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1. Introduction

As is wellknown, the discrete choice theory was originally developed by psychologists, among others
by Thurstone (1927) and Luce (1959), but it is fair to say that it was the seminal work by McFadden
(1973) which, to a large extent, made economists aware of the potential of this theory for analyzing a
large number of choice settings, such as choice among consumer brands, labor force participation,
choice of mode of transportation, etc.

In the last decade the issue of identification of discrete choice models has been addressed by
many researchers, cf. Manski (1988), Thompson (1989), Strauss (1979), Yellott (1977) and, most
notably, Matzkin (1992, 1993). For example, Yellott (1977) proved that under fairly weak regularity
conditions the distribution of the random terms in an additive random utility model are identified
apart from a scale and location transform, provided the random terms are i.i.d. Matzkin is particularly
concerned with nonparametric identification under different types of regularity conditions. In this
paper we provide simple proofs related to identification under fairly general regularity conditions.
The regularity conditions we apply are different from the ones applied by Matzkin. It is believed,
however, that the assumptions presented in this paper are standard ones which are easy to interpret.
Furthermore, under the assumptions maintained in this paper, the results on identification (or rather

the "degree" of identification) are rather simple to prove.

2. Identification in discrete choice models

Discrete choice models apply in the context of analyzing behavior when individual agents make
choices from finite sets of mutually exclusive alternatives. To describe a standard modelling
framework, let S be the universe of m discrete alternatives, let 3 be the collection of subsets from S
and let B, B €3, be the agent's choice set i.e., the set of alternatives that are feasible to him. Let U; be

the utility assigned to alternative j €S. Since the alternatives are mutually exclusive the agent will

choose alternative j if U; =max, U, . Alternative j is described by a vector of observable attributes
z; =(sz 2 Zipsnees zjK) .Let z= (Z, 3ZoyeesZyy ) . To the observing econometrician the utilities,

U= (Ul, U,,....,U, ) , are perceived as random variables. The corresponding model therefore takes

the form of a probabilistic choice model, represented by choice probabilities

P(U; =max,, U, |z]



for j €B, where the expression above is to be interpreted as the probability that the agent will choose

j from B, given the attributes z. The choice models generated by random utilities are as described
above called random utility models.

Let us next define identification formally. Let M,(D) be the family of m-dimensional
cumulative distribution functions on D (say) where D is equal to R™, or a subset of R™. We say that
two distribution functions on D are different if they attain different values on a subset of D with

positive Lebesgue measure.

Definition

Let Uand U be two random utility models with respective conditional c.d.f. F (u|z) and

ﬁ(u|z), that belong to M,,(D), z€Zc R™ . Ifforall jeBc 3,

P(U/. =max ., U, | z) = P(lj/» =max,. 17,( | z),

implies that F (| z) =F (| z) for z€Z" where Z' is a subset of Z with positive measure, then M,,(D) is

identified.

Let V be the family of real-valued continuous functions with domain T R*. Let an (D)

be the family of m-dimensional continuous c.d.f. on D with the property that the corresponding

marginal distributions of each component, given the remaining components, are strictly increasing.

Assumption 1

The utility function has the structure

where v €V and (5 1 Egrenns gm) is a zero mean random vector with distribution function that is

independent of 7, 7 €eR™ .

Thus, under Assumption 1 the joint c.d.f. of the utilities is determined by the joint

distribution of (81 3€55.00s€ ) and the function v.

<5Gm



Assumption 2

For v eV and for any x € R there exists a z €T such that v(z) = x .

Theorem 1

Let S={1,2}, (U,, Uz) and (ﬁz ﬁz) be two sets of random utilities, U, =V(Zj) +¢, and

U, = V(Z» ,) + E» ;» such that Assumptions 1 and 2 are satisfied. Assume furthermore that the c.d.f. of

(¢,.¢,) and (Z‘,,Z‘Z) belong to M;(RZ) and v,v eV . If

(1) P(V(z))+&,>v(z))+&,)=P(¥(z,)+2,>¥(z,)+2,)
Jor z,,z, €T, it follows that for some constant a> 0, V(z)=av(z), zeT, and €, ¢, has the same

distribution as a(gl - 82).

