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1 Introduction

Over-shrinkage is a common problem in small area (or domain) estimation. It happens when the

estimated small-area parameters have less between-area variation than their true values, which makes

the small areas look more like each other than they actually are. In Louis (1984), Ghosh (1992) and

Spj�tvoll and Thomsen (1987) various constrained empirical and hierarchical Bayes methods have

been developed. Judkins and Liu (2000) compared these methods in details. Over-shrinkage occurs

also with many non-Bayesian methods. Take for instance the synthetic estimator (Gonzalez, 1973).

When combined with post-strati�cation, this amounts to a group-mean model (Holt, Smith, and

Tomberlin, 1979). Since the group-mean, or the post-stratum mean, will actually vary from one

area to another, assuming them to be constant generally leads to loss of variation in the resulting

estimates. Modeling the mean of a binary variable through the logistic regression models presents

a similar case. Here over-shrinkage of the estimates is often referred to as over-dispersion of the

true area-means (Cox and Snell, 1989). The random-e�ect approach of the generalized linear mixed

model can be very helpful (Breslow and Clayton, 1993; Jiang, 2000). However, the data in small area

estimation can be absent or extremely sparse in a large number of areas, which makes it impossible

to estimate the random-e�ects in these areas from the sample.

We shall develop the methods of dispersion preserving estimation from a non-Bayesian point of

view, short-handed as DISPREE similarly as SPREE for the structure preserving estimation (Purcell

and Kish, 1980). We begin in Section 2 by de�ning dispersion to be a �nite-population characteristic

which measures the variation of the small area parameters. Through a decomposition of the dis-

persion, we will show that the post-strati�cation based synthetic estimator entails loss of dispersion

in general. Moreover, its error consists of two components. The �rst one of these arises from the

sampling error, and tends to zero in probability under suitable regularity conditions. Whereas the sec-

ond one, which we call the dispersion error, is a characteristic of the population, and will eventually

dominate the sampling error. It follows that con�dence intervals based on the sampling error alone,

though valid under the group-mean model, asymptotically lead to increasing under-coverage. That

is, the proportion of the true area-parameters which fall within these intervals will be farther and

farther below the nominal level of con�dence as the sample grows larger and larger. We apply the

DISPREE based on the synthetic estimator to the Employment data collected in the Census 1990.

Having estimated the loss of dispersion of the synthetic municipality Employment Rate estimates,

we derive the asymptotic con�dence intervals of the area-parameters assuming normally distributed

dispersion errors. The intervals turn out to be unnecessarily long. That is, the nominal level of con-

�dence now becomes lower than the true level of coverage. This is because the correlation, between

the Census-Employment and the auxiliary Register-Employment, is much weaker at the unit-level

than at the municipality-level.

In Section 3 we construct a bivariate variance-component model directly at the area-level which,

similar to the multivariate components of variance model of Fuller and Harter (1987), contains both

area-level and unit-level random e�ects. The variances of the random e�ects is derived directly from a

few parameters of the population. When applied to the data of the Census 1990, the model provides

con�dence intervals with correct coverage level. In fact, we may simplify the model to contain

area-level random e�ects alone, and it works almost as well. Neither model, however, produces

satisfactory estimation of the distribution of the true area-parameters. We argue that this is because
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super-population models as such fail to recognize the �niteness of the population. In the rest of

Section 3 we shall develop a �nite-population DISPREE approach through a concept of empirical

�nite-population distribution function (EFPDF). We demonstrate the method on the data of the

Census 1990, which preserves the distribution of the true municipality Census-Employment Rates, in

addition to producing con�dence intervals with correct coverage level. We discuss how the method

can be applied to the updated Labour Force Survey (LFS) situation. Finally, Section 4 provides a

short summary. We notice that several European countries will base the upcoming Census on their

administrative register systems, instead of collecting the information in the �eld. Improved small area

estimation methods may prove to be valuable for assessing the quality of such Register Counting.

