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1 Introduction

In the literature, there is a vast body of articles that analyse the process whereby output
is produced from combinations of inputs. While inputs of labour measured in man hours,
energy, and materials in many cases are observed directly, capital stock series need in
general to be calculated by using imputational methods and approximations. A common
challenge in empirical analyses of the production process,! that do not put rigid a priori
restrictions on the capital stock effects, is therefore how to measure the capital input
and, if necessary, the user cost of this input.?

In analyses based on observations from micro units, various approaches to calculate
capital stocks have been applied, depending on the information available. We may distin-
guish between two main traditions: one that primarily uses information about the level
of capital stocks, and one that primarily uses information about gross investment flows,
usually combined with level information to some extent. Recent examples within the
first tradition are Bughin (1993) and Wolfson (1993), both using companies’ book values
from annual financial reports to obtain capital stock series, and Lindquist (1995, 2000),
Ohanian (1994), Fgrsund and Hjalmarsson (1988), and Reynolds (1986), all using output
capacities measured in tonnes as proxies for capital stocks. Companies’ stock exchange
values and fire insurance values have also been used as proxies in such studies. For an
example of the latter, see Bigrn, Golombek, and Raknerud (1998).

The dominant approach in the empirical literature, though, is the perpetual inventory
method, which belongs to the second tradition. In essence, this method means calculating
capital stock series by cumulating past and present gross investment series in quantity
terms, while assuming a specific weighting system, often derived from assuming an a
priori fixed technical depreciation rate. Recent examples are Klette and Griliches (1996)
who analyse Norwegian manufacturing industries, Hsiao and Tahmiscioglu (1997) who
analyse U.S. manufacturing industries, and Galeotti et al. (1997) who analyse Italian
manufacturing industries. If the data on gross investments do not go backwards a suf-
ficient number of periods in relation to the assumed maximal life time of the capital,
at least one benchmark value for the level of the capital stock is needed. Klette and
Griliches use plant data on fire insurance values to obtain a benchmark, Hsiao and Tah-
miscioglu use the companies’ net property value as a starting value while Galeotti et al.

use companies’ book value for a given year as a benchmark. In microeconometric analy-

!Capital stock variables are needed also in other branches of economics, for example in studies of

economic growth and investment behaviour, national accounting, and studies of corporate tax systems.
2See Bigrn (1989) for a discussion of the user cost of capital and the associated capital stock concepts

within the neo-classical framework.



ses applying the perpetual inventory method, it is common to use aggregate or sectoral
investment goods deflators from the national accounts to deflate the (benchmark) capital
stocks in value terms.

Within this second tradition, there are also studies that, rather than calculating
capital stock series, estimate these stocks as an integral part of a more comprehensive
model. The capital accumulation relationship, defining capital stocks, may for instance be
inserted in an optimizing behavioural model, such as a factor demand system, or included
in a production function. The unknown parameters of the whole model, including the
rate of depreciation, are estimated simultaneously, and capital stock series can then be
calculated using the specified capital accumulation relationship. Recent examples are
Doms (1996) and Prucha and Nadiri (1996). One major shortcoming of this approach
is that the inference about the capital accumulation process is likely to be influenced by
specification errors or incorrect assumptions in the behavioural model.

Little has been done to evaluate the effect of important a priori assumptions when cal-
culating capital stock series, although there are a few important exceptions. Miller (1983,
1990) and Barnhart and Miller (1990) discuss several problems in applying the perpetual
inventory method. In Usher (1980), many of the problems that arise in measuring capital
stocks are addressed. In this paper, we take one step in the direction of evaluating the
consequences of some important assumptions in the perpetual inventory approach. We
confine attention to the capital accumulation process on its own, and do not restrict its
parameters to satisfy some a priori specified optimising behaviour. We present two kinds
of investigations.

Within the perpetual inventory tradition it is common to decide upon depreciation
rates a priori.> First, we evaluate this procedure by calculating capital stock series from
different depreciation rates picked within the range usually reported in the literature
(Section 4). The capital stock series we obtain in this way show considerable sensitivity
to the choice of depreciation rate, both in terms of level and growth pattern and both at
the micro and the industry level.

Second, we attempt to estimate depreciation rates by combining time series of capital
stocks and flows. This is our main objective of the paper. We have access to plant
specific time series for overlapping years — recorded by independent measurements — on
fire insurance values and gross investment for the same period. Previous attempts in
the literature to make such stock-flow confrontations at the micro level have, very often,

applied accounting data at the firm (company) level, not at the level of the technical

®Hulten and Wykoff (1981), Hulten et al. (1989), and Bigrn (1998) attempt to estimate depreciation
structures econometrically from prices of capital goods traded in second-hand markets; Jorgenson (1996)

gives a recent survey of empirical studies of depreciation.



production unit, the plant (establishment). Having data at the plant level is an obvious
advantage when the structure of capital depreciation varies across plants belonging to the
same company. Furthermore, using accounting data as proxies for levels of capital stocks
in a technical sense, most likely involves a measurement error problem. Such data are, in
the main, related to the capital’s wealth dimension, and are measured on a historical cost
basis, see, e.g., Wadhwani and Wall (1986). Measurement errors are probably present
also when other proxies for the level of the capital stock are applied.

Although it is well understood that both measurement errors and heterogeneity in
parameter structure are likely to be important when estimating depreciation rates from
micro data, no previous analyses have, to our knowledge, examined these issues simul-
taneously within the perpetual inventory framework. Our analysis (Section 5) focuses
on the specification of the measurement error and plant heterogeneity. Both system-
atic and random errors in the fire insurance values are allowed for, and various forms of
heterogeneity in the coefficient structure are represented. We find that introducing such
heterogeneity influences the estimated depreciation rates substantially, and generally, the
estimates tend to be higher. We also find strong indications that our level proxies, the
deflated fire insurance values, systematically differ from the capital stocks implied by the
gross investment series in both levels and trend patterns.

Our primary data source is plant-level panel data from the annual manufacturing
statistics database of Statistics Norway, and all calculations are done separately for three
industries and two kinds of capital for each industry. Hence, the capital categories we
consider throughout this paper are more homogeneous than in most other studies, which

use capital as one aggregate.

2 The capital accumulation process

There is a close relationship between the capital stock accumulation and the flow of

investment. We assume discrete time, and let subscript ¢ denote period t. By definition,
(1) Ky = Ky — Dy + Jg,

where K is the capital stock at the end of period t, D; is the technical depreciation,
or retirement, of capital in period t and J; is the gross investment in period ¢, all in
quantity terms. A distinction between gross and net capital is often made, see, e.g.,
Bigrn (1989, chapter 3). The former represents the productive capacity of the capital
stock and measures the instantaneous flow of capital services, while the latter represents

the capital’s wealth dimension and measures the prospective flow of capital services. In



general, gross and net capital will not be numerically equal.* In analyzing production
technologies, we are primarily interested in the productive capacity of the capital stock
and will therefore concentrate on gross capital.® Eq. (1) says that the change in gross
capital from one period to the next, net investment, depends on gross investment and
the technical depreciation, i.e., the loss of efficiency and physical disappearance of old
capital goods.

The level of aggregation of capital is important. The total capital stock of a plant
or firm is, in general, not an aggregate of homogeneous units, but consists of buildings,
structures, machinery, and transport equipment of various kinds. The level of aggregation
will in practice reflect the data available and the purpose of the study. If the various
capital types enter the production process differently, there will be a trade-off between
simplicity and representing the data generating process in a realistic way. However, even
when an aggregate capital measure is chosen, the calculation of the capital stock series
should be done at the most disaggregate level whenever possible. With a disaggregated
approach, one can take into account that the depreciation pattern varies across capital
types. For example, it is generally assumed that buildings have longer service lives than
machineries and hence the form of their survival pattern differ.