Proof:
Let Gand G be the cumulative distributions of & , —g, and €, — €, respectively. It

follows that we can express (1) as

() G(W(z1)-V(2,)) =G ((z))-¥(2,))

for zeT. If F},(x,.X,) is the c.d.f. of (g,,€,) it follows that
Gy)= [ Fyy (dxx+y),
R
and consequently
3) G(y,)-G(y,)= j (Fa (dx.x +y,)~Fpy (dx.x +y,))
R

for y,,y, €R. From Assumption 1 it follows that the integrand in (3) is positive when y, >y,

which implies that G, and similarly G, are strictly increasing. Hence, G and G are continuous and
invertible.

Let =G~ G . From (2) it follows, with z,,z,,z, €T, that

4) V(Zl)_v(%):(P(V(Zl)_"(zz))’



%) V(Z,)—V(z3)=(p(v(z,)—V(z3)),

and

(©) W(z5) = ¥(22) =0 (M(z5) - v(2,))-

By combining (4), (5) and (6) we obtain

@) (p(v(z,)—v(zz)) = V(zl)— V(z3)+ V(z3) — 7(22)= (p(V(z,)—v(z3)) + (p(v(z3)—v(z2 ))

Let x=v(zI ), y=V(23) , and assume that z, is such that V(Zz) =0. From (7) we get

(8) o) =(x - y) +o(y),

for x,y R, or equivalently

Q) o(x+y)=0(x)+ (y),

for x,y €eR. In particular, with x=y =0, we get

(10) 9(0)=2¢(0)
so that ©(0) =0. The only continuous solution of (8) with ¢(x)=0 is @(x)=ax, for some positive a,

cf. Aczél (1966). Since ¢(x)=G "' (G(x)), this implies that

G(x) = G(ax).

Since by assumption, V(Zz) =0, it follows from (3) that V(z)=av(z).

Q.E.D.

Let us now compare the result of Theorem 1 with Matzkin's results. Matzkin (1992)
considers a more general setting in which the function v depends on the respective alternatives, and
she therefore needs additional conditions to obtain identification compared to the conditions needed
in this paper. Perhaps the result that is closest in spirit to the result obtained above is provided by
Matzkin (1993), Theorem 1. However, in this theorem Matzkin considers a more general setting
where the distribution of the random disturbances may depend on the attributes, and for that reason

she needs stronger conditions than the ones needed above. Matzkin also allows the function v to be



dependent on individual characteristics. The results obtained in this paper can also be interpreted at
the individual level, i.e., v can be interpreted as an agent specific function.

Above we have demonstrated that by considering the binary case we find that the structural
term v(z) is identified apart from a scale transform. It remains to study identification of the joint
distribution of the random terms of the utility function in the multinomial case. We can now prove the
following result which is similar to the result of Theorem 1 in Strauss (1979), p.p. 39-40.

Analogous to (1) we wish to investigate the implications from

(n p{v(zj)+8j :ng(v(zmgk)}: p{v(zj)+€j =ng(v(zk)+5k)}’

for jeB €3, where {V(Zj)+8j,j eS} and {V(zj)+§j,j eS} are two sets of random utilities.

We have the following result.

Theorem 2

Assume that (11) and Assumptions 1 and 2 hold. Assume furthermore that {1,2} € 3. Then

there is an a> 0 such that

m m

(12) az s, &, and Z S, &
i k=1

m
have the same distribution for all (s,, S5y Sy ) eR", for which Z s, =0.
k=1

Proof:

Observe that (10) is equivalent to

a3 p{m (gk_gjgv(zj)_v(zk>)}:p{m (gk_zjgv(zj)_wzk))}.

keB keB

By letting B={1,2} it follows from Theorem 1 there exists a positive constant a such that
v(z)=av(z) for z €T. Consequently, (a(a, - SJ-), a(s2 — sj),..., a(sm —€; )) has the same

distribution as (51 — 8,8 —Ejsuurr By — ) To realize this, recall that due to Assumption 2,



(V(Z j) - V(zl ), V(Z j) - V(z2 ), . v(z j) - v(zm )), which is m — 1 dimensional, can take any value in

R™!. But then these distributions must have the same characteristic functions, i.e.

(14) Eexp(iati kk<8k—sj)j=Eexp£iti xk(Ek—Ej)j

k=1 k=1

for t eR, which means that

m

az A (sk —sj) and i A (Ek —EJ—)
kol

k=1

must have the same distribution for any (kl I P ) €R™. Provided the random terms are

normalized to have zero mean this is equivalent to the statement that

m m
az S, €, and z Sk €k
k=1 k=1

m
have the same distribution provided Z s, =0.
k=1

Q.E.D.

