
a similar case. Here over-shrinkage of the estimates is often referred to as over-dispersion of the
true area-means (Cox and Snell, 1989). The random-effect approach of the generalized linear mixed
model can be very helpful (Breslow and Clayton, 1993; Jiang, 2000). However, the data in small area
estimation can be absent or extremely sparse in a large number of areas, which makes it impossible
to estimate the random-effects in these areas from the sample.

We shall develop the methods of dispersion preserving estimation from a non-Bayesian point of
view, short-handed as DISPREE similarly as SPREE for the structure preserving estimation (Purcell
and Kish, 1980). We begin in Section 2 by defining dispersion to be a finite-population characteristic
which measures the variation of the small area parameters. Through a decomposition of the dis-
persion, we will show that the post-stratification based synthetic estimator entails loss of dispersion
in general. Moreover, its error consists of two components. The first one of these arises from the
sampling error, and tends to zero in probability under suitable regularity conditions. Whereas the sec-
ond one, which we call the dispersion error, is a characteristic of the population, and will eventually
dominate the sampling error. It follows that confidence intervals based on the sampling error alone,
though valid under the group-mean model, asymptotically lead to increasing under-coverage. That
is, the proportion of the true area-parameters which fall within these intervals will be farther and
farther below the nominal level of confidence as the sample grows larger and larger. We apply the
DISPREE based on the synthetic estimator to the Employment data collected in the Census 1990.
Having estimated the loss of dispersion of the synthetic municipality Employment Rate estimates,
we derive the asymptotic confidence intervals of the area-parameters assuming normally distributed
dispersion errors. The intervals turn out to be unnecessarily long. That is, the nominal level of con-
fidence now becomes lower than the true level of coverage. This is because the correlation, between
the Census-Employment and the auxiliary Register-Employment, is much weaker at the unit-level
than at the municipality-level.

In Section 3 we construct a bivariate variance-component model directly at the area-level which,
similar to the multivariate components of variance model of Fuller and Harter (1987), contains both
area-level and unit-level random effects. The variances of the random effects is derived directly from a
few parameters of the population. When applied to the data of the Census 1990, the model provides
confidence intervals with correct coverage level. In fact, we may simplify the model to contain
area-level random effects alone, and it works almost as well. Neither model, however, produces

satisfactory estimation of the distribution of the true area-parameters. We argue that this is because



super-population models as such fail to recognize the finiteness of the population. In the rest of
Section 3 we shall develop a finite-population DISPREE approach through a concept of empirical
finite-population distribution function (EFPDF). We demonstrate the method on the data of the
Census 1990, which preserves the distribution of the true municipality Census-Employment Rates, in
addition to producing confidence intervals with correct coverage level. We discuss how the method
can be applied to the updated Labour Force Survey (LFS) situation. Finally, Section 4 provides a
short summary. We notice that several European countries will base the upcoming Census on their
administrative register systems, instead of collecting the information in the field. Improved small area

estimation methods may prove to be valuable for assessing the quality of such Register Counting.

2 DISPREE based on the synthetic estimator

Denote by a the area index, a = 1, ..., A. Denote by h the post-stratum index, h = 1, ..., H, based on
auxiliary information of Sex, Age and so on. Denote by U, the population-stratum cross-classified
by a and h. Let N, be the size of Uy, and n,, the size of the corresponding sub-sample. Let
Ny = >, Nan, and Nj, = > Ngp, and so on. Let uyy, = Ngp/N, be the marginal distribution
of the post-strata within area a. Denote by p,, the mean of a binary survey variable from Upy,.
Denote by an overbar the arithmetic average of a variable over a, such that @, = ), u.,/A and

Dah = 2, Pah/A. Define the (finite-population) co-dispersion of {uan} | and {uaj}g‘:l as

\Ij(uaha Uaj) = UghUqgj — Ugh * Uaqj = (uah - u—ah) (uaj - U_a])

Define the (finite-population) dispersion of {p,}, denoted by Ws(p,), as the co-dispersion of {p,}
and itself, i.e. Wa(ps) = ¥(pa,Pa). Let 75 = V(ugn, uaj) and op; = U(pan,paj). We have,

Wo (pa) = \II(Z UahPah > Z uahpah) = Zuahpahuajpaj - Zuahpah *UqgjPaj
h h h,j h,j

= Z UghUaj * PahPaj — Z Ugh * Pah * Yaj * Daj

h,j h.j

= Z(Thj + Uah, - Taj)(Onhj + Pah - Paj) — Zuah *Uqj * Pah * Paj
h,j h.j

= Zpah “Daj " Thj + Zuahuaj “Ohj,
h,j h.j

provided that W(ugn, pan) = 0 and W (ugptej, PanPaj) = 0. We notice that, while these two
assumptions greatly simplifies the expression of Wy (p,), their validity need to be checked in practice.