Because data on depreciation in general are not available, the survival profile of the
capital must be specified. This is usually done parametrically. The survival function
defines the proportion of an investment made a certain number of periods ago that still
exists as productive capital. Let B, denote the share of the capacity of a capital stock
invested which survives at age s, s = 0,1,2,.... The (gross) capital stock in period ¢

can then be written as the following weighted sum of past gross investment:

(2) Ki =Y B.Ji_,.

5=0
We assume that B, is non-increasing in s, with By = 1 and B, = 0. This is the
mathematical description of the perpetual inventory method. Technical depreciation in

period t can then be written as

(3) Di=Ji— (Ky— Ki1) =Y bsJis,
s=1

where

(4) bs:Bs—l_Bs7 8:1,2,....

*They are, however, equal in the special case where the technical depreciation structure follows an ex-
ponential (with continuous time) or geometric (with discrete time) pattern. Then technical and economic

depreciation will also coincide numerically.
®Some authors use the term gross capital to denote cumulated gross investment, while net capital

denotes gross capital minus cumulated depreciation.



If B, is geometrically declining, often denoted as geometric decay, with factor 1—6
(0<8<1), we have B, = (1-6)*, s = 0,1,..., and, from (4), by = §(1-6)*"1, s = 1,2,...,
so that (2) and (3) take the form

o0

(5) K=Y (1-6)°J_s,
s=0
(6) Dy=6> (1=6)"" oy = 6K,_y.
s=1

We can then interpret 6 as the (technical) depreciation rate, i.e., the part of the capital
stock at the end of period ¢ — 1 which vanishes during period ¢. Geometric decay is the
only survival function for which D;/K;_; is constant over time for any gross investment
path.b

Combining (1) and (6), we get

(7) ](t - (1 - 6)](25—1 —|— Jt,

or equivalently,

(8) ](t - (1 - 6)_1[](154_1 - Jt_|_1].
From (7) we find, by inserting recursively for K;_1, K;_q,..., that
t—0—1
(9) Ki=(1-6)"Ke+ > (1-6)Jis,
5=0

which expresses K; by means of a benchmark value of the capital in period 8 (8 < 1),

and the investment flow during the intervening period, i.e., Joy1, Jot2,...,Ji. From (8)
we find, by inserting recursively for K11, Kyto,..., that

0—1
(10) Ki=(1-6)""Kg=> (1=8)""Jips,

s=1

which expresses K; by means of a benchmark value of the capital in period 6 (6 > t)
and the investment flow during the intervening period, ¢.e., Ji11, Ji42,. .., Jo. The first
term on the right hand side of (9) and (10) shows that the effect on the capital stock in
period t of changes in its benchmark value in period € depends on the depreciation rate
and the distance between the two periods. Hence, if (9) or (10) are used for calculation
of capital stock series for a given gross investment series, the sensitivity of the capital

stocks to measurement errors in the benchmark capital value depends on ¢ and t—86.

6 An alternative survival profile is the simultaneous retirement or ‘sudden death’, in which all capital
units retain their full efficiency during their whole life-time and then disappear completely. Then net and

gross capital will not be equal, and depreciation rates will depend on the time path of gross investment.



We choose (5) as our basic hypothesis on the depreciation structure. It is simple —
since it contains only one unknown parameter — but restrictive — since the implied hazard
rate of depreciation (in a corresponding stochastic interpretation of the depreciation
process) is age invariant and equal to bs/Bs,_; = 6. Several other parametrisations
have been proposed in the literature though, most containing more than one unknown
parameter, and with hazard rates depending on the age of the capital.” A distinct
advantage with the geometric decay specification from a practical point of view is that it
leads to (9) and (10), in which information about the age distribution of the benchmark
capital stock [Ky in (9) and (10)] is not needed for computing capital stocks in other
periods.

Depreciation rates are in general unobservable, and the next challenge is therefore
how to measure these parameters. It is common, even in micro-economic studies, to
use depreciation rates applied by statistics producing agencies in calculating national
accounts data as proxies for the true rates.® However, this practice has its weaknesses
because few statistics producing agencies have investigated thoroughly (at least in recent
years) the survival profiles of capital goods. Central statistical offices often “pick” service
lives or depreciation rates from other countries, and hence there is a tendency to a circle
effect where one or a few empirical investigations largely determine the survival profiles

of capital goods in many national accounts.”

"We could, for instance, replace (5) by a finite order MA, AR, or ARMA process (possibly with
some parameter restrictions). This could, however, increase the number of parameters to be estimated

substantially.
8Cf. the UN meetings in the Canberra Group on Capital Stock Statistics.
®Furthermore, there may be a gap between the observed investment outlays and the growth in the

productive capital stock. Jorgenson (1963) and Jorgenson and Stephenson (1967) argue that time is
required for the completion of new investment projects. Kydland and Prescott (1982) define this as the
‘time-to-build’. We may therefore wish to replace (1) by Kt = Ki—1 — D¢ + 5S¢, where S; represents the
capital finished and put into use during period ¢ and added to the productive capital stock at the end
of this period. Gross investment in period ¢, J;, as usually reported by the plants as the sum of the
‘values put in place’ of current investment projects, may then exhibit a lead in relation to the capital put
into use in period ¢. Then the relationship between S; and J; may be represented by a distributed lag
mechanism, and equality between these two variables will hold only ‘in the long run’. As ‘time-to-build’
processes are not easily observable, the formulation of the capital accumulation process for empirical
purposes must be given either in terms of the gross investment series J; available, or be based on specific
assumptions about the lag distribution or estimates taken from other studies or own ‘guesstimates’. A
reasonable assumption is that ‘time-to-build’ is important for large investment projects in buildings and
structures, but less so for smaller investment in machinery and transport equipment. Also, the data
frequency may be of relevance; with annual data, ‘time-to-build’ is probably less important than with,
for example, quarterly data. If there is virtually no lag between capital put in place and capital put into

use, St = J; holds as a good approximation for all ¢.



3 Data sources

The Norwegian Manufacturing Statistics database contains annual plant-level panel data.
All large plants, i.e., with 5 or more employees until the year 1992 and with 10 or more
employees thereafter, are included. We use data from the following industries: Pulp and
paper (341), Chemicals (351), and Basic metals (37). The industry numbers given in
parenthesis follow the Standard of Industrial Classification (SIC) System. Our sample
includes data from the years 1972 — 1993.

Available variables that are relevant in the calculation of the capital stock series are
(i) fire insurance values for the two categories Machinery and transport equipment (Ma-
chinery, for short) and Buildings and structures (Buildings, for short); (ii) gross invest-
ment (including net sales of capital) in Machinery, Transport equipment, and Buildings
and structures; (iii) rent value of real capital, both income and expenditure, on the two
capital types defined in (i); (iv) repair and maintenance costs split according to whether
the work is done by own employees or by others.

Using deflated fire insurance values as direct measures of the capital stock of differ-
ent categories may seem an appealing approach. A major problem is that the quality
of the reported fire insurance values is thought to be relatively poor due to a lack of
quality control. We therefore decided not to use these data as our only source of capital
information.

