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1. Introduction
This paper develops a class of probabilistic choice models for choice experiments in which the

outcomes are uncertain to the agent. This means that the agent's response to the same choice situation

(with uncertain outcomes) is assumed to be governed by a probability mechanism, and so in general he

exhibits inconsistencies. By now there is a huge literature on stochastic choice models with certain

outcomes. (For a summary of these models, see Suppes et al. (1989), ch. 17, and Anderson et al.

(1992), ch. 2.) In fact, it was empirical observations of inconsistencies, dating back to Thurstone

(1927a,b), that lead to the study of probabilistic theories in the first place. Thurstone argued that one

reason for the observed inconsistencies is that the agent has difficulties with assessing the precise

value (to him) of the choice objects. While probabilistic models for certain outcomes have been

studied and applied extensively in psychology and economics it seems that there has been little interest

in developing corresponding models for choice with uncertain outcomes (cf. Machina, 1985). This is

rather curious since one would expect that if an agent has problems with rank ordering alternatives

with certain outcomes he would certainly find it difficult to choose among gambles. The importance of

developing theoretically justified stochastic choice models in this context has been accentuated in two

recent papers, Harless and Camerer (1994) p. 1287, and Hey and Orme (1994). For example, Hey and

Orme, p.p. 1321-1322, summarize their view as follows:

"Our results suggest quite strongly that the truth is not going to be found along this deterministic choice

route, unless some account is taken of the errors. There is clearly a problem of identifying the

underlying "true" model because of these errors�indeed it could be argued that the lack of significance

for some of the top-level functionals (deterministic non-expected utility functionals) for some of the

subjects in our study could simply result from this noise, ...".

In the next paragraph they conclude:

"....., we are tempted to conclude by saying that our study indicates that behavior can be reasonably well

modelled (to what might be termed a 'reasonable approximation') as 'Expected utility plus noise'.

Perhaps we should now spend some time thinking about the noise, rather than about even more

alternatives to expected utility?"

The point of departure in this paper is to combine a version of the von Neumann-Morgenstern

Expected Utility Theory with some of the ideas that have emerged in the literature on discrete choice

models with certain outcomes to obtain a theoretical rationale for a probabilistic choice model for

uncertain outcomes. Specifically, we introduce a version of a von Neumann-Morgenstern axiom

system subject to stochastic preferences, suitably defined. The notion of stochastic preferences is
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defined as follows: Suppose the agent faces n replications of a binary choice experiment in which

lotteries r and s (say) are presented in each experiment. If the fraction of times lottery r is chosen over

s is larger than 0.5 when n is "large", lottery r is said to be preferred over s. From the axioms it follows

immediately that one can represent preferences by the expected utility of the respective lotteries.

However, this result is incomplete in our context since it does not provide a link between the expected

utilities and the choice probability for each replication of the experiment. These probabilities are

essential for establishing the link between theory and the corresponding empirical model. To this end,

we propose a version of Luce's Choice Axiom, cf. Luce (1959) also known as "Independence from

Irrelevant Alternatives" assumption (IIA). As a special case of the model that follows from these

axioms one obtains the Strict expected utility model proposed by Becker et al. (1963a) and Luce and

Suppes (1965). However, these authors provide no theoretical justification for their model other than

the property that it contains Luce model (for certain outcomes) as a special case. Becker et al. (1963a)

and Luce and Suppes (1965) also consider other types of stochastic choice models for uncertain

outcomes. Consequently, the present approach provides a rationalization of the model proposed by

Becker et al. (1963a), and Luce and Suppes (1965). However, in this paper we push the theory a step

further by postulating a particular invariance principle which enables us to derive important functional

form properties.

The paper is organized as follows: Section 2 contains a discussion of the choice axioms and

the derivation of the implied structural choice probabilities. In Section 3 a random utility

representation is discussed. Here, we demonstrate that the choice model is compatible with a random

utility representation. 1 In the final section we demonstrate that in particular choice settings, a special

case of the choice model developed under assumptions made in Section 2 has the same formal

structure as a model for choice under perfect certainty but with choice sets that are latent to the

analyst.

Although the model developed in this paper is a stochastic version of the expected utility

model, it is easily realized how this model in some cases could be extended to corresponding

stochastic non-expected utility models. This is the case for the Rank Dependent Expected Utility

Model, (cf. Allais (1979), Quiggin (1982), Yaari (1987), Chew, Karni and Safra (1987), and the

Subjective Expected Utility Model, such as Edwards (1962), and Kahneman and Tversky (1979).