Define synthetic area-means to be of the form ), u.npp, for a = 1,..., A, where we set p,, to
be some constant py, regardless of a. In particular, denote by p, the synthetic mean where p;, = Dqp,
so that p, = D), UahPan- It follows that Wy (p,) = Zh,jm‘W - Tpj. Conditional on w4y, we have

o (paltan) = 3 p j Uantiajonj, and
\112(1011) = \1/2(130,) + qj?(pamah)- (1)

The decomposition of dispersion (1) makes it clear that the synthetic area-mean p, generally entails



loss of dispersion, or over-shrinkage, which is measured by the second term on the right-hand side.

Let us from now on concentrate on the case where p, is the municipality Labour Force Survey
(LFS) Employment Rate for two reasons: (a) it simplifies the discussions, and (b) it is the type of data
which we shall use to illustrate our methods. Denote by ¢, the municipality Register-Employment
Rate from area a, which is constructed from the administrative registers independent of the LFS,
and can be linked to the LFS at the unit-level. Let u,1 = ¢4, i.e. the Register-Employed, and
Ugy = 1 — qq, i.e. the Register-Unemployed, and H = 2.

Example: The LFS of the 4th quarter in 1997. This quarterly LFS was arbitrarily chosen. First of all, we
have W5 (P,) = Y2{quPai+(1—qa)Paz} = (Pai—DPaz)? ¥2(qa), so that p, entails loss of dispersion compared to
o in general. As a matter of fact, the bigger the difference between p,1 and pgz, the less the loss of dispersion.
It is more difficult to check on the assumptions ¥ (uan, pan) = 0 and ¥(ueplaj, Pan,Paj) = 0. We divide the
LFS into 19 sub-samples according to which county a person comes form. We then treat the 19 sub-sample
Register-Employment Rate as u,1, and the 19 pairs of sub-sample post-stratum means as (pg1,Pq2). This
gives us Wy (uq1) = U(tgz) = 1.03 x 1073, and ¥y(pa1) = 2.19 x 107, and ¥ (p,2) = 5.61 x 10~*, and
U(tg1,pa1) = 5.09 x 107, and ¥ (ug2,pan) = —4.83 x 1072, We have ¥ (uun, pan)// P2 (tan) P2 (pan) =
0.01 for h = 1 and —0.06 for h = 2. Similarly, we obtain \I!(uahuaj,pahpaj)/\/\PQ(uahuaj)\I—'g(pahpaj) =0.01
for (h,j) = (1,1), and —0.06 for (h,j) = (1,2) or (2,1), and —0.01 for (h,j) = (2,2).

Let the synthetic estimator be based on post-stratification according to the Register-Employment
Status alone. Let p, = qup1 + (1 — qq)p2, where py and po are the corresponding overall sample
post-stratum mean. Since we do not have enough data to estimate p,, directly, we need assumptions
in order to evaluate the expectation of p,. Let us for the moment call the within-area post-stratum

means {pa }/, favorable to the sample if, for h = 1,2,

€ah = Z(nah/nh)eah =0 < Pan= Z(nah/nh)pah where €)= pah — Pah-
a a
Given favorable {p,s}, we have E[py|nan] = pq, provided equal inclusion probability within Upy,.

Although exact favorability is seldom attainable, approximate favorability is by no means unusual.