In order to be able to compute capital stock series by means of the perpetual inventory
formula (2), one needs time series for gross investment at least a number of periods
backwards equal to the maximal life-time of the capital, i.e., the largest ¢ for which
B; is positive. In the geometric decay case, which is characterized by a infinite survival
function [cf. (5)], the function must be truncated in some way. We do not have a sufficient
number of early observations on gross investment in our sample, and therefore need to
combine the data on investments with some level information to obtain a benchmark
value for the capital stock. We use deflated fire insurance values to construct benchmark
values, and (9) and (10) can then be used to calculate capital stock series.

A further question is how to define gross investment. We can either use the data
reported by the plants directly, or we can add the data on maintenance work and repair to
the gross investment figures reported. One argument for the latter approach is that these
components in general are very large in comparison with the gross investment recorded.
This may reflect, for example, that some plants define replacement investment, i.e.,
investment to compensate for depreciation, as maintenance work and repair. Measured

relative to the value of gross investment, the value of maintenance work and repair is as



much as 75 per cent on average.l®

4 Constructing capital stock series from
pre-selected depreciation rates

In this section, we evaluate some consequences for calculated capital stock series of choos-
ing a priori depreciation rates within the range usually reported in the literature. We
distinguish between two capital types, Machinery (including transport equipment) and
Buildings (including structures). The deflated fire insurance values are used to obtain
level information in a given reference year, which is selected as a benchmark according
to some rules that we describe below. Under geometric depreciation with pre-selected
depreciation rates, capital stock in the remaining years can be constructed by utilising
data on gross investment and recursions based on (9) and (10).

It is not clear how one should select the benchmark year. One possibility is to use the
first year in which the plant occur in the sample; the drawback is that no fire insurance
data for the years 1972 — 1973 are available. Missing observations also occur for some
plants in certain other years. To select the benchmark year we sort (in ascending order)
the time series for the deflated fire insurance values for the individual plant. The deflating
is based on the corresponding aggregate investment price index according to the national
accounts. Instead of using, for instance, the calendar year corresponding to the highest or
smallest value of the sorted time series, we choose the 75 percentile since this is believed
to be less influenced by measurement errors. Table 1 shows how the reference year is
chosen depending on the number of observations of the individual plant. In general,
for each plant, the reference year will depend on the capital type. From each reference
year, we use (9) and (10) to calculate time series for the capital stock of Machinery and
Buildings separately. For an example, see Appendix 1.

In order to evaluate the constructed time series of capital stocks when applying differ-
ent depreciation rates, it is useful to consider some of their implications at the industry
level. For a given calendar year, one can aggregate the stocks over the plants in each
industry. The sensitivity of the calculated capital stock series to the choice of depreci-
ation rate is illustrated in Tables 2a — 2c¢, which relate to Pulp and paper, Chemicals,
and Basic metals, respectively. The tables contain the aggregate results for both capital

types; the separate results for Machinery and Buildings are given in Appendix 2. The

1OWith our data, we have the possibility to take into account that plants can rent and lease capital. We
choose to ignore this, however, mainly because we face a major challenge of how to deflate these data.
Measured relative to the value of gross investment, the value of net lease of capital is only 4 per cent on

average.
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last column in each table gives, for comparison, the corresponding figures from the na-
tional accounts.!! In the national accounts, which use gross investment recorded in the
manufacturing statistics and assume geometric depreciation, the fire insurance values are
not utilised as benchmarks, however. When long time series for gross investment are
available this may give an adequate approximation because the initial capital stocks can

be set to zero.l2

Table 1. Rule for selecting the reference year

Number of years Observation number in the sorted
the plant is observed | data vector used as benchmark
19 — 22 5
15 - 18 4
11-14 3
7-10 2
1-6 1

We find that the choice of depreciation rates is very important for both the level of
the capital series and their growth profile, some values resulting in decreasing, other in
increasing capital stocks, given the benchmark values. We also find significant discrep-
ancies between our constructed capital figures and the corresponding national accounts
figures, also when similar depreciation rates are used. Some differences in the levels were
expected, however, for reasons pointed out earlier. The difference is most pronounced
for Machinery. Errors in the level of the capital stock series will, of course, affect other
variables derived from it. For instance, an error in a capital series by a factor £ will affect
the estimated rate of return by a factor of 1/k.

In general, the true rates of depreciation are unknown parameters, and we believe
that the lesson which can be learnt from this exercise, i.e., that calculated capital stock
series depend significantly on pre-selected depreciation rates, carries over to other micro
data. A framework for estimating depreciation rates, rather than picking their values a
priori, is therefore desirable, when possible. In the next section we present a framework in

which depreciation rates are estimated, combining stock and flow information on capital.

" The Norwegian national accounts office has recently carried through a main revision of the national
accounts data, starting in 1978. For the preceding years growth rates from old national accounts data

have been utilised to construct national accounts data for the years 1972 — 1977.
2Furthermore, the results will differ because the national accounts series are adjusted due to the

presence of small plants, which are not covered by the primary statistics. And, while we include repair

expenses in the gross investment figures, this is not the case in the national accounts data.
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5 Estimating depreciation rates from plant-level data

Our data set has the great advantage from the point of view of estimating depreciation
rates econometrically that it contains time series, for overlapping years, of both capital
stock variables and corresponding flow variables, gross investment, observed by indepen-
dent measurements. We use our framework with geometric decay depreciation, not in its
basic form, but with parametric specifications allowing for both systematic and random
errors in the fire insurance value as a measure of the capital variable in a technical sense.
Our starting point is (5), which for plant ¢, with a plant specific depreciation rate §;, is

represented as (we suppress, for simplicity, the subscripts for industry and capital type)

oo
(11) Kip=> (1= 6)°Ji s + uly,

5=0
i.e., the capital stock, for plant 7 in year ¢, K, (which is unobserved) is written as a
weighted sum of past investments, J;;, with plant specific, geometrically declining weights.
The error term, uj,, takes account of deviations from this rule.

Several reasons can be given why we should not expect (deflated) fire insurance values
and (unobserved) productive capital stocks to coincide. We mention a few: First, the
plants’ propensity to insure their capital stock may be changing over time, exhibiting,
for example, a smooth time trend, that may be common or plant specific. Second,
the capital variable which the plants insure may include not only tangible objects, but
also immaterial capital like research and development, good-will, know-how, etc. Third,
insurance value is a value related concept. Not infrequently full replacement values rather
than replacement values after deduction of cumulated depreciation up to the current
service age seem to be reported. Productive capital stocks are technical, capacity related
concepts. Fourth, improper price indices may be used in deflating the reported insurance
values. Other reasons why (11) may be too simplistic when applied to plant-level panel
data are (i) changing depreciation rates over time within the assumed geometric structure,
(ii) investment in the aggregated capital types, Buildings and Machinery, may change in
composition with respect to service life during the observation period, and (iii) even for
the most disaggregate capital types, the depreciation profile may be non-geometric.

Based on these considerations, we have chosen the following formalization of the
relationship between the fire insurance value of plant ¢ in period ¢ and the unobserved
capital stock
(12) Hy=c+77(t=1971)+ A, K, + €4,

where A; is a scaling factor for plant ¢, representing the systematic component of the

measurement error in the fire insurance value, 77 is a trend coefficient, representing
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possible trend effects in the insurance behaviour of the plants, ¢ is an intercept term
— all of which may be plant specific, as indicated by subscript 7 — and ¢;; is an error
term, including the random part of the measurement error. The error terms in (11) and
(12) are assumed to be independently distributed. White noise properties for u¥ and
€;; are assumed (although arguments could be given for applying MA or AR processes).
We refer to A; as the scale parameter, ¢; as the depreciation parameter, and 77 as the
trend parameter. In the empirical applications, we consider not only the case where these
parameters are plant specific, but also cases in which some of them are assumed plant
invariant for each industry.