In the formulation of the discrete choice model above it is assumed that 3 contains a binary

choice set. We shall now consider the case when 3 only contains the maximal set S.

Corollary 1

Assume that (11) and Assumptions 1 and 2 hold. Assume furthermore that 3={S} . Then the

conclusion of Theorem 2 holds.

Proof:
Consider (13) with B=S and j=1. Due to Assumption 2 it is possible to choose z such that

V(zj ) - V(xk ) = V(ZJ— ) — V(xk ): o, for k=3,4,...,m . In this case the model thus reduces to a binary

choice model and by Theorem 1, V(z)=av(z) for z € T. The rest of the proof is the same as the last

part of the proof of Theorem 2.
Q.E.D.



Corollary 2

Suppose ¢,, ¢,,...,&,,, m23, are independent with nonvanishing characteristic functions,

m?

and similarly for €,,'¢,,..., €,,. Then, under the assumptions of Theorem 2, it follows that for each j,

there is an a> 0 such that ag; + b and & have the same distribution, where b € R is arbitrary.

The result of Corollary 2 has been proved by Strauss (1979). The next result is immediate.

Corollary 3

Suppose ¢,,¢,,...,¢,, and €,,&,,..., €,, m23, are i.id.. Then, under the assumptions of

m>

Theorem 2 it follows that for each j, there is an a> 0 such that as , +b and & have the same

distribution, where b € R is arbitrary.
The result of Corollary 3 has been proved by Yellott (1977).

Example
In this example we apply the result of Theorem 2 to the multinomial probit model. In this
case € and € are multinormal random variables. Since the multinormal distribution is completely

characterized by the mean and the covariance matrix it follows that (12) holds if and only if

a’ Var(Z Sk skj = Var(z Sy, Ekj
]

k=1

forall s,,s,,...,s,,, for which Z s, =0. This implies that
k=1

(15) a’ Var(i Sy (sk —Sj)j = Var(i Sy (Ek —Ej)j
k=1 k=1

for any s,,s,,...,s,, . From (15) it follows that

2 _N ~ ~
(16) a (Gkr —G} =0y +ij) =0y, —0y — 0, +0;

i
o
E

where o,, =E¢, ¢, and 6, =E¥€, €, . It is easily verified that

2by =by + by — by,



Hence, the restrictions implied by (16) can be represented by
(17) 2 (0 ~20y +0y) =by,

for all k# j. For given {bkkj } , (17) represents the necessary conditions for identification. Evidently,

these restrictions are not sufficient. To achieve identification one may set ¢ ; =1 for all j and

G, =0. Then a and 6y, k # j, are determined by 2a* =b,,, and 2a° (1 —ij):bkkj.

3. Concluding remarks
It is difficult to interpret what the implication of (12) in Theorem 2 means in general. In other words,

it would be interesting to obtain a characterization of the class of joint distribution functions of

(81,82,...,8m) for which the characteristic function of (81 —€,8) — {5 € — sj) is given for each

joreo%m

j, cf. (14). To this end it is intriguing that the GEV class is sufficiently large so that any random utility
model can be approximated arbitrarily closely by a GEV model. This result was proved by Dagsvik
(1995). Recall that the models in the GEV class (Generalized Extreme Value Model) are generated by
utilities that are multivariate extreme value distributed, see McFadden (1981). The result is somewhat
surprising since it is generally believed that the multivariate extreme value distributions are
restrictive. In particular, the correlation between bivariate extreme value distributed variables is
always non-negative.

Falmagne (1978) has considered identification of completely general random utility models,
i.e., models which are derived from maximization of a general random utility index with no observed
attributes associated with the alternatives. Falmagne has in fact established necessary and sufficient
conditions that characterize random utility models. Furthermore, he has also considered the issue of
how much information about the joint distribution of the utilities can be recovered from knowledge of
the choice probabilities for every possible choice set. Since we only use utilities to rank order the
alternatives it is clear that one can at most recover the ordinal structure of the original random utility
variables. Falmagne demonstrates that although the complete ordinal structure cannot be recovered, a

great deal of it can.
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