Example: The LFS of the 4th quarter in 1997 (continued). First of all, we notice that g, = 0.700 =
Y o(Na/N)qq, so that the Register area-means are favorable to the self-weighting sample. Moreover, we have
p1 = 0.931 and p, = 0.141. The synthetic estimator is such that ¥5(p,)/¥2(ga) = 0.625. Whereas favorable
{pan} implies that ¥5(p,)/¥2(q.) ~ (0.931 — 0.141)? = 0.624. It seems therefore plausible that {p,;} and

{pao} are approximately favorable to the present sample.
Given favorable within-area post-stratum means, we may decompose the error of p, as
Pa — Pa = (ﬁa _ﬁa) + (ﬁa _pa) = eq + bq- (2)

The first component e, arises from the sampling error, and tends to 0 in probability as the sample
proportionally grows to infinite. We call the second component b, the dispersion error. Being a
population characteristic, b, does not depend on the sample. It follows that the dispersion error
eventually dominates the sampling error as the sample grows larger. In other words, the coverage



level of the confidence intervals of p,, when derived from the sampling error alone, would be farther
and farther below the nominal level of confidence. Finally, since b, = 0, we have

Ws(by) =

=)

= \IIQ(ﬁa) + \1/2(pa) - 2\1/(151171011) = \1/2(pa) - \IJZ(ﬁa) = \IJZ(pa|uah)-

In this way, the error decomposition (2) attributes the asymptotic loss of dispersion of the synthetic
estimator to each area, provided favorable within-area post-stratum means.

To be able to describe the dispersion error b, in probability terms, we need a statistical model for
it. Now that p,j is the within-area post-stratum mean of a binary variable, multivariate normality

may not be unreasonable. More explicitly, for oy, as defined in (1), let
Zh ~ N(0,0’hh) and COU(Zh,Zj) = Ohj for h, ] = 1, 2.

The dispersion error b, = >, Ugn€qp is a linear combination of €5, = pap, —Dan- Assume (i) favorable

{Pan}, and (ii) (€41, €q2) as iid replicates of (Z1, Z), we have, as n,, grows proportionally to infinite,

L~ ~ . P
Elpa|tan] = Pa and Var(pa|uen) — Zuahuajghj-
h.j

We may now derive the asymptotic confidence interval of p, based on p, which preserves any aprior

dispersion of p,. Assume Ws(p,), the nominal 95%-confidence interval of p, is given as
(Pa — 1.965, p, +1.96s)  where 2 = Uy(p,) — ¥(pa). (3)

Notice that it is generally unrealistic to estimate oy, directly from the sample. Neither is the last
Census necessarily of much help here due to developments or changes in the auxiliary information.

Example: Census 1990. Let p, be the municipality Census-Employment Rate, where A = 435. Notice that
the definition of the Census-Employment differs from that of the LFS-Employment. Neither is g, of the same
quality as the present one due to improvements in the Registers. In any case, we have ¥5(g,) = 0.270 x 1072
and ¥5(p,) = 0.235 x 1072, Based on the 2nd quarter LFS in 1990, we obtain p; = 0.941, p» = 0.227,
and U5 (p,) = 0.138 x 1072, To account for the definition differences, we adjust the mean of p, to be the
same as that of p,, in which case the error, i.e. p, — p,, varies from —8.8% to 5.8%. The sample post-strata
sizes are (ni1,m2) = (12915, 7760), based on which we could derive the confidence interval of p,, assuming
the validity of the group-mean model. However, the coverage level of the resulting nominal 95%-confidence
intervals is only 19.6%. Whereas that of the dispersion preserving 95%-confidence intervals by (3) is 98.7%,
where s = 0.031 (Figure 1).

The concept of favorability in the development above should largely be taken heuristically. Con-
ditionally, we have p, — po = (Pa — Epalnan]) + (E[palnan] — Pa) + (Pa — pa). Favorable sample
simplifies it to (2), whereas approximate favorable sample implies that the two are close. In any
case, this is not the main reason why the confidence intervals based on the synthetic estimator
are unnecessarily conservative. As noted before, the synthetic estimator amounts to a group-mean
model at the unit-level, since p,;, here is interpreted as the probability of a person’s being Census-
Employment given his Register-Employment Status. Whereas the interest of inference, i.e. the

municipality Census-Employment Rate, is an area-level variable. While the correlation coefficient



between the binary Register- and LFS-Employment Status is 0.736 in the LFS of the 2nd quarter in
1990, the similar coefficient at the area-level, i.e. ¥(qq,P4)/v/¥2(qa)¥(pa), is 0.905 in the Census
1990. Notice that the area-level correlation coefficient should also be 0.736, had the population been

homogeneous.