The unobserved capital variable K is eliminated by inserting (11) into (12), giving
(13) H,=c +77(t—1971)+ LJ# + uyy,

1-(1-¢,)L

where u;, = A;u}, + ¢;;, and L denotes the lag-operator. Multiplying through (13) by the
lag-polynomial 1 — (1 —6,)L, we get

(14) Hy=c;+7(t=197T0)+ (1 = 8;)H,; ,_y + A; Ty + vy,

where ¢; = é;¢7 +(1—¢;)r7, 7, = 6,77, and v, = w; — (1= 8;)u; , 4, and hence 77" = 7;/6;
and ¢ = (1/6)[e; — (1/6) — 1) 7.

We estimate (14) and use the relationships defined above to obtain estimates of ¢
and 7. To calculate standard error of the estimated parameters, a first order Taylor
expansion of the non-linear relationships is used [cf. Kmenta (1986, p. 486)]. The lagged
endogenous variable in (14) is correlated with the error term v, since the latter follows
an MA(1)-process if u; is white noise. Hence, OLS yields inconsistent estimates, and we
therefore estimate (14) with instrumental variables for H.

Altogether, we specify ten models for the two capital types and three industries,

characterized by the following parameter restrictions:

Model A: ¢ = c*, TZ»* , 0, =0, A; = A, V.
Model B: ¢t =c*, T 0,62_6A_A Yi.

Model C: ¢ = c*, TZ: T, 0 =96, A; =1, Vi.
Model D: ¢ =¢*, 77 =0, 6; =6, A; =1, Vi.

ModelE:TZ»*:T,(SZ:(S, A; = A, Vi

Model F: 7 = 1%, 6; =6, Vu.

Model G: 6; =6, A; = A, V.

Model H: 77 =0, 6; =6, A; = A, Vi.
Model I: 77 =0, 6 =0, Vi.
Model J: All intercepts and slope coeflicients are plant specific.

When estimating the models some observations have been disregarded. For the left hand

side variables only observations dated later than 1974 are included, since fire insurance
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values for 1972 and 1973 are missing and the lagged endogenous variable occurs on
the right hand side. Furthermore, we only include observations where the deflated fire
insurance values exceed 1 million 1991-NOK. The models are estimated by the TSP 4.3
software, see Hall (1996).

The depreciation parameter should be positive, and within the same industry, we
expect its value to be smaller for Buildings than for Machinery, because Buildings, on
average, are expected to have a longer life time. Furthermore, the scale parameter should
have a positive sign, since an increase in the latent capital variable should be followed by
an increase in the deflated fire insurance value [cf. (12)].

Consider first the results for the models with no systematic heterogeneity across
plants, i.e., Models A — D in Tables 3 and 4. The OLS estimates of the most general model
within this model class, Model A, are reported in Table 3 for reasons of comparability
with other results, although, as mentioned above, it yields inconsistent estimates. We
therefore concentrate on the IV-estimation results. The estimated trend parameter 7*
is clearly not significant,'® indicating that there is no trend in the plants’ tendency to
insure their capital stock over time. A zero restriction on the trend parameter leaves both
the depreciation and the scale parameter virtually unaffected; compare Models B and D
with Models A and C, respectively. Furthermore, although we find that the intercept
term ¢* is significantly different from zero in only a few cases, the scale parameter A is in
general significantly different from unity. The latter implies that the measurement error
involved when using the fire insurance value as a proxy for the level of the capital stock
is not purely random but also has a systematic component.

While Model B is most consistent with 7*=0and A#1, it produces negative estimates
of the depreciation parameter in two cases. If we restrict the scale parameter to unity,
however, as in Model C and D, all depreciation parameters come out with the correct
sign. It should be noted that introducing the unity restriction on the scale parameter
increases the estimated depreciation parameter.

Consider next the models with plant specific coefficients, i.e., Models F/ - J in Tables 5
and 6. The most general model, Model J, leads to estimating (14) on data for each plant
separately. However, since the estimated depreciation parameters and scale coefficients
in this model to a large extent turned out to be incongruous with a priori assumptions
and quite unstable, they are not reported. This may reflect overparametrisation and it
seemed necessary to impose some restrictions on the coefficient structure across plants.
In Models E — I, the depreciation parameter is equal across all plants classified in the

same industry, while the intercept term is plant specific.

2 Throughout, the significance level is set to 5 per cent.
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Models E and F imply that there is a significant trend in the insurance behaviour
in three and four cases, respectively. This gives some support to the hypothesis that
there has been a systematic trend in plants’ tendency to insure their capital stock, which
suggests a systematic measurement error in the fire insurance values as a proxy for the
capital stock. It is, of course, crucial to take this into account if the aim is to calculate
capital stock variables, Ky, from (12). It is interesting to notice that the estimated depre-
ciation parameters are relatively robust with respect to imposition of the zero restriction
on the trend parameter; compare Model E with Model H, and Model F with Model 1. If
we allow the trend parameter to be heterogeneous across plants, as in Model G, we get
implausible depreciation parameters; the estimates are either negative or very large. We
therefore did not go further on this route. The estimated scale parameters in Models E
and H are in general significantly less than unity. Hence, when heterogeneity is intro-
duced in the relationship between the latent capital variable and the fire insurance value,
we find clear evidence of a systematic measurement error. Negative scale parameters (cf.
Tables 5 and 6) are, of course, inconsistent with a priori assumptions.

Consider next the effect of introducing plant specific scale parameters on the depre-
clation parameters. Comparing Model E with F, and Model H with I, we find that the
depreciation parameter in some cases is substantially affected. Hence, our data sup-
port the conclusion that the estimated depreciation parameter is more sensitive to plant
invariance in the scale parameter than to zero restrictions on the trend effect.

From the discussion of Models E — I above, we can conclude that the relationship
between the latent capital variable K;; and the observed fire insurance value H;; seems
to vary across industries and capital categories. When both the scale parameter and
the intercept term are plant specific, i.e., in Model F, the estimated depreciation rate
for Buildings are higher than for Machinery in all the three industries considered. This,
rather surprising result, may to some extent be ascribed to the fact that the insurance
behaviour vis-a-vis Buildings is different from that of Machinery in a way not captured by
our model. It may for example be more difficult to assess the “true” value of Machinery
than of Buildings, since Buildings are more frequently traded in second hand markets.

By comparing the models without heterogeneity with those with heterogeneity we
find a clear evidence that introducing heterogeneity in the scale parameter or intercept
term influences the estimates of the depreciation parameters substantially. Generally, the
estimates seem to be higher when allowance is made for parameter heterogeneity than
when full homogeneity is assumed.

In Table 7 the residual coefficient of variation (RCV) of Models A — I is given along
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with the number of observations and the mean of the left hand side variable.'* The RCV
in general is large, and we will not put too much emphasis on this measure as a tool
for discriminating between the models. It is interesting to notice that the RCV tends to
be smaller in models with heterogeneity in the coefficients than in models without such
heterogeneity.

Our overall conclusion then is that the measurement error involved when using fire
insurance values as proxies for capital stocks includes systematic as well as random com-
ponents. We recommend that a relatively general relationship between the latent capital
variable and the proxy variable should be specified and tested. In our data we found that
the trend effect is of minor importance, while a non-unitary scale parameter in general is
important. All the regressions include an intercept term, however, which also represents

a systematic measurement error component.