What all of these non-expected utility models have in common is that the conditional probabilities for

the respective outcomes given the respective choices are replaced by a function of these probabilities.

                                                    
1 In Dagsvik (1995) a somewhat related approach was proposed to derive probabilistic choice models for uncertain
outcomes. This approach was, however, not based on behavioral axioms to the same extent as the present paper.
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2. An axiom system for probabilistic choice among lotteries
We mentioned above that in microeconomic theory the tradition is to assume that the consumer has a

utility function that allows him to rank the alternatives in a consistent and unambigious manner when

faced with identical choice settings. This approach has been critisized by psychologists and others, see

for example Thurstone (1927a,b), Luce (1959), Tversky (1969), who argue that in choice settings

people often experience uncertainty and inconsistency. That is, they have difficulties with assessing

the precise (subjective) value of the alternatives and consequently the choice outcomes in identical

choice settings may vary across settings. To account for this empirical evidence the psychologists have

developed probabilistic choice models. In the psychological choice literature one has traditionally

distinguished between two types of choice models: In the constant utility model the decision rule is

viewed as stochastic while utility is deterministic (see Luce and Suppes (1965)). Luce model (Luce

(1959)) is the most famous example of a constant utility model. Luce derives this model from his

choice axiom (IIA) and demonstrates that it implies the existence of a unique (except for a

multiplicative constant) scale (constant�or deterministic utility) and the choice probabilities can be

expressed as a function of the scale values by a simple formulae. In the random utility model, utility is

viewed as stochastic (Thurstone) while the decision rule is deterministic. In light of recent work by

economists it seems that the difference between these models is only superficial. Specifically, Holman

and Marley (cited in Luce and Suppes (1965)) and McFadden (1981) have demonstrated that the most

familiar constant utility models such as the Luce model and Tversky's "elimination by aspects" model,

Tversky (1972), can both be represented by random utility formulations.

Becker et al. (1963a,b) and Luce and Suppes (1965) extend the Luce model for perfectly

certain outcomes to the case with uncertain outcomes by simply specifying the scale values as a

function of the corresponding expected utilities. As mentioned above, this approach is somewhat ad

hoc from a theoretical point of view and we shall next discuss a possible theoretical foundation for the

models proposed by Becker et al. (1963a,b) and Luce and Suppes (1965). First we need some

additional notation and terminology.

Let S denote the total set of lotteries and let X denote the set of outcomes which is finite and

contains m outcomes.
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Definition 1

A preference relation is a binary relation, � , on S that is (i) complete, i.e. for all r, s S∈

either r s�  or s r� , and (ii) transitive, i.e. for all r, s, t, in S, r s�  and s t�  implies r t� .

Definition 2

A real-valued function V(s) on S represents �  if for all r, s S∈ , r s�  if and only if

V(r) V(s)� .

In our context we shall, as mentioned above, allow the agent to have random preferences in

the sense that, if the agent faces several replications of a specific choice experiment he may choose

different lotteries each time. The reasons for this is that he may have difficulty with evaluating the

proper value (to him) of the respective lotteries.

Consider now the following choice setting: The agent faces n replications of a binary choice

experiment in which lotteries r and s (say) are presented in each experiment. Since the agent has

stochastic preferences he may choose lottery r in some replications and lottery s in the remaining ones.

Let ( )� ,Pn r s  be the fraction of the n replications where lottery r is chosen over s. Evidently, it seems

natural to say that r is preferred over s if ( ) ( )� , � ,P r s P s rn n>  when n is "large". Since

( ) ( )P r s P r s
n

n, � ,=
→ ∞

plim ,

where P(r,s) is the theoretical probability, it follows that P r s P s r( , ) ( , )>  if and only if P r s( , ) .> 0 5 .

Accordingly, the argument above provides a motivation for the following definition:

Definition 3

For r, s S∈ , lottery r is strictly preferred to s if and only if ( )P r, s 0.5.>  If ( )P r, s 0.5,= then

r is indifferent to s.

Thus Definition 3 introduces a binary relation, � , where r s�  means that r is strictly

preferred to s, while r ~ s means that r is indifferent to s. However, the relation is not necessary a

preference relation.