2 DISPREE based on the synthetic estimator

Denote by a the area index, a = 1; :::; A. Denote by h the post-stratum index, h = 1; :::;H, based on

auxiliary information of Sex, Age and so on. Denote by Uah the population-stratum cross-classi�ed

by a and h. Let Nah be the size of Uah, and nah the size of the corresponding sub-sample. Let

Na =
P

h
Nah, and Nh =

P
a
Nah, and so on. Let uah = Nah=Na be the marginal distribution

of the post-strata within area a. Denote by pah the mean of a binary survey variable from Uah.

Denote by an overbar the arithmetic average of a variable over a, such that uah =
P

a
uah=A and

pah =
P

a
pah=A. De�ne the (�nite-population) co-dispersion of fuahg

A

a=1
and fuajg

A

a=1
as

	(uah; uaj) = uahuaj � uah � uaj = (uah � uah)(uaj � uaj):

De�ne the (�nite-population) dispersion of fpag, denoted by 	
2
(pa), as the co-dispersion of fpag

and itself, i.e. 	
2
(pa) = 	(pa; pa). Let �hj = 	(uah; uaj) and �hj = 	(pah; paj). We have,

	
2
(pa) = 	(

X

h

uahpah;

X

h

uahpah) =
X

h;j

uahpahuajpaj �
X

h;j

uahpah � uajpaj

=
X

h;j

uahuaj � pahpaj �
X

h;j

uah � pah � uaj � paj

=
X

h;j

(�hj + uah � uaj)(�hj + pah � paj)�
X

h;j

uah � uaj � pah � paj

=
X

h;j

pah � paj � �hj +
X

h;j

uahuaj � �hj;

provided that 	(uah; pah) = 0 and 	(uahuaj ; pahpaj) = 0. We notice that, while these two

assumptions greatly simpli�es the expression of 	
2
(pa), their validity need to be checked in practice.

De�ne synthetic area-means to be of the form
P

h
uahph, for a = 1; :::; A, where we set pah to

be some constant ph regardless of a. In particular, denote by ~pa the synthetic mean where ph = pah,

so that ~pa =
P

h
uahpah. It follows that 	2

(~pa) =
P

h;j
pah � paj � �hj. Conditional on uah, we have

	
2
(pajuah) =

P
h;j

uahuaj�hj, and

	
2
(pa) = 	

2
(~pa) + 	

2
(pajuah): (1)

The decomposition of dispersion (1) makes it clear that the synthetic area-mean ~pa generally entails
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loss of dispersion, or over-shrinkage, which is measured by the second term on the right-hand side.

Let us from now on concentrate on the case where pa is the municipality Labour Force Survey

(LFS) Employment Rate for two reasons: (a) it simpli�es the discussions, and (b) it is the type of data

which we shall use to illustrate our methods. Denote by qa the municipality Register-Employment

Rate from area a, which is constructed from the administrative registers independent of the LFS,

and can be linked to the LFS at the unit-level. Let ua1 = qa, i.e. the Register-Employed, and

ua2 = 1� qa, i.e. the Register-Unemployed, and H = 2.

Example: The LFS of the 4th quarter in 1997. This quarterly LFS was arbitrarily chosen. First of all, we

have	2(~pa) = 	2fqapa1+(1�qa)pa2g = (pa1�pa2)
2�	2(qa), so that ~pa entails loss of dispersion compared to

qa in general. As a matter of fact, the bigger the di�erence between pa1 and pa2, the less the loss of dispersion.