6 Concluding remarks

There is no obvious, uniquely “right” way to construct capital stock series. The chosen
method will very much depend on the data available and the purpose of the investiga-
tion. The most common approach in the micro-econometric literature is the perpetual
inventory method supplemented by the assumption of a geometrically declining survival
pattern of the capital stock. The value of depreciation rates are typically decided upon a
priori. In econometric production and cost function analyses, the calculation of capital
stocks is seldom considered a research task on its own, and little is done to evaluate the
consequences of important assumptions about the capital input.

The purpose of this paper has been two-fold, first to check the robustness of choosing
different ‘reasonable’ depreciation rates a priori, and second to investigate whether stock
information (deflated fire insurance series) and flow information (gross investment series)
can be reconciled, and in this process analyse the importance of measurement errors and
heterogeneity.

We have used plant-level panel data from the Norwegian manufacturing statistics,
and have calculated capital stock series for two capital types and three industries: Pulp
and paper, Chemicals, and Basic metals. Two kinds of investigations have been per-
formed. First, we have examined the robustness of the results, i.e., the implication on
the calculated capital stock series, when choosing different depreciation rates a priori.

The depreciation rates chosen are within the range usually reported in the literature. As

The number of observations, and hence also the mean of the left hand side variable, vary across the
alternative models for the same industry and capital category because of our choice of instruments and

the pre-exclusion of plants with less than 10 observations in some regressions.
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a benchmark for the level of the capital stocks, we have used deflated fire insurance values
in a specific year picked by an @ priori defined procedure. The conclusion is that the
choice of depreciation rates is of substantial importance both for the level of the capital
series and their growth profile, some values resulting in decreasing, other in increasing
capital stocks over time.

Second, we have tried to estimate the depreciation rates by combining time series
data on gross investments and fire insurance values, again assuming geometric depre-
ciation. The model allows for both systematic and random measurement errors in the
fire insurance values as a measure of the capital stock in a technical sense. Depreciation
rates have been estimated under different assumptions about the systematic and random
measurement errors.

We conclude that the measurement error involved when using deflated fire insurance
values as proxies for the latent capital stock variable includes systematic as well as random
components. The relationship between the fire insurance values and the true capital stock
variable varies across capital type and industry, however. From this we recommend that
a rather general relationship should be specified and tested when attempting to reconcile
stock information based on a proxy variable and flow information from micro units. While
we have found only modest support for the hypothesis that plants’ insurance behaviour
has changed systematically over time, since the trend effect is of minor importance,
more support is found for a non-unitary a scale parameter. Hence, there is a systematic
discrepancy between the latent capital stock and deflated fire insurance values.

We have found a clear evidence that introducing heterogeneity in the scale parameter
or intercept term influences the estimates of the depreciation rates substantially. Gener-
ally, the estimates seem to be higher when allowance is made for parameter heterogeneity
than when the model is homogeneous across the plants. When both the scale parameter
and the intercept term are plant specific, the estimated depreciation rate for Buildings
are higher than for Machinery in all the three industries considered. This, rather surpris-
ing, result may to some extent be ascribed to the differences in the insurance behaviour
vis-a-vis the two capital categories.

It is clear that further research is needed in this field, with focus on the measurement
error and importance of heterogeneity when attempting to estimate capital stock variables
and/or depreciation rates. We expect this issue to be of general importance, and it
would be of interest to analyse the relationship between the true capital stock variables
and its proxy variables within other information sets. It might also be worthwhile to
incorporate more elaborate time series methods and/or more flexible parametrisations of

the depreciation process.
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Table 2a. Aggregate capital stock in Pulp and paper. Implications of different depreciation rates.

Mill. 1991-NOK

Alternative depreciation rates NNA?
Year M: 8%, B: 4% M: 6%, B: 3% M: 4%, B: 2% M: 8%, B: 4%
1972 73097 50184 34946 10792
1973 68802 48598 34874 10793
1974 65211 47473 35174 11074
1975 62173 46670 35703 11842
1976 59066 45618 35925 12081
1977 55690 44086 35564 12612
1978 52416 42390 34886 13410
1979 49572 40999 34454 14151
1980 54087 45651 39117 16178
1981 52462 45407 39846 17625
1982 48665 42895 38280 17150
1983 45441 40834 37106 16522
1984 42638 39046 36109 16146
1985 40907 38287 36153 15807
1986 39592 37838 36444 15915
1987 38586 37575 36827 16301
1988 37450 37137 37023 16233
1989 36316 36669 37192 15781
1990 35655 36594 37700 15863
1991 35239 36748 38446 16065
1992 35325 37211 39306 18008
1993 33375 35658 38200 17771
? National Accounts.
Table 2b. Aggregate capital stock in Chemicals. Implications of different depreciation rates.
Mill. 1991-NOK
Alternative depreciation rates NNA*®
Year M: 13.5%, B: 4% M: 10.13%, B: 3% M: 6.75%, B: 2% M: 13.5%, B: 4%
1972 125631 63654 32587 13322
1973 111003 58851 31606 13066
1974 97484 54093 30477 12955
1975 86166 50202 29811 14114
1976 76470 46791 29266 16046
1977 74760 49626 33986 18242
1978 88684 61336 43735 19192
1979 79607 57502 42752 18188
1980 71489 53901 41739 17324
1981 64806 51018 41155 16855
1982 58760 48174 40360 16272
1983 52790 44820 38745 15685
1984 48575 42742 38197 15482
1985 44770 40828 37713 15256
1986 41619 39251 37400 15269
1987 39285 38188 37422 15400
1988 37159 37184 37442 15430
1989 35353 36314 37486 15312
1990 33417 35111 37055 15158
1991 32801 35147 37823 15388
1992 31349 34235 37561 14973
1993 30080 33419 37331 14440

# National Accounts.
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Table 2c. Aggregate capital stock in Basic metals. Implications of different depreciation rates.

Mill. 1991-NOK

Alternative depreciation rates NNA?
Year M: 8%, B: 4% M: 6%, B: 3% M: 4%, B: 2% M: 8%, B: 4%
1972 86942 54950 34152 17018
1973 82194 53689 34700 17112
1974 79437 53713 36171 17703
1975 76390 53475 37543 18423
1976 73287 53104 38749 18902
1977 70691 52949 40047 19410
1978 67655 52219 40754 19621
1979 64741 51407 41295 19602
1980 63080 51668 42843 20097
1981 62723 53091 45507 21635
1982 61183 53195 46806 22425
1983 59055 52513 47208 22243
1984 56881 51729 47510 22196
1985 58346 54416 51188 23264
1986 57468 54717 52476 25046
1987 57117 55364 53994 25399
1988 55754 55077 54696 24967
1989 54796 54903 55261 24665
1990 52413 53321 54455 24473
1991 51095 52807 54752 24106
1992 49331 51804 54555 23493
1993 47798 50972 54497 22524

# National Accounts.

19




Table 3. Model A. Standard errors in parentheses™

Industry | Capital OLS-estimates® IV-estimates®
cate-
gory o o 5 A " - 5 A
M | 3531517  -19562 -0.005  0.650 | -1831163 -22845 -0.010 0578
Pulp and (16638688) (74831)  (0.006) (0.085) | (4405556) (41279) (0.007) (0.089)
aper
bap B 133751 6934 0043 0212 | -9340064 24795  0.003  0.194
(121690)  (3370)  (0.008) (0.014) | (64159191) (93581) (0.008) (0.014)
_ M 236710  -938 0056  1.146 | 1933648 -10586 0011  0.384
Clieml- (735614)  (24515)  (0.015) (0.248) | (16709751) (148051) (0.017) (0.284)
cas B 330801 10637 0057 1905 | -254375 7353 0051  1.866
477191)  (15931)  (0.014) (0.210) | (635962) (19766) (0.017) (0.228)
‘ M | 202208 22535 0275 3.113 | 3647223 65508 -0.014  0.550
Basui (97046)  (5933)  (0.019) (0.250) |(16510293) (163924) (0.031) (0.349)
¢
fetals B 166267  -1798  0.090  0.851 72784 1916  0.085  0.787
(149767)  (6379)  (0.012) (0.109) | (172403)  (7074) (0.012) (0.111)

* All coefficients are plant invariant.
® A first order Taylor-expansion is used to calculate the standard error of ¢* and t* , ¢f. Kmenta (1986, p. 486).
¢ The OLS estimates are biased.
4 Investment lagged one period and deflated fire insurance value lagged two periods are identifying instrumental variables.