In the following we shall assume, as is customary, that the agent's information about the

chances of the different realizations can be represented by probabilities;
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( )g g g g ms s s s≡ ( ), ( ), ..., ( )1 2

where gs(k) is the probability of outcome k, k X∈ ,  if lottery s is chosen. Let G denote the set of

simple probability measures on the algebra of all subsets of the set of outcomes, { }X m≡ 1 2, , ..., . Let

g g G1 2, ∈ . The mixed lottery, ( ) [ ]α α αg g1 21 0 1+ − ∈, , , is a lottery in G yielding the consequence

( )α αg k g k k X1 21( ) ( ),+ − ∈ . Here we assume that the lotteries ( )αβ αβg g1 21+ −  and

( )[ ] ( )β α α βg g g1 2 21 1+ − + − , [ ]α β, ,∈ 0 1 , are indifferent. This property is known as the axiom of

reduction of compound lotteries, cf. Luce and Raiffa (1957).

Assumption A1 (Continuity)

For all g , g , g G1 2 3 ∈ , if g g1 2�  and g g2 3� , then there exists ( )α β, 0,1∈  such that

( )α αg 1 g g1 3 2+ − �

and

( )g g 1 g .2 1 3� β β+ −

Assumption A2 (Independence)

For all g , g , g G1 2 3 ∈ , and all [ ]α ∈ 0,1 , if g g1 2� , then

( ) ( )α α α αg 1 g g 1 g .1 3 2 3+ − + −�

The Assumptions A1 and A2 provide fundamental underpinnings of the von Neumann-

Morgenstern theory for decision under uncertainty. The next theorem is a slightly modified version of

Theorem 2.4 in Karin and Schmeidler (1991).

Theorem 1

Let �  be the binary relation given in Definition 3. The following two conditions are

equivalent:

(i) �  is a preference relation satisfying Assumptions A1 and A2.
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(ii) There exists a function W :G R→ , such that for any g G∈ ;

W(g) u(k) g(k)
k X

=










∈
∑ϕ

where u: X R→ , is a function that is unique up to a positive affine transformation and ϕ : R R→  is a

strictly increasing function.

Theorem 1 is a slightly modified version of the von Neumann-Morgenstern Expected Utility

Theorem. In the conventional deterministic theory for decision under uncertainty the result that W,

given in Theorem 1, (ii) represents �  on G yields a complete result insofar as it enables us to express

the agents preferences by an index W as a function of the agents "information" represented by the

probabilities associated with the lotteries. In the present context, however, the binary relation �  is

defined in terms of choice probabilities.2 We can only conclude so far that ( )P r s, .≥ 0 5  if and only if

( ) ( )W g W gr s≥ . In the special case with certain outcomes the statement; ( )P r s, .≥ 0 5  if and only if

( ) ( )W g W gr s≥ , is equivalent to Definition 16, p. 333, in Luce and Suppes (1965).

We are so far, however, unable to specify a choice model for each replication. Consequently,

it remains to develop additional theory so as to be able to ascertain precisely how the choice

probabilities { }P r s( , )  for each replication depends on ( ) ( )( )W g W gr s, . This is crucial for establishing

a relationship between the theoretical concepts introduced above and a structural probabilistic model

that is applicable for empirical modelling and analysis. More generally, in order to establish a

complete theory we need to develop a structural specification for the choice probabilities in the

general multinomial case, i.e., we need to specify how these probabilities depend on ( ){ }W g r Sr , ∈ .

This is the issue to be discussed next. To this end we need some additional notation.

The agent is now assumed to face a set of lotteries B, where B is a subset of S. Thus B is the

set of lotteries that are feasible to the agent (possibly agent specific). Let P(s;B) denote the probability

that the agent shall choose lottery s when B is the choice set of lotteries, s B S∈ ⊂ . For sets such that

A B S⊂ ⊂ , let

( ) ( )P A B P s B
s A

; ; .≡
∈
∑

                                                    
2 Note that it is implicit in the treatment in this paper that the agent does not know the distribution of the random variables
that affect his preferences. Consequently, he is unable to take account of this distribution when forming expectations.
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The interpretation is that P(A;B) is the probability that the agent shall choose a lottery within A when

B is the choice set.