It is more di�cult to check on the assumptions 	(uah; pah) = 0 and 	(uahuaj ; pah; paj) = 0. We divide the

LFS into 19 sub-samples according to which county a person comes form. We then treat the 19 sub-sample

Register-Employment Rate as ua1, and the 19 pairs of sub-sample post-stratum means as (pa1; pa2). This

gives us 	2(ua1) = 	2(ua2) = 1:03� 10�3, and 	2(pa1) = 2:19� 10�4, and 	2(pa2) = 5:61� 10�4, and

	(ua1; pa1) = 5:09� 10�6, and 	(ua2; pa2) = �4:83� 10�5. We have 	(uah; pah)=
p
	2(uah)	2(pah) =

0:01 for h = 1 and �0:06 for h = 2. Similarly, we obtain 	(uahuaj ; pahpaj)=
p
	2(uahuaj)	2(pahpaj) = 0:01

for (h; j) = (1; 1), and �0:06 for (h; j) = (1; 2) or (2; 1), and �0:01 for (h; j) = (2; 2).

Let the synthetic estimator be based on post-strati�cation according to the Register-Employment

Status alone. Let p̂a = qap̂1 + (1 � qa)p̂2, where p̂1 and p̂2 are the corresponding overall sample

post-stratum mean. Since we do not have enough data to estimate pah directly, we need assumptions

in order to evaluate the expectation of p̂a. Let us for the moment call the within-area post-stratum

means fpahg
A

a=1
favorable to the sample if, for h = 1; 2,

�ah =
X

a

(nah=nh)�ah = 0 , pah =
X

a

(nah=nh)pah where �ah = pah � pah:

Given favorable fpahg, we have E[p̂ajnah] = ~pa, provided equal inclusion probability within Uah.

Although exact favorability is seldom attainable, approximate favorability is by no means unusual.

Example: The LFS of the 4th quarter in 1997 (continued). First of all, we notice that qa = 0:700 =
P

a
(Na=N)qa, so that the Register area-means are favorable to the self-weighting sample. Moreover, we have

p̂1 = 0:931 and p̂2 = 0:141. The synthetic estimator is such that 	2(p̂a)=	2(qa) = 0:625. Whereas favorable

fpahg implies that 	2(~pa)=	2(qa) � (0:931� 0:141)2 = 0:624. It seems therefore plausible that fpa1g and

fpa0g are approximately favorable to the present sample.

Given favorable within-area post-stratum means, we may decompose the error of p̂a as

p̂a � pa = (p̂a � ~pa) + (~pa � pa) = ea + ba: (2)

The �rst component ea arises from the sampling error, and tends to 0 in probability as the sample

proportionally grows to in�nite. We call the second component ba the dispersion error. Being a

population characteristic, ba does not depend on the sample. It follows that the dispersion error

eventually dominates the sampling error as the sample grows larger. In other words, the coverage
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level of the con�dence intervals of pa, when derived from the sampling error alone, would be farther

and farther below the nominal level of con�dence. Finally, since ba = 0, we have

	2(ba) = b2
a
= 	2(~pa) + 	2(pa)� 2	(~pa; pa) = 	2(pa)�	2(~pa) = 	2(pajuah):

In this way, the error decomposition (2) attributes the asymptotic loss of dispersion of the synthetic

estimator to each area, provided favorable within-area post-stratum means.

To be able to describe the dispersion error ba in probability terms, we need a statistical model for

it. Now that pah is the within-area post-stratum mean of a binary variable, multivariate normality

may not be unreasonable. More explicitly, for �hj as de�ned in (1), let

Zh � N(0; �hh) and Cov(Zh; Zj) = �hj for h; j = 1; 2:

The dispersion error ba =
P

h
uah�ah is a linear combination of �ah = pah�pah. Assume (i) favorable

fpahg, and (ii) (�a1; �a2) as iid replicates of (Z1; Z2), we have, as nah grows proportionally to in�nite,

E[p̂ajuah] = ~pa and V ar(p̂ajuah)
P
!

X

h;j

uahuaj�hj:

We may now derive the asymptotic con�dence interval of pa based on p̂a which preserves any aprior

dispersion of pa. Assume 	2(pa), the nominal 95%-con�dence interval of pa is given as

(p̂a � 1:96s; p̂a + 1:96s) where s
2 = 	2(pa)�	(p̂a): (3)

Notice that it is generally unrealistic to estimate �hj directly from the sample. Neither is the last

Census necessarily of much help here due to developments or changes in the auxiliary information.