Table 4. Models B, C and D. IV-estimates. Standard errors in parentheses *°

Industry

Capital

cate- Model B: t* =0 Model C: A=1 Model D: t*=0, A=1

gory c* ) A c* ) T* c* 5
M 107270 -0.011 0575 | -3791584 0011 34276 | -171328  0.010
Pulp and (181558) (0.007) (0.089) | (4621141) (0.005) (36218) | (274665) (0.005)
paper B 1048902 0.002  0.194 44802 0.138 -2 44431 0.138
(4218556) (0.008) (0.014) | (38070)  (0.014) (1990) | (10339) (0.013)
_ M 804792 0011 0383 | 106904 0041 2088 183015 0.041
Cl}eml- (1374129) (0.017) (0.284) | (1381085) (0.010) (37346) | (196786) (0.010)
cas B 22376 0050  1.867 | -2091675  0.010 21297 | 273133 0.010
(113960) (0.017) (0.228) | (11484300) (0.013) (99306) | (537286) (0.013)
. M | 247124 0010 0584 | 1015858  0.018 -12388 | 161678  0.018
Basui (1498272) (0.029) (0.337) | (8247372) (0.018) (116202) | (583369) (0.018)

t.

metals B 118495  0.084  0.783 33959 0.099 2960 98929  0.098
(38112)  (0.012) (0.110) | (136484)  (0.010) (6040) | (31555) (0.010)

* All coefficients are plant invariant. Investment lagged one period and deflated fire insurance value lagged two periods are
identifying instrumental variables.
® A first order Taylor-expansion is used to calculate the standard error of ¢* and t* , ¢f. Kmenta (1986, p. 486).
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Table 5. Models E, F and G. IV-estimates. Standard errors in parentheses "

Industry Capital | Model E: c* is plant-specific® Model F: c* and A are | Model G: ¢* and t* are
category plant-specific’ plant-specific®
T* ) A T* ) 5 A
M 14208 0.073 0.401 17639 0.069 0.574 0.345
Pulp and (5908)  (0.017)  (0.101) | (7146) 0.019) | (0.062) (0.104)
paper B 4309 0.033 0.189 4176 0.185 | -0.117 0.146
(5895)  (0.032)  (0.015) | (1097) 0.034) | (0.060) (0.018)
. M 14259 0220  -0.935 12759 0.015 1517 -1.523
Chemicals (7353)  (0.044)  (0.336) | (130744)  (0.062) | (0.299) (0.483)
B 11760 0.133 1.703 23783 0.068 0.429 2331
(8595)  (0.027)  (0.345) | (18789)  (0.029) | (0.045) (0.347)
. M 17677 0.146 0.300 24734 0204 | -0.499 0.227
Basui (16454)  (0.108)  (0.341) | (12278)  (0.127) | (0.440) (0.521)
t

fetals B 5761 0412 0573 7326 0.384 0.796 0.723
(1685)  (0.034)  (0.119) | (1958) (0.036) | (0.059) (0.129)

*The estimates of the plant specific coefficients are not reported. Only plants observed 10 years or more are included.

® A first order Taylor-expansion is used to calculate the standard error of ¢* and t* , ¢f. Kmenta (1986, p. 486).

¢ Investment lagged one period and deflated fire insurance value lagged two periods are identifying instrumental variables.
4 Deflated fire insurance value lagged two periods is instrumental variable.

Table 6. Models H and 1. IV-estimates. Standard errors in parentheses®

Model H: t*=0; c* is plant-specific” Model I: 1%=0; c* and A
Industry Capital are plant-specific”
category S A S
M 0.060 0.399 0.053
Pulp and (0.015) (0.101) (0.017)
paper B 0.033 0.190 0.146
(0.028) (0.015) (0.029)
. M 0.195 -0.867 0.013
Chemicals (0.042) (0.335) (0.056
B 0.124 1.763 0.060
(0.026) (0.341) (0.027)
] M 0.123 0.283 0.142
Basic metals (0.799) (0.342) (0.093)
B 0.381 0.547 0.347
(0.032) (0.118) (0.033)

*The estimates of the plant specific coefficients are not reported. Only plants observed 10 years or more are included.
®Investment lagged one period and deflated fire insurance value lagged two periods are identifying instrumental variables.
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Table 7. Regression diagnostics

Number of observations Mean of left hand side Residual coefficient of

Model variable variation (RCV)*
M | B M | B M \ B
Pulp and paper
Aots 2049 1806 201001 72962 0.4095 0.4494
Ay 1894 1683 208548 75123 0.3951 0.4419
B 1894 1683 208548 75123 0.3950 0.4418
C 1894 1683 208548 75123 0.3972 0.7522
D 1894 1683 208548 75123 0.3972 0.7520
E 1722 1548 224489 79629 0.3750 0.4368
F 1721 1536 224618 80198 0.3829 0.4223
G 1721 1536 224618 80198 0.3705 0.4679
H 1722 1548 224489 79629 0.3754 0.4367
1 1721 1536 224618 80198 0.3836 0.4266
Chemicals
Aots 884 840 400623 183482 0.5450 0.7599
Ay 836 799 413897 189245 0.5389 0.7539
B 836 799 413897 189245 0.5386 0.7535
C 836 799 413897 189245 0.5372 0.7621
D 836 799 413897 189245 0.5369 0.7617
E 786 761 437849 197963 0.4928 0.7444
F 786 760 437849 198221 0.5269 0.7522
G 786 760 437849 198221 0.6577 0.6821
H 786 761 437849 197963 0.4949 0.7445
I 786 760 437849 198221 0.5269 0.7535
Basic metals

AoLs 1458 1387 346239 168248 0.9768 0.6643
Ay 1376 1313 358036 171556 1.0410 0.6366
B 1376 1313 358036 171556 1.0389 0.6363
C 1376 1313 358036 171556 1.0262 0.6370
D 1376 1313 358036 171556 1.0257 0.6368
E 1252 1196 377910 182312 0.9856 0.6036
F 1244 1187 380328 183672 0.9842 0.6056
G 1244 1187 380328 183672 1.3813 0.6275
H 1252 1196 377910 182312 0.9963 0.6043
I 1244 1187 380328 183672 1.0129 0.6084

? Defined as the standard error of regression (SER) divided by the empirical mean of the left hand side variable.
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Table Ala. Construction of capital stock data for a specific plant. Machinery. The depreciation rate is 4%.