Assumption A3 (IIA)

For any A B S⊂ ⊂ , ( ) ( )P A; B 0,1∈ , and

( ) ( ) ( )P s; B P s; A P A; B .=

Assumption A3 was first proposed by Luce (1959). It represents a probabilistic version of

rationality in the following sense: Suppose the agent face a set B of feasible lotteries. One may view

the agent's choice as if it takes place in two stages. In stage one he selects A from B, where A is a

subset of B which contains the most attractive lotteries. In a second stage he selects the preferred

lottery from the subset A. It is important to stress that Assumption A3 implies that in the second stage,

the agent only takes into account the lotteries within A. In other words, the lotteries within B\A are

irrelevant in the second stage. Thus, the rationality is related to the property that the agent only takes

into consideration the lotteries within the presented choice set. As the probability of the first stage

choice is P(A;B) and that of the second stage is P(s;A), P A B P s A( ; ) ( ; )  is the final probability of

choosing s. Since Assumption A3 is a probabilistic statement it means that it represents probabilistic

rationality in the sense that lotteries outside the second stage choice set A may matter in single choice

experiments but will not affect average behavior.

Theorem 2

Assumption A3 holds if and only if

P(s; B)
a(s)

a(r)
r B

=

∈
∑

where { }a(s), s S∈  are positive scalars that are unique apart from a multiplicative positive constant.

For a proof of Theorem 1, see for example Ben-Akiva and Lerman (1985). Theorem 1 was

originally proved by Luce (1959).
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Theorem 3

Assume that Assumptions A1, A2 and A3 hold. Then

(1)
( )( )

( )( )P(s; B)
h V g

h V g

s

r B
r

=

∈
∑

where

(2) ( )V g u(k) g (k)s
k X

s=
∈
∑

and h: R R→ +  is a strictly increasing function. For a given ( )( )g , h V gs s  is unique apart from a

multiplicative positive constant, and u: X R,→  is a function that is unique up to a positive affine

transformation.

Proof:

Let { }B r s= , . Then

{ }( )P s r s
a s

a s a r a r a s
; ,

( )

( ) ( ) ( ) ( )
.=

+
=

+
1

1

Thus

{ }( )P s r s a s a r; , . ( ) ( )≥ ⇔ ≥0 5

and { }a s s S( ), ∈  therefore represents �  on S. But then, by Theorem 1, a(s) must be a strictly

increasing function 
~
h  (say) of ( )W gs . Hence, by Theorem 1

( )( ) ( )( )( ) ( )( )a s h W g h V g h V gs s s( )
~ ~= = =ϕ

where ( )h y h y( )
~

( )= ϕ , for y R∈ .  Since a(s) is positive h must be positive.

Q.E.D.

The model stated in Theorem 3 was originally proposed by Becker et al. (1963a). However,

their only argument to support the model structure is that it contains the Luce model as a special case.

They also derive the following nonparametric result.
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Corollary 1

Suppose B consists of n 1>  lotteries where

g (j)
1

n 1
g (j) .n

r 1

n 1

r=
− =

−

∑

Then

( )P n; B
1

n
≤

if h is convex. If h is concave, then

( )P n; B
1

n
≥ .

If h(y) y=  and u(k) 0≥  for k X∈ , then

( )P n; B
1

n
= .

In the case where h y y( ) = , the model above reduces to the strict expected utility model for

uncertain outcomes proposed by Luce and Suppes (1965).

By Theorem 3 we have brought the theory an important step further in that we have

established the relationship between the multinomial choice probabilities and the expected utility

functional apart from an increasing mapping. It is important to emphasize that we have achieved this

result relying entirely on theoretical principles. No ad hoc functional form assumptions have been

invoked. We shall next introduce an additional assumption which will enable us to derive restrictions

on the mapping h.