Example: Census 1990. Let pa be the municipality Census-Employment Rate, where A = 435. Notice that

the de�nition of the Census-Employment di�ers from that of the LFS-Employment. Neither is qa of the same

quality as the present one due to improvements in the Registers. In any case, we have 	2(qa) = 0:270� 10�2

and 	2(pa) = 0:235 � 10�2. Based on the 2nd quarter LFS in 1990, we obtain p̂1 = 0:941, p̂2 = 0:227,

and 	2(p̂a) = 0:138� 10�2. To account for the de�nition di�erences, we adjust the mean of p̂a to be the

same as that of pa, in which case the error, i.e. p̂a� pa, varies from �8:8% to 5:8%. The sample post-strata

sizes are (n1; n2) = (12915; 7760), based on which we could derive the con�dence interval of pa, assuming

the validity of the group-mean model. However, the coverage level of the resulting nominal 95%-con�dence

intervals is only 19:6%. Whereas that of the dispersion preserving 95%-con�dence intervals by (3) is 98:7%,

where s = 0:031 (Figure 1).

The concept of favorability in the development above should largely be taken heuristically. Con-

ditionally, we have p̂a � pa = (p̂a � E[p̂ajnah]) + (E[p̂ajnah] � ~pa) + (~pa � pa). Favorable sample

simpli�es it to (2), whereas approximate favorable sample implies that the two are close. In any

case, this is not the main reason why the con�dence intervals based on the synthetic estimator

are unnecessarily conservative. As noted before, the synthetic estimator amounts to a group-mean

model at the unit-level, since pah here is interpreted as the probability of a person's being Census-

Employment given his Register-Employment Status. Whereas the interest of inference, i.e. the

municipality Census-Employment Rate, is an area-level variable. While the correlation coe�cient
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between the binary Register- and LFS-Employment Status is 0.736 in the LFS of the 2nd quarter in

1990, the similar coe�cient at the area-level, i.e. 	(qa; pa)=
p
	2(qa)	(pa), is 0.905 in the Census

1990. Notice that the area-level correlation coe�cient should also be 0.736, had the population been

homogeneous.

3 Finite-population DISPREE

3.1 A bivariate variance-component model

Consider �rst a pure area-level bivariate normal distribution of (qa; pa)
T , i.e.

 
qa

pa

!
� N(�;�) where � =

 
qa

pa

!
and � =

 
	2(qa) 	(qa; pa)

	(pa; qa) 	2(pa)

!
:

Notice that this is in fact a simpli�cation of a more elaborate variance-component model. Let qa be

the convolution of two random components where, for the same � as above,

qa = �q + �a + 
a where E[�a] = E[
a] = 0 and V ar(
aj�a) = (�q + �a)(1 � �q � �a)=Na:

In other words, we consider �a to be an area-level random component, and �q + �a the latent area-

mean. Conditional to �a, we consider Naqa � Binomial(Na; �q + �a), and 
a the mean of the

unit-level deviations from �q+ �a. We may similarly de�ne the variance components for pa, denoted

by (�0

a
; 


0

a
). The covariance between qa and pa involves both the area-level and the unit-level random

e�ects. Assume Cov(�a; 

0

a
) = Cov(�0

a
; 
) = 0. Let �a = Corr(�a; �

0

a
) at the area-level, and

� = Corr(
a; 

0

a
) at the unit-level, we obtain the variance/covariance structure of (qa; pa)

T as

V ar(qa) =
Na � 1

Na

V ar(�a) +
�q(1� �q)

Na

V ar(pa) =
Na � 1

Na

V ar(�0

a
) +

�p(1� �p)

Na

Cov(qa; pa) = �afV ar(�a)V ar(�0

a
)g

1

2 + �f(
�q(1� �q)

Na

�
V ar(�a)

Na

)(
�p(1� �p)

Na

�
V ar(�0

a
)

NA

)g
1

2 ;