3 Finite-population DISPREE

3.1 A bivariate variance-component model

Consider first a pure area-level bivariate normal distribution of (¢q,pa)?, i.e.

qa _ Ga _ U2(qa) U(qq,Pa)
(pa ) ~ N(u,X) where p= (p_a ) and X = ( (o 00) T (p0) ) )

Notice that this is in fact a simplification of a more elaborate variance-component model. Let g, be
the convolution of two random components where, for the same 1 as above,

Qo = Hq + Mo + Yo Where E[n. = Elv,] = 0 and Var(ya|n.) = (Nq +n4)(1 — Kqg — Na)/Na-

In other words, we consider 7, to be an area-level random component, and p, + 7, the latent area-
mean. Conditional to 7,, we consider N,q, ~ Binomial(N,, pq + 14), and -y, the mean of the
unit-level deviations from i, +17,. We may similarly define the variance components for p,, denoted
by (1),,7.). The covariance between ¢, and p, involves both the area-level and the unit-level random
effects. Assume Cov(ne,v,) = Cov(nl,vy) = 0. Let p, = Corr(ns,n,) at the area-level, and

p = Corr(7ya,7,) at the unit-level, we obtain the variance/covariance structure of (gq,p.)’ as

~ Ny—1 prq(1 — fiq) _ Ng—1 ! pip(1 = pp)

Var(a) = ——Var(n) + ——5—— Var(pa) = —g—Var(n) + =——5——
_ NE pa(l = pg) _ Var(na), pp(l —pp) _ Var(mg), 1
Cov(ga; pa) = paiVar(na)Var(ng) }2 + p{ (= A A N, M

The area-level components 7, and 7}, clearly dominate the overall variation in ¢, and p,; and we
obtain the pure area-level model as N, tends to infinity for all the areas. However, the effect of v,
and v/ remain to be felt as long as there are a few really small areas, where N, is only about a few

hundred. In either case, we derive the 95% confidence interval of p, as

(P — 1.960,, po + 1.960,) where  p, = E[pg|qs] and O'Z = Var(pa|qa)- (4)

Example: Census 1990 (continued). All the parameters of the pure area-level model are known from the
Census. We obtain, from (4), ¥5(p,) = 0.192 x 102 and o, = 0.021, where the coverage level of the
95%-confidence intervals is 94.4% (Figure 1). The error p, — p, varies from —10.5% to 5.7%. Improvements
are evident compared to the DISPREE based on the synthetic estimator. The parameters of the variance-
component model are not self-evident. We set p = 0.736 based on the LFS. We obtain a method of moment
estimate Var(n) = 0.259 x 10~2 as the solution of

N, -1 1-
Var(na) + Uq( Uq)

v a) = )
2(¢a) N, N,




and Var(n,) = 0.223 x 1072 similarly. Substituting these into ¥5(g,,pa) = Cov(qa, pa), We obtain p, =
0.913. These give us ¥(p,) = 0.192 x 1072, and &, = 0.021, and a coverage level of 94.6%, which are
almost identical with those under the simplified area-level model (Figure 1). The error p, — p, varies form
—10.5% to 5.6%. Notice that the area-estimates under both models still contain about 20% loss of dispersion
now that Corr(q.,p.) =~ 0.910. More importantly, no matter how much we may improve the Register,
Corr(qq,pa) shall remain less than unity. A super-population approach, i.e. p, = E[p,|qa], will never capture

the distribution of p, since U5 (p,) will always be less than U5 (p,).

3.2 Empirical finite-population distribution function (EFPDF) and finite-population
DISPREE using normal approximation

Let us first give a finite-population definition of the distribution of the area-parameters, denoted by
0a for a =1,..., A. Denote by {0(,)} the order statistic of {0}, where 0(;) < ) <--- < 0y). We
define the empirical finite-population distribution function (EFPDF) of 6, to be

A
1
Fy(t) = T > Ip<t where Ip,<y=1if0, <t and Iy, =0if 0, >t (5)
a=1

The EFPDF is thus equivalent to {f(,}. Notice that the EFPDF is numerically identical with the
empirical culmulative distribution function (ECDF) when {6,} is considered an iid sample. The
ECDF is a nonparametric approximation to the true distribution that has generated the iid sample.
However, the randomness in the area-parameters {6,} given the EFPDF Fj is entirely different
from the randomness of an iid sample {0,} given Fj as their estimated identical distribution. In
fact, conditional to the EFPDF, any admissible set of {,} must by definition be a permutation of
{0(1), ...,O(A)}, in which sense the area-parameters are now dependent of each other.

By restricting {0,} to the permutations of {6}, we ensure that they all have the same dis-
tribution Fy and, in particular, the same dispersion. However, not all the permutations are equally
probable. That depends on the distribution of {p,} conditional to {g,}, such as that under the

variance-component model earlier. We propose a finite-population DISPREE procedure as follows:

1. generate p; from the corresponding normal distribution (4) of p, conditional to g, under either

the pure area-level model or the variance-component model, for a = 1, ..., 4;

*

2. identify the order of {p7,...,p% }, denoted by {ry,...,r4}, such that p} = Plray

3. set pgl) = P(r,) Where {p(1),...,p(a)} are given by the true EFPDF of p,.

Independent repetitions of Step 1 - 3 give us the approximate joint distribution of (p1,...,p4) con-
ditional to both (g1,...,q4) and F,. Under either model, the order of E[p,|q,] coincides with the

order of g,. A method of moment estimator of p, is therefore given by

A

Pa =P,  Where qq=qq,). (6)

We could now use the sample percentile interval of {p&l),...,pr)}, where B is the number of
resamples, as the estimated confidence interval of p,. Or, to obtain confidence intervals which vary



more smoothly over the areas, we could calculate, at the nominal 95%-level,

M

B B
(1 — 19655, iy +1.9657) where gy = =3 pi) and ;= { > — )’} (7)
j=1 j=1

Example: Census 1990 (continued). Due to the finiteness of the population, the simulation of the coverage
level has a precision modulus of 1/A = 0.2%. Nevertheless, repeated simulations at the same value of B
suggest that the finite-population adjustments of (6) and (7) are negligible here, both in terms of the confidence
levels and the first-order error p, — p,. The apparent improvement lies in the preservation of the distribution

of p,. The results under the pure area-level model have been plotted in Figure 1.
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Figure 1: DISPREE based on the Census 1990 data. Left panel: Municipality Census-Employment Rate
(solid), 95%-confidence intervals based on synthetic estimator (dotted), and under the area-level model
(dashed). Right panel: Municipality Census-Employment Rate (solid), 95%-confidence intervals under the
variance-component model — super-population approach (dotted) and finite-population approach (dashed).

3.3 Finite-population DISPREE of the LFS data

Asymptotic theories of the order statistics from general parametric distributions are available (e.g.
Cox and Hinkley, 1974, Appendix 2). In particular, Blom (1958) suggested, for Z1, ..., Z4 w N(0,1),

) = ElZ)] =2 (k) and k= (a—3/8)/(A+1/4), (8)

where ®~! denotes the inverse of the standard normal CDF. We obtain from (8) the asymptotic
expectation of the order statistics of arbitrary N (u,o?)-distribution as p + 0&(q)- Assume for the
moment P, and Uy(p,) to be known. Provided the normal approximation to Fj,, we could apply
formula (8) directly, using 7z as the mean and Wy (p,) as the variance. Notice that the resulting F},
is always symmetric about p,. On the other hand, denote by Fy some other known EFPDF to which

normal approximation is valid. We may derive f?p as a parallel shift of Fy, i.e.
Pla) =Pa+ R(Oa) —0a)  where R”=Us(p,)/Ua(da),

which generally is asymmetric about p,. Possible choice of 6, could be the Register g, or the

synthetic p,. Since 6, is known, it is easy to check whether its normal approximation is valid.



Example: Census 1990 (continued). We derive the asymptotic expectations of q(,) and p(,) by (8) based
on, respectively, {7a, ¥2(¢qa)} and {Pa, ¥2(pa)}, and compare them to the true q(,) and p(,. In addition,

we derive F), as parallel shifts of F, and Fj_, where p, is the synthetic estimator. All of them have been

plotted in Figure 2. The difference between the normal approximation and the true value varies from —0.6%
to 1.5% for q(,). For the approximations of p(,), it varies from —1.4% to 1.8%. In all the three cases, the Fp

is dispersion preserving, and yields similar confidence intervals as the true F), for the Census 1990 data.
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Figure 2: Empirical finite-population distribution functions based on the Census 1990 data and their nor-
mal approximations. Left panel: Municipality Register-Employment Rate (solid) and normal approximation
(dotted). Right panel: Municipality Census-Employment Rate (solid), normal approximation (dotted), parallel
shift of Register-Rate (dashed) and parallel shift of synthetic estimator (long-dashed).

In order to apply the method of finite-population DISPREE to the present LFS data, we could
use the mean of the synthetic estimator as an estimate of p,. We need also some plausible aprior
value of Wy(p,), which may for instance be based on the dispersion of the present ¢, as well as
those of (qq,pa) from the last Census. The area-level correlation coefficient C'orr(qq,ps) is perhaps
more difficult to set. For instance the improvements in the Register sources has raised the unit-level
correlation coefficient from 0.736 in the 2nd quarter of 1990 to 0.782 in the 4th quarter of 1997. The
values from the Census 1990, i.e. 0.905 of the area-level model and 0.913 of the variance-component
model, are therefore likely to be the lower bounds of the present ones. Also it is reasonable to seek
advice form the subject-matter experts regarding the choices of Ws(p,) and Corr(qq, pa)-

Example: Census 1990 (continued). Provided the normal approximation to Fj,, the error in ﬁ'p is directly
determined by those of p, and W5 (p,). The error in the coverage level of the estimated confidence intervals, on
the other hand, does not have a closed form. We have therefore performed a simple sensitivity analysis of both
the area-level and the variance-component models. Since the finite-population adjustment is negligible with
respect to the coverage level, we could use the super-population approach (3) here. Let RHO = Corr(qa,pa)
and ¥, (p,) vary over a grid of values. We found the coverage level of the nominal 95%-confidence intervals in
each case (Table 1). The results are rather similar under both of the models. They suggest that conservative

choice of C'orr(q,,p.) is quite capable of safe-guarding moderate under-estimations of ¥4 (p,).
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Dispersion of p, (all dispersions x10~2)
RHO 0.205 0.215 0.225 0.235 0.245 0.255 0.265
0.875 95.3(95.1) 958 (95.1) 96.2(95.8) 96.4 (96.0) 96.7 (96.7) 96.9 (96.9) 96.9 (96.9)
0.800 94.4(94.2) 949 (94.9) 95.3(95.1) 95.8(95.3) 96.0(96.0) 96.2 (96.2) 96.7 (96.2)
0.905 92.6 (92.9) 93.7 (93.5) 94.4(94.0) 94.4(94.6) 949 (95.1) 951 (95.1) 96.0 (95.5)

Table 1: Coverage level (%) of the 95%-confidence intervals at the various choices of U5 (p,,) and Corr(qa, pa)-
The area-level model (without parentheses) and the variance-component model (within parentheses).

4 Summary and discussions

We have studied two non-Bayesian methods in dealing with over-shrinkage of small area estimators.
The first one was based on the synthetic estimator. We began by defining dispersion as a finite-
population measure of the variation of the small area parameters. Through two decompositions
of the dispersion, we showed that the post-stratification based synthetic estimator entails loss of
dispersion in general, and that the coverage level of the confidence intervals could be far below the
nominal level of confidence, when these are derived from the sampling error alone. We derived the
dispersion preserving confidence intervals, which turned out to be unnecessarily conservative due to
a much weaker correlation between the survey and auxiliary variables at the unit-level than at the
area-level. We therefore put up a bivariate variance-component model, as well as its simplification,
directly at the area-level. This improved the efficiency of the confidence intervals. However, the
super-population approach was unable to capture the distribution of the true area-parameters. We
introduced the empirical finite-population distribution function of the area-parameters, conditional
to which a finite-population DISPREE procedure provided the necessary adjustment. The various
methods were illustrated using the data of the Census 1990. We also examined the possibility of
applying the method to the updated LFS situation. Sample-based estimates of the true dispersion
of the municipality LFS-Employment Rate, and the area-level correlation coefficient between the
municipality Register- and LFS-Employment Rate are generally unreliable. We need to set there values
a priori. Simple sensitivity analysis suggest that conservative choices of the area-level correlation
are quite capable of safe-guarding moderate under-estimations of the true dispersion. Finally, we
notice that several European countries will base the upcoming Census on their administrative register
systems, instead of collecting the information in the field. Improved small area estimation methods

may prove to be valuable for assessing the quality of such Register Counting.
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