Mill. 1991-NOK

Year Gross investment Deflated fire insurance value® Calculated capital stock
1972 23.43 NA 337.43
1973 6.78 NA 330.71
1974 591 111.42 323.39
1975 5.83 96.21 316.29
1976 8.06 95.65 311.70
1977 19.37 90.54 318.60
1978 17.64 95.78 323.50
1979 29.36 121.48 339.92
1980 19.35 158.92 345.67
1981 10.15 154.10 342.00
1982 9.83 186.72 338.14
1983 9.11 188.58 333.73
1984 20.88 242.75 341.26
1985 11.61 316.66 339.22
1986" 12.96 338.62 338.62
1987 3.54 339.23 328.61
1988 4.85 340.28 320.32
1989 10.56 371.01 318.07
1990 10.09 393.92 315.44
1991 4.93 102.57 307.75
1992 6.04 102.64 301.48
1993 10.01 281.58 299.43

* NA signifies no data.

The benchmark year is 1986.

Table Alb. Construction of capital stock data for a specific plant. Buildings. The depreciation. rate is 4%.

Mill. 1991-NOK

Year Gross investment Deflated insurance value® Calculated capital stock
1972 0.70 NA 53.39
1973 0.75 NA 52.01
1974 1.71 NA 51.64
1975 1.60 NA 51.18
1976 1.62 NA 50.75
1977 18.67 43.87 67.39
1978 3.01 50.23 67.70
1979 8.00 57.74 72.99
1980 3.80 65.77 73.88
1981 2.46 61.09 73.38
1982 2.36 51.86 72.80
1983 1.66 64.70 71.55
1984 5.33 57.12 74.02
1985 4.17 58.36 75.22
1986 3.73 56.22 75.95
1987 -0.26 49.83 72.65
1988 -0.38 48.63 69.36
1989° 3.98 70.57 70.57
1990 1.21 75.04 68.96
1991 0.00 75.14 66.20
1992 0.51 73.62 64.06
1993 2.63 73.62 64.13

*NA signifies no data.

® The benchmark year is 1989.
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Appendix 2: Supplementary results

Table A2a. Aggregate capital stock of Machinery in Pulp and paper. Implications of different depreciation rates.
Mill. 1991-NOK

Year Depr. 8% Depr. 6% Depr. 4% NNA? 8%
1972 64244 42567 28368 5513
1973 59965 40872 28089 5597
1974 56163 39414 27960 5782
1975 53015 38385 28170 6496
1976 49769 37077 28038 6678
1977 46483 35524 27564 7110
1978 43300 33826 26803 7681
1979 40447 32332 26186 8049
1980 43882 35806 29582 9804
1981 41977 35183 29841 10894
1982 38672 33076 28601 10619
1983 35888 31362 27684 10215
1984 33374 29779 26810 10005
1985 31541 28826 26570 9721
1986 30333 28397 26792 9927
1987 29324 28052 27013 10289
1988 28219 27572 27089 10305
1989 26944 26885 26955 9879
1990 25831 26289 26867 9642
1991 24888 25834 26912 9439
1992 23129 24396 25811 9249
1993 21393 22973 24739 8964

# National Accounts.

Table A2b. Aggregate capital stock of Buildings in Pulp and paper. Implications of different depreciation rates.
Mill. 1991-NOK

Year Depr. 4% Depr. 3% Depr. 2% NNA® 4%
1972 8852 7616 6579 5279
1973 8837 7726 6785 5196
1974 9048 8059 7214 5291
1975 9158 8285 7533 5346
1976 9297 8541 7887 5403
1977 9208 8562 8001 5502
1978 9116 8564 8082 5729
1979 9125 8666 8267 6102
1980 10205 9846 9534 6374
1981 10486 10225 10005 6731
1982 9993 9819 9679 6531
1983 9552 9472 9422 6308
1984 9263 9268 9299 6140
1985 9366 9461 9583 6086
1986 9259 9442 9652 5988
1987 9262 9523 9815 6012
1988 9231 9566 9934 5928
1989 9372 9784 10237 5902
1990 9824 10305 10832 6221
1991 10351 10915 11534 6626
1992 12196 12814 13495 8759
1993 11982 12685 13461 8807

 National Accounts.
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Table A3a. Aggregate capital stock of Machinery in Chemicals. Implications of different depreciation rates.

Mill. 1991-NOK

Year Depr. 13.5% Depr. 10.13% Depr. 6.75% NNA? 13.5%
1972 118129 57502 27546 6370
1973 103577 52669 26460 6248
1974 90104 47846 25183 5993
1975 78731 43792 24272 6684
1976 68921 40170 23442 7983
1977 63280 39559 25130 9404
1978 74937 48912 32462 9579
1979 65925 44969 31224 8792
1980 57870 41259 29958 8127
1981 51153 38176 29031 7790
1982 45140 35204 27964 7359
1983 39552 32085 26453 6976
1984 35359 29882 25645 6727
1985 31493 27764 24821 6492
1986 28325 26032 24219 6499
1987 25895 24742 23886 6537
1988 23628 23465 23502 6456
1989 21735 22379 23198 6356
1990 19696 20966 22444 6050
1991 18669 20466 22543 6050
1992 17252 19468 22062 5760
1993 15972 18525 21580 5315

# National Accounts.

Table A3b. Aggregate capital stock of Buildings in Chemicals. Implications of different depreciation rates.

Mill. 1991-NOK

Year Depr. 4% Depr. 3% Depr. 2% NNA® 4%
1972 7502 6153 5041 6952
1973 7426 6182 5146 6818
1974 7380 6247 5294 6962
1975 7435 6410 5538 7430
1976 7549 6621 5824 8063
1977 11480 10067 8856 8838
1978 13747 12424 11272 9613
1979 13682 12533 11527 9395
1980 13619 12642 11781 9197
1981 13653 12841 12124 9065
1982 13620 12970 12395 8914
1983 13238 12734 12292 8709
1984 13216 12859 12553 8756
1985 13277 13064 12892 8764
1986 13294 13219 13181 8770
1987 13390 13446 13536 8863
1988 13531 13718 13940 8973
1989 13619 13934 14287 8956
1990 13721 14145 14612 9108
1991 14132 14681 15279 9338
1992 14097 14768 15498 9213
1993 14108 14894 15751 9125

 National Accounts.
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Table Ada. Aggregate capital stock of Machinery in Basic metals. Implications of different depreciation rates.