The area-level components �a and �
0

a
clearly dominate the overall variation in qa and pa; and we

obtain the pure area-level model as Na tends to in�nity for all the areas. However, the e�ect of 
a

and 

0

a
remain to be felt as long as there are a few really small areas, where Na is only about a few

hundred. In either case, we derive the 95% con�dence interval of pa as

(p̂a � 1:96�a; p̂a + 1:96�a) where p̂a = E[pajqa] and �
2

a
= V ar(pajqa): (4)

Example: Census 1990 (continued). All the parameters of the pure area-level model are known from the

Census. We obtain, from (4), 	2(p̂a) = 0:192 � 10�2 and �a = 0:021, where the coverage level of the

95%-con�dence intervals is 94:4% (Figure 1). The error p̂a � pa varies from �10:5% to 5:7%. Improvements

are evident compared to the DISPREE based on the synthetic estimator. The parameters of the variance-

component model are not self-evident. We set � = 0:736 based on the LFS. We obtain a method of moment

estimate V ar(�) = 0:259� 10�2 as the solution of

	2(qa) =
Na � 1

Na

V ar(�a) +
�q(1� �q)

Na

;
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and V ar(�0
a
) = 0:223 � 10�2

similarly. Substituting these into 	2(qa; pa) = Cov(qa; pa), we obtain �a =

0:913. These give us 	2(p̂a) = 0:192 � 10�2
, and �a = 0:021, and a coverage level of 94:6%, which are

almost identical with those under the simpli�ed area-level model (Figure 1). The error p̂a � pa varies form

�10:5% to 5:6%. Notice that the area-estimates under both models still contain about 20% loss of dispersion

now that Corr(qa ; pa) � 0:910. More importantly, no matter how much we may improve the Register,

Corr(qa ; pa) shall remain less than unity. A super-population approach, i.e. p̂a = E[pajqa], will never capture

the distribution of pa since 	2(p̂a) will always be less than 	2(pa).

3.2 Empirical �nite-population distribution function (EFPDF) and �nite-population

DISPREE using normal approximation

Let us �rst give a �nite-population de�nition of the distribution of the area-parameters, denoted by

�a for a = 1; :::; A. Denote by f�(a)g the order statistic of f�ag, where �(1) � �(2) � � � � � �(A). We

de�ne the empirical �nite-population distribution function (EFPDF) of �a to be

F�(t) =
1

A

AX

a=1

I�a�t where I�a�t = 1 if �a � t and I�a�t = 0 if �a > t: (5)

The EFPDF is thus equivalent to f�(a)g. Notice that the EFPDF is numerically identical with the

empirical culmulative distribution function (ECDF) when f�ag is considered an iid sample. The

ECDF is a nonparametric approximation to the true distribution that has generated the iid sample.

However, the randomness in the area-parameters f�ag given the EFPDF F� is entirely di�erent

from the randomness of an iid sample f�ag given F� as their estimated identical distribution. In

fact, conditional to the EFPDF, any admissible set of f�ag must by de�nition be a permutation of

f�(1); :::; �(A)g, in which sense the area-parameters are now dependent of each other.

By restricting f�̂ag to the permutations of f�(a)g, we ensure that they all have the same dis-

tribution F� and, in particular, the same dispersion. However, not all the permutations are equally

probable. That depends on the distribution of fpag conditional to fqag, such as that under the

variance-component model earlier. We propose a �nite-population DISPREE procedure as follows:

1. generate p�
a
from the corresponding normal distribution (4) of pa conditional to qa under either

the pure area-level model or the variance-component model, for a = 1; :::; A;

2. identify the order of fp�1; :::; p
�
A
g, denoted by fr1; :::; rAg, such that p�

a
= p�(ra);

3. set p
(1)
a = p(ra) where fp(1); :::; p(A)g are given by the true EFPDF of pa.