To this end consider the following setting. Recall that the original set of outcomes X consisted

of m outcomes. Now suppose that X is expanded in the following manner. Each outcome, apart from

the first one, is duplicated w −1  times, i.e., to X we add w −1  outcomes with utilities u(2) and

outcome probabilities gs(2), for each s m=1 2, , ... , . Subsequently, w −1  outcomes are added to X with

utilities u(3) and outcome probabilities, gs(3), and so on. Obviously, the expected utility of lottery s

that corresponds to the expanded set X* (say) equals

(3) ( ) ( ) ( )V g u k g k u u k u g k u w u k u g ks
k X

s
k X

s
k X

s
*

\{ } \{ }* *

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .= = + − = + −
∈ ∈ ∈
∑ ∑ ∑1 1 1 1

1 1
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Since by Theorem 1, u is only unique up to a positive affine transformation we may without loss of

generality choose an enumeration such that u u kk X( ) min ( )1 0= =∈ , so that ( )V gs
*  reduces to

(4) ( )V g w u k g k w u k g ks
k X

s
k X

s
*

\{ }

( ) ( ) ( ) ( ) .= =
∈ ∈
∑ ∑

1

Definition 4

Let w 1>  be a natural number. By uniform w-expansion of the set of outcomes X we mean the

following: Without loss of generality, let u(1) min u(k) 0.k X= =∈  Then expand X by adding w 1−

outcomes that are copies of outcome k, for k 2,3,..., m= .

Let Pw(s;B) denote the probability of choosing lottery s after uniform w-expansion of X.

Assumption A4

Let { }g s Ss , ∈  and { }~ ,g s Ss ∈  be outcome probabilities such that if the corresponding

uniformly expanded choice probabilities P (s; B)w  and 
~
P (s; B)w  satisfy

P (s; B) P (s; B)w w< ~

for some s B∈ , then for any natural number k

P (s; B) P (s; B)k k< ~
.

The intuition behind Assumption A4 is as follows: Outcome one serves as a "reference"

outcome and it has the property that the expected contribution to the agents' expected utility associated

with this outcome is zero, as seen directly from (4). Since the original outcomes are duplicated

uniformly the expected utility of lottery s relative to any other lottery will remain unaltered. As stated

in Assumption A4, it seems plausible that if the fraction of agents that prefer lottery gs from B is less

than the fraction of agents that prefer lottery ~gs  from B, then this should be true also after a rescaling

of the utility index { }u k( ) .
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Theorem 4

Assume that Assumptions A1 to A4 hold. Then, if h is continuous the choice probabilities have

the structure

( )( )
( )( )P(s; B)

h V g

h V g

s

r B
r

=

∈
∑

for s B S,∈ ⊂  where

( )
h(y) exp b

y 1
=

−











θ

θ
,

for y 0 ,≥  and b 0> , and θ  are constants.3

Proof:

Let { }B= 1 2, . Then

(5) { }( ) ( ) ( )[ ]P F h w V h w Vw 1 1 2 1 2; , =

where ( )V V g ss s= =, , ,1 2  and

(6) F y
y

y
( ) .=

+1

By assumption

(7) ( ) ( )( ) ( ) ( )( )F h w V h w V F h w V h w V1 2 1 2< ~ ~

if and only if

(8) ( ) ( )( ) ( ) ( )( )F h k V h k V F h k V h k V1 2 1 2< ~ ~

where ( )~ ~ , , ,V V g ss s= =1 2  and k and w are natural numbers. Let Y k Vs s=  and 
~ ~

.Y k Vs s=  Then (7)

and (8) imply that

                                                    

3 As usual 
y θ

θ
−1

 is defined as log y  when θ = 0 .
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(9) ( ) ( )( ) ( ) ( )( )F h Y h Y F h Y h Yλ λ λ λ1 2 1 2< ~ ~

if and only if

(10) ( ) ( )( ) ( ) ( )( )F h Y h Y F h Y h Y1 2 1 2< ~ ~

where � is a positive rational number. Since any real number can be approximated arbitrarily closely

by rational numbers and h is continuous, (9) and (10) must also hold when � is a positive real number

that belongs to some interval. But then the hypothesis of Theorem 14.19 in Falmagne (1985), p. 338,

is fulfilled and it follows from Falmagne's discussion on a particular application of his Theorem 14.19,

pp. 338-339 that there exists a strictly increasing and continuous function H(�) on R such that

(11) ( ) ( )( )F h V h V H
V V

1 2
1 21 1

=
−

−
−









θ θ

θ θ

where � is a constant. Let 
~

( )h x  be given by

log ( )
~

h V h
V

=
−









θ

θ
1

which implies that (11) can be written as

(12)
~ ~
h

V
h

V
f

V V1 2 1 21 1 1 1θ θ θ θ

θ θ θ θ
−







 −

−







 =

−
−

−









where ( )f x F H x( ) log ( )= −1 . But (12) is equivalent to

(13)
~

( )
~

( ) ( )h x h y f x y= + −

where x and y belong to some interval I in R. Evidently, it is possible to find a g such that V g( ) = 1 ,

which means that I contains zero. With y = 0  in (13) we obtain that

f x h x h( )
~

( )
~

( ) .= − 0

Without loss of generality we can normalize 
~
h  such that 

~
( )h 0 0= . Hence (13) can be written

(14)
~

( )
~

( )
~

( )h y z h y h z+ = +
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for y z I, ∈ . Eq. (14) is the well known variant of a Cauchy equation and has the solution

~
( )h y b y=

where b is a constant, see for example Falmagne (1985), p. 82. This completes the proof.

