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1 Introduction

This is an aggregation study of production functions. The production function is usually

considered an essentially micro-economic construct, and the existence and stability of a

corresponding aggregate function is an issue of considerable interest in macro-economic

modelling and research. Jorgenson remarks that “The benefits of an aggregate produc-

tion model must be weighted against the costs of departures from the highly restrictive

assumptions that underly the existence of an aggregate production function” [Jorgen-

son (1995, p. 76)].1 Interesting questions from both a theoretical and an empirical point

of view are: Which are the most important sources of aggregation bias and instability?

Will aggregation by analogy, in which estimated micro parameter values are inserted

directly into the macro function, perform satisfactorily?

In this study we use a rather restrictive parametric specification of the ‘average’

micro technology, based on a four-factor Cobb-Douglas function with random coefficients,

i.e., we allow for both a random intercept and random input elasticities. We assume

that the random coefficients are jointly normal (Gaussian), and that the inputs follow a

multivariate log-normal distribution. The expectation vector and covariance matrix of the

random coefficient vector are estimated from unbalanced panel data for two Norwegian

manufacturing industries. The validity of log-normality of the inputs is tested and for

the most part not rejected. This, in combination with a Cobb-Douglas technology and

jointly normal coefficients, allows us to derive interpretable parametric expressions for

the aggregate production function. Although Cobb-Douglas restricts input substitution

rather strongly, and has to some extent been rejected in statistical tests, this property is

a distinctive advantage of this functional form against, e.g., Translog or CES.

Properties of relationships aggregated from relationships for micro units depend, in

general, on both the functional form(s) in the micro model and properties of the dis-

tribution of the micro variables. Customarily, aggregates are expressed as arithmetic

means or sums. If the number of micro units is large enough to appeal to a statistical

law of large numbers and certain additional statistical regularity conditions are satisfied,
1A textbook exposition of theoretical properties of production functions aggregated from neo-classical

micro functions is given in Mas-Colell, Whinston and Green (1995, Section 5.E).
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we can associate the arithmetic mean with the expectation [cf. Fortin (1991, section 2),

Stoker (1993, section 3), Hildenbrand (1998, section 2), and Biørn and Skjerpen (2002,

section 2)], which is what we shall do here. However, we will be concerned not only with

relationships expressed by means of expectations of the input and output variables of the

production function, but also with relationships in higher-order origo moments. Thus

our paper is in some respects related to Antle (1983), who is concerned with moments of

the probability distribution of output.

Under our stochastic assumptions the marginal distribution of output will not be log-

normal. We obtain two analytical formulae of the origo moments of output by making

some simplifying assumptions. The first formula is derived from the distribution of out-

put conditional on the coefficients, the second from the distribution of output conditional

on the inputs. These approximate formulae are valid if the moments of output exist. We

provide an eigenvalue condition which can be used to investigate which origo moments

exist. It involves the covariance matrix of the random coefficients, the covariance ma-

trix of the log-inputs and the order of the moments. In the empirical application we

investigate, for each year in the data period, this condition, using the Maximum Likeli-

hood (ML) estimate of the covariance matrix of the random coefficients obtained from

all available data and the cross-section estimate of the covariance matrix of the log-input

variables. Generally, we find that only the first and second-order origo moments of output

exist. Using the approximate formulae, we provide decompositions of expected output.

In order to assess the quality of the approximation formulae, a simulation experiment is

performed by sampling from the two first origo moments conditional on the log-inputs.

Two conclusions are drawn. The first approximate formula seems to perform better than

second one for both moments, and using either formulae the approximation seems to be

better for the first than for the second-order origo moment.

From both approximation formulae we derive analytical expressions for the industry

production function in terms of expectations of inputs and output. The main focus

in the empirical part of the paper is to estimate correct input and scale elasticities

based on these expressions and compare them with those obtained when performing

aggregation by analogy. However, as it is not obvious how one should define elasticities

in our setting, we provide formulae for two limiting cases, denoted as variance preserving
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and mean preserving elasticities, respectively. While the elasticities based on analogy,

by construction, are time invariant, the correct elasticities are allowed to change over

time. For some inputs we find a clear trending pattern which cannot be captured by

the aggregation by analogy approach. Besides, even if the variation over time is modest

there are substantial level differences between the elasticities calculated from the correct

formulae and those obtained by analogy, and the ranking of the inputs according to the

size of the elasticities differs.

The rest of the paper is organized as follows. The model is presented in Section 2 and

the properties of the distribution of output and log-output are discussed. In Section 3,

we establish approximation formulae which allow the origo moments of output to be

expressed be means of the expected inputs and the model’s parameters. We also outline a

procedure for calculating the expectation of output by simulation. Based on the analytical

result in Section 3 we obtain, in Section 4, approximate aggregate production functions

and derive expressions for the correct input and output elasticities according to different

definitions. The data and estimation procedures are described in Section 5. Empirical

results are presented in Section 6. Section 7 concludes.

2 Model and output distribution

2.1 Basic assumptions

We consider an n factor Cobb-Douglas production function, expressed in log-linear form,

y = xβ + u = α+ zγ + u,(1)

where x = (1, z) is an n+1 dimensional row vector (including a one for the intercept) and

β = (α, γ′)′ is an n+ 1 dimensional column vector (including the intercept), γ denoting

the n× 1 vector of input elasticities. We interpret z as ln(Z), where Z is the 1 ×n input

vector, and y as ln(Y ), where Y is output, and assume that the log-input vector, the

coefficient vector, and the disturbance are independent and normally distributed:

x ∼ N (µx,Σxx) = N
[1 µz],

 0 0
0 Σzz

 ,(2)
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β ∼ N (µβ,Σββ) = N
 µα

µγ

 ,
 σαα σ′

γα

σγα Σγγ

 ,(3)

u ∼ N (0, σ2),(4)

x, β, u are stochastically independent.(5)

The covariance matrix Σxx is singular since x has a one element, while the submatrix Σzz

is non-singular in general. The covariance matrix Σββ is also assumed to be non-singular.

An implication of normality is that both β and z have infinite supports.

2.2 The distribution of log-output

We first characterize the joint distribution of the log-output, the log-input vector, and

the coefficient vector. From (1), (4), and (5) it follows that

(y|x, β) ∼ N (xβ, σ2),(6)

and since (1) – (5) imply var(xβ|β) = β′Σxxβ, var(xβ|x) = xΣββx
′, and hence

var(y|β) = β′Σxxβ + σ2 = tr(ββ′Σxx) + σ2,

var(y|x) = xΣββx
′ + σ2 = tr(x′xΣββ) + σ2,

the distribution of log-output conditional on the coefficient vector and on the log-input

vector are, respectively,

(y|β) ∼ N (µxβ, β
′Σxxβ + σ2),(7)

(y|x) ∼ N (xµβ, xΣββx
′ + σ2).(8)

Using the law of iterated expectations, we find

E(y) = E[E(y|x)] = µxµβ = µy,(9)

var(y) = E[var(y|β)] + var[E(y|β)] = E[tr(ββ′Σxx) + σ2] + var(µxβ)(10)

= tr[E(ββ′Σxx)] + σ2 + µxΣββµ
′
x

= tr[(µβµ
′
β + Σββ)Σxx] + σ2 + µxΣββµ

′
x

= µxΣββµ
′
x + µ′

βΣxxµβ + tr(ΣββΣxx) + σ2 = σyy.
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The four components of σyy represent: (i) the variation in the log-inputs (µ′
βΣxxµβ),

(ii) the