Mill. 1991-NOK

Year Depr. 8% Depr. 6% Depr. 4% NNA? 8%
1972 76030 46109 27011 8789
1973 71137 44531 27120 8912
1974 68037 44076 28015 9427
1975 64514 43302 28730 9970
1976 61020 42370 29247 10291
1977 58043 41672 29876 10681
1978 54869 40637 30143 10852
1979 51824 39535 30264 10915
1980 49409 38886 30770 11058
1981 47765 38860 31846 11728
1982 45974 38548 32579 12400
1983 43735 37595 32564 12204
1984 41603 36692 32600 12249
1985 41885 38037 34782 12964
1986 40783 37962 35548 14296
1987 40582 38644 36987 14526
1988 39130 38114 37291 14161
1989 38094 37747 37545 13821
1990 36061 36402 36861 13636
1991 34879 35895 37026 13453
1992 33252 34889 36677 12939
1993 31774 33977 36390 12206

# National Accounts.

Table A4b. Aggregate capital stock of Buildings in Basic metals. Implications of different depreciation rates.
Mill. 1991-NOK

Year Depr. 4% Depr. 3% Depr. 2% NNA® 4%
1972 10912 8841 7141 8229
1973 11057 9158 7580 8200
1974 11400 9637 8156 8275
1975 11876 10173 8813 8453
1976 12267 10734 9502 8611
1977 12648 11276 10171 8729
1978 12786 11581 10610 8768
1979 12917 11872 11031 8687
1980 13671 12782 12073 9038
1981 14959 14230 13661 9907
1982 15209 14647 14227 10026
1983 15320 14918 14643 10039
1984 15278 15036 14910 9947
1985 16462 16379 16405 10300
1986 16686 16755 16928 10750
1987 16535 16721 17007 10873
1988 16624 16963 17405 10807
1989 16703 17156 17716 10845
1990 16352 16918 17594 10837
1991 16216 16913 17726 10653
1992 16079 16915 17878 10554
1993 16025 16995 18108 10318

# National Accounts.
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Appendix 1: Capital stock calculation. An example

In this appendix, we examplify the method applied to calculate capital series in Section 4
by considering a specific plant. The observed gross investment and fire insurance value
and the calculated capital value are shown in Tables Ala and Alb.

The plant we consider is observed in 22 years and, in accordance with Table 1, the
reference year is given as the fifth largest observation in the sorted time series. The fifth
largest value of the deflated fire insurance value occurs in 1986 for Machinery, and in 1989
for Buildings. Let Hy; denote the (deflated) fire insurance value of capital type k in year
t (k = M for Machinery and k = B for Buildings) and let Ji; denote gross investment of
capital type k and Ky, the stock of capital type k for the plant in year . The constants
opr and ép denote depreciation rates for Machinery and Buildings, respectively. We have
chosen K ;1956 = H 1056 a0d K pigsg = Hpgqgsg- For the calculation of the capital stock
of Machinery in the remaining years we can utilise the following forward and backward

recursions, cf. eqs. (7) — (10) in the main text:

Ky = (1= 3 ) Kpr e+ T t = 1987,1988,...,1993,
Ky = (0=63) " (Kapior = Tarien)s t =1985,1984,...,1972.

For the stock of Buildings the recursions are

Kpi=(1—-06g)Kp, |+ Jps t =1990,1991,...,1993,
Kp,=(1—-6) " (K1 — IBis1)s t = 1988,1987,...,1972.

This procedure cannot be used for all plants because it sometimes produces negative
values — depending on the value of the depreciation rate. For the plants for which this
is the case, other reference years have been chosen (usually corresponding to the lowest

values in the ordered series).

23



References

Barnhart, S.W., and E.M. Miller (1990): Problems in the Estimation of Equations Con-

taining Perpetual Inventory Measured Capital. Journal of Macroeconomics, 12, 637
- 651.

Bigrn, E. (1989): Tazation, Technology and the User Cost of Capital. North-Holland,
Amsterdam.

Bigrn, E. (1998): Survival and Efficiency Curves for Capital and the Time-Age-Profile
of Vintage Prices. Empirical Fconomics, 23, 611 — 633.

Bigrn, E., R. Golombek, and A. Raknerud (1998): Environmental Regulations and Plant
Exit. A Logit Analysis Based on Establishment Panel Data. Environmental and Re-
source Fconomics, 11, 35 — 59.

Bughin, J. (1993): Union-Firm Bargaining and Test of Oligopolistic Conduct. Review of
FEconomics and Statistics, 75, 563 — 567.

Doms, M.E. (1996): Estimating Capital Efficiency Schedules within Production Func-
tions. Economic Inquiry, 34, 78 — 92.

Forsund, F.R., and L. Hjalmarsson (1988): Choice of Technology and Long-Run Techni-
cal Change in Energy-Intensive Industries. Energy Journal, 9, 79 — 97.

Galeotti, M., L. Guiso, B. Sack, and F. Schiantarelli (1997): Inventories, Production
Smoothing and the Shape of the Cost Function. Discussion Paper No. 1697, Centre
for Fconomic Policy Research, London.

Hall, B.H. (1996): TSP Reference Manual. Version 4.3. TSP International.

Hsiao, C. and K. Tahmiscioglu (1997): A Panel Analysis of Liquidity Constraints and
Firm Investment. Journal of the American Statistical Association, 92, 455 — 465.

Hulten, C.R., J.W. Robertson, and F.C. Wykoff (1989): Energy, Obsolescence, and the
Productivity Slowdown. In Technology and Capital Formation, ed. by D.W. Jorgen-
son and R. Landau. Cambridge, Mass.: MIT Press, pp. 225 — 258.

Hulten, C.R., and F.C. Wykoff (1981): The Estimation of Economic Depreciation Using
Vintage Asset Prices: An Application of the Box-Cox Power Transformation. Journal
of Fconometrics, 15, 367 — 396.

Jorgenson, D.W. (1963): Capital Theory and Investment Behavior. American Fconomic
Review, 53, 47 — 56.

Jorgenson, D.W. (1996): Empirical Studies of Depreciation. Fconomic Inquiry, 34, 24 —
42.
Jorgenson, D.W., and J.A. Stephenson (1967): The Time Structure of Investment Be-

havior in the United States Manufacturing, 1947 — 1960. Review of Fconomics and
Statistics, 49, 16 — 27.

Klette, T.J., and Z. Griliches (1996): The Inconsistency of Common Scale Estimators
when Output Prices are Unobserved and Endogenous. Journal of Applied Feconomet-
rics, 11, 343 — 361.

Kmenta, J. (1986): Elements of Economtrics. Second edition. New York: Macmillan.

Kydland, F.E., and E.C. Prescott (1982): Time to Build and Aggregate Fluctuations.
Econometrica, 50, 1345 — 1370.

28



Lindquist, K.-G. (1995): The Existence of Factor Substitution in the Primary Aluminium
Industry: A Multivariate Error-Correction Approach Using Norwegian Panel Data.
Empirical Economics, 20, 361 — 383.

Lindquist, K.-G. (2000): The Response by the Norwegian Aluminium Industry to Chang-
ing Market Structure. International Journal of Industrial Organization, forthcoming.

Miller, E.M. (1983): Capital Aggregation in the Presence of Obsolescence-Inducing Tech-
nical Change. Review of Income and Wealth, 29, 283 — 296.

Miller, E.M. (1990): Can a Perpetual Inventory Capital Stock be Used for Production
Function Parameter Estimation? Review of Income and Wealth, 36, 67 — 82.

Ohanian, N.K. (1994): Vertical Integration in the U.S. Pulp and Paper Industry, 1900 —
1940. Review of Feconomics and Statistics, 76, 202 — 207.

Prucha, I.R., and M.I. Nadiri (1996): Estimation of the Depreciation Rate of Physical
and R & D Capital in the U.S. Total Manufacturing Sector. Fconomic Inquiry, 34,
43 — 56.

Reynolds, S.S. (1986): Strategic Capital Investment in the American Aluminium Indus-
try. Journal of Industrial Fconomics, 34, 225 — 245.

Usher, D. (ed.) (1980): The Measurement of Capital. The University of Chicago Press,
Chicago.

Wadhwani, S., and M. Wall (1986): The UK Capital Stock — New Estimates of Prema-
ture Scrapping. Ozford Review of Feonomic Policy, 2, 44 — 55.

Wolfson, P. (1993): Compositional Change, Aggregation, and Dynamic Factor Demand.

Estimates on a Panel of Manufacturing Firms. Journal of Applied Fconometrics, 8,
129 — 148.

29