Q.E.D.

Remark

When β =1 and θ = 0 ,  the model reduces to the Strict Expected Utility model proposed by

Luce and Suppes (1965), p. 360.

3. A random utility representation
As mentioned above, the hypothesis of a random utility index as a representation of preferences dates

back to Thurstone (1927). The interpretation of Thurstone's random utility theory is that while the

decision rule is deterministic and follows from maximizing utility at each moment, the agent's tastes

may fluctuate from one moment to the next in a way that is unpredictable to him. Alternatively, the

agent is viewed as being unable to fix a definite (subjective) value of the alternatives.

We shall now answer the question of whether there exists a utility representation which

implies choice probabilities as in Theorem 2. In settings where the agent knows the choice sets,

Holman and Marley (see Luce and Suppes, 1965, p. 338), McFadden (1973), Yellott (1977) and

Strauss (1979) have analyzed the problem of necessary and sufficient conditions for random utility

models to satisfy IIA.

The choice probabilities that follow from a random utility model are defined formally by

(15) ( )P A B P U U
s A

s
s B

s( ; ) max max= =
∈ ∈

for A B S⊂ ⊂ ,  where { }U s Ss , ∈  are random variables. Let N be the number of lotteries in S. When

the joint c.d.f. of ( )U U U N1 2, , ...,  is specified (15) can, at least in principle, be calculated.

Theorem 5

Assume a random utility model with utilities { }Us  given by

(16) ( )( )U + log h V gs s s= η
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where η s , s S,∈  are i.i.d. random variables with

(17) ( ) ( )P y exp es
yη ≤ = − − ,

y R.∈  Then the choice probabilities are given by Theorem 2.

Proof:

When (16) and (17) hold the structure (1) follows readily by straight forward calculus. The

proof is also found in standard textbooks of discrete choice theory.

Q.E.D.

Similarly to the case with perfectly certain outcomes, the random utility setting allows us to

relax Assumption A3 in an intuitive way.

Assumption A5

The choice probabilities can be expressed as

( )( )P(s; B) P maxs s j B j j= + = +∈v vη η

where { }v s , s S∈  are scalars and ( )η η η1 2 N, ,...,  is a vector of random variables with identical

marginal distributions and with joint distribution function that is independent of { }v s , s S∈ . The

corresponding probability measure is positive for all sets with positive Lebesgue measure.

Assumption A5 only states that the decision rule is based upon maximization of random

variables that have an additive structure, and it is therefore rather weak. Necessary and sufficient

conditions for choice models being generated from random utilities are given by Falmagne (1978).

Theorem 6

Suppose Assumptions A1, A2 and A5 hold. Then

v s
k X

su(k) g (k)=










∈
∑ψ

where ψ : R R→  is a strictly increasing function.
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Proof:

Let { }B r s= , .  Then

{ }( ) ( ) ( ) ( )P s r s P v v P v v M v vs s r r s r r s s r; , = + > + = − > − = −η η η η

where M(�) is the c.d.f. of η ηr s−  that is, by assumption, independent of r and s and also independent

of vr and vs and is strictly increasing. Since �r and �s have the same distribution, M(�) must be

symmetric. Hence

{ }( )P s r s v vs r; , .≥ ⇔ ≥0 5

and { }v s Ss , ∈  therefore represents �  on S. But then, by Theorem 1, vs must be a strictly increasing

function � (say) of ( )V gs .

Q.E.D.

From Theorems 5 and 6 we realize immediately that when η s s S, ,∈  are i.i.d. with c.d.f. (17)

then we obtain the choice probabilities of Theorem 2.

Theorem 7

Assume Assumptions A1, A2, A4 and A5. Then

( )
ψ

θ

θ

(y)
b y 1

=
−

for y 0 ,≥  where b 0 ,>  and � are constants.