Independent repetitions of Step 1 - 3 give us the approximate joint distribution of (p1; :::; pA) con-

ditional to both (q1; :::; qA) and Fp. Under either model, the order of E[pajqa] coincides with the

order of qa. A method of moment estimator of pa is therefore given by

p̂a = p(ra) where qa = q(ra): (6)

We could now use the sample percentile interval of fp
(1)
a ; :::; p

(B)
a g, where B is the number of

resamples, as the estimated con�dence interval of pa. Or, to obtain con�dence intervals which vary
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more smoothly over the areas, we could calculate, at the nominal 95%-level,

(��
a
� 1:96s�

a
; �

�

a
+ 1:96s�

a
) where �

�

a
=

1

B

BX

j=1

p
(j)

a
and s

�

a
= f

1

B

BX

j=1

(p(j)
a
� �

�

a
)2g

1

2 : (7)

Example: Census 1990 (continued). Due to the �niteness of the population, the simulation of the coverage

level has a precision modulus of 1=A = 0:2%. Nevertheless, repeated simulations at the same value of B

suggest that the �nite-population adjustments of (6) and (7) are negligible here, both in terms of the con�dence

levels and the �rst-order error p̂a � pa. The apparent improvement lies in the preservation of the distribution

of pa. The results under the pure area-level model have been plotted in Figure 1.
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Figure 1: DISPREE based on the Census 1990 data. Left panel: Municipality Census-Employment Rate

(solid), 95%-con�dence intervals based on synthetic estimator (dotted), and under the area-level model

(dashed). Right panel: Municipality Census-Employment Rate (solid), 95%-con�dence intervals under the

variance-component model | super-population approach (dotted) and �nite-population approach (dashed).

3.3 Finite-population DISPREE of the LFS data

Asymptotic theories of the order statistics from general parametric distributions are available (e.g.

Cox and Hinkley, 1974, Appendix 2). In particular, Blom (1958) suggested, for Z1; :::; ZA

iid
� N(0; 1),

�(a) = E[Z(a)] = ��1(k) and k = (a� 3=8)=(A + 1=4); (8)

where ��1 denotes the inverse of the standard normal CDF. We obtain from (8) the asymptotic

expectation of the order statistics of arbitrary N(�; �2)-distribution as � + ��(a). Assume for the

moment pa and 	2(pa) to be known. Provided the normal approximation to Fp, we could apply

formula (8) directly, using pa as the mean and 	2(pa) as the variance. Notice that the resulting F̂p

is always symmetric about pa. On the other hand, denote by F� some other known EFPDF to which

normal approximation is valid. We may derive F̂p as a parallel shift of F�, i.e.

p̂(a) = pa +R(�(a) � �a) where R
2 = 	2(pa)=	2(�a);

which generally is asymmetric about pa. Possible choice of �a could be the Register qa or the

synthetic p̂a. Since �a is known, it is easy to check whether its normal approximation is valid.
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Example: Census 1990 (continued). We derive the asymptotic expectations of q(a) and p(a) by (8) based

on, respectively, fqa;	2(qa)g and fpa;	2(pa)g, and compare them to the true q(a) and p(a). In addition,

we derive F̂p as parallel shifts of Fq and Fp̂a
, where p̂a is the synthetic estimator. All of them have been

plotted in Figure 2. The di�erence between the normal approximation and the true value varies from �0:6%

to 1:5% for q(a). For the approximations of p(a), it varies from �1:4% to 1:8%. In all the three cases, the F̂p

is dispersion preserving, and yields similar con�dence intervals as the true Fp for the Census 1990 data.
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Figure 2: Empirical �nite-population distribution functions based on the Census 1990 data and their nor-

mal approximations. Left panel: Municipality Register-Employment Rate (solid) and normal approximation

(dotted). Right panel: Municipality Census-Employment Rate (solid), normal approximation (dotted), parallel

shift of Register-Rate (dashed) and parallel shift of synthetic estimator (long-dashed).

In order to apply the method of �nite-population DISPREE to the present LFS data, we could

use the mean of the synthetic estimator as an estimate of pa. We need also some plausible aprior

value of 	2(pa), which may for instance be based on the dispersion of the present qa as well as

those of (qa; pa) from the last Census. The area-level correlation coe�cient Corr(qa; pa) is perhaps

more di�cult to set. For instance the improvements in the Register sources has raised the unit-level

correlation coe�cient from 0.736 in the 2nd quarter of 1990 to 0.782 in the 4th quarter of 1997. The

values from the Census 1990, i.e. 0.905 of the area-level model and 0.913 of the variance-component

model, are therefore likely to be the lower bounds of the present ones. Also it is reasonable to seek

advice form the subject-matter experts regarding the choices of 	2(pa) and Corr(qa; pa).

Example: Census 1990 (continued). Provided the normal approximation to Fp, the error in F̂p is directly

determined by those of pa and 	2(pa). The error in the coverage level of the estimated con�dence intervals, on

the other hand, does not have a closed form. We have therefore performed a simple sensitivity analysis of both

the area-level and the variance-component models. Since the �nite-population adjustment is negligible with

respect to the coverage level, we could use the super-population approach (3) here. Let RHO = Corr(qa; pa)

and 	2(pa) vary over a grid of values. We found the coverage level of the nominal 95%-con�dence intervals in

each case (Table 1). The results are rather similar under both of the models. They suggest that conservative

choice of Corr(qa ; pa) is quite capable of safe-guarding moderate under-estimations of 	2(pa).
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Dispersion of pa (all dispersions �10�2)

RHO 0.205 0.215 0.225 0.235 0.245 0.255 0.265

0.875 95.3 (95.1) 95.8 (95.1) 96.2 (95.8) 96.4 (96.0) 96.7 (96.7) 96.9 (96.9) 96.9 (96.9)

0.890 94.4 (94.2) 94.9 (94.9) 95.3 (95.1) 95.8 (95.3) 96.0 (96.0) 96.2 (96.2) 96.7 (96.2)

0.905 92.6 (92.9) 93.7 (93.5) 94.4 (94.0) 94.4 (94.6) 94.9 (95.1) 951 (95.1) 96.0 (95.5)

Table 1: Coverage level (%) of the 95%-con�dence intervals at the various choices of	2(pa) and Corr(qa; pa).

The area-level model (without parentheses) and the variance-component model (within parentheses).

4 Summary and discussions

We have studied two non-Bayesian methods in dealing with over-shrinkage of small area estimators.

The �rst one was based on the synthetic estimator. We began by de�ning dispersion as a �nite-

population measure of the variation of the small area parameters. Through two decompositions

of the dispersion, we showed that the post-strati�cation based synthetic estimator entails loss of

dispersion in general, and that the coverage level of the con�dence intervals could be far below the

nominal level of con�dence, when these are derived from the sampling error alone. We derived the

dispersion preserving con�dence intervals, which turned out to be unnecessarily conservative due to

a much weaker correlation between the survey and auxiliary variables at the unit-level than at the

area-level. We therefore put up a bivariate variance-component model, as well as its simpli�cation,

directly at the area-level. This improved the e�ciency of the con�dence intervals. However, the

super-population approach was unable to capture the distribution of the true area-parameters. We

introduced the empirical �nite-population distribution function of the area-parameters, conditional

to which a �nite-population DISPREE procedure provided the necessary adjustment. The various

methods were illustrated using the data of the Census 1990. We also examined the possibility of

applying the method to the updated LFS situation. Sample-based estimates of the true dispersion

of the municipality LFS-Employment Rate, and the area-level correlation coe�cient between the

municipality Register- and LFS-Employment Rate are generally unreliable. We need to set there values

a priori. Simple sensitivity analysis suggest that conservative choices of the area-level correlation

are quite capable of safe-guarding moderate under-estimations of the true dispersion. Finally, we

notice that several European countries will base the upcoming Census on their administrative register

systems, instead of collecting the information in the �eld. Improved small area estimation methods

may prove to be valuable for assessing the quality of such Register Counting.
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