Proof:

Let

( )M y P y( ) log= − <η η2 1

for y > 0 .  With the same notation as in the proof of Theorem 4 it follows that

{ }( ) ( )( ) ( )( ){ } ( )( ) ( )( )( )P P w V g w V g M w V g w V gw 1 1 2 2 1 1 2 1 2; , ~ ~= − < − =η η ψ ψ ψ ψ

where



18

~( ) exp ( ).ψ ψx x=

The rest of the proof is completely analogous to the proof of Theorem 4.

Q.E.D.

4. Uncertainty versus aggregation of latent alternatives
Consider now an alternative choice setting. The agent is in this case assumed to be perfectly certain

about the outcomes. The universal set S is assumed to have a tree structure. Let B denote the set of

feasible lower level "branches" while Cs denote the set of feasible upper level conditional on lower

level branch s. Let 
~
Usj  denote the utility of (s,j) where j C s B Ss∈ ∈ ⊂, . To the analyst only the

choices within B are observable, while the choices within Cs, conditional on the choice of lower level

branch s is unobservable. Let �s denote the number of alternatives in Cs, and let

q s
s

r S
r

=

∈
∑

κ
κ

.

Assume moreover that

~
logUsj s sj= +γ ε

where { }γ s  are positive deterministic terms, while ε sj sj C s S, ,∈ ∈  are i.i.d. random variables with

joint c.d.f.

(18) ( )P y e
s S j C

sj sj
s S j C

y

s s

sj

∈ ∈ ∈ ∈

−≤








 = −























∑ ∑� � ε ρ

ρ

exp .

The parameter � is constrained to 0 1< ≤ρ , and has the interpretation

( )corr sj siε ε ρ, = −1 2

when j i≠ , and 	sj and 	ri are independent when s r≠  for all i and j. The c.d.f. (18) is a special case of

a Generalized Extreme Value distribution, cf. McFadden (1981), p.p. 228-229. From (18) it follows

readily that the choice probabilities { }~
( ; ) ,P s B  defined by
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~
( ; ) max

~
max max

~
,P s B P U U

j C
sj

r B j C
rj

s r

≡ =



∈ ∈ ∈

are given by

(19)
~

( ; )P s B
q

q
s s

r B
r r

=

∈
∑

γ
γ

ρ

ρ

for s B∈ .

Let us now compare this model with a particular extension of the model for uncertain

outcomes where the agent also has preferences over lotteries, i.e.,

U h u k g ks
k X

s s s=








 +

∈
∑log ( ) ( ) η

where the deterministic utility components { }u k k Xs ( ), ∈  now depend on the lottery s, s S∈ .

Assume also that m = 2 . Without loss of generality we can let us ( )1 0= . If η s s S, ,∈  are i.i.d. random

terms with c.d.f. given by (17) and

( )
h y

b y
( ) =

−θ

θ

1

with θ = 0 ,  we get from Theorem 5 that

(20) ( )P s B P U U
u g

u g
s

r B
r

s s

r B
r r

( ; ) max
( ) ( )

( ) ( )
≡ = =

∈

∈
∑

2 2

2 2

β β

β β

for s B∈ .

It is intriguing that the mathematical structure of (20) is completely analogous to the structure

of (19) when { }gs ( )2  is replaced by { }q s  and us(2)
 by �s. Note also that from the viewpoint of the

analyst, qs may be interpreted as the probability that Cs is non-empty, i.e., that an alternative of "type"

s is feasible. By comparing (19) and (20) we conclude that in the choice setting discussed above, and

under the hypothesis of rational expectations, the choice probabilities do not depend on whether the

agent is uncertain about the outcomes on one hand, or, on the other hand, is perfectly certain about the

outcomes, while the analyst is "uncertain" about the "degree of feasibility" of the alternatives within

Cs, s B∈ . Here the degree of feasibility is represented by the fractions { }q s .
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5. Conclusion
In this paper we have developed a theory of probabilistic choice with uncertain outcomes. By

combining the IIA assumption with a particular version of the von Neumann-Morgenstern axiom

system we have demonstrated that models proposed earlier in the literature can be given a theoretical

rationale. By means of a particular invariance property, we have also demonstrated that one can obtain

a characterization of the functional form of the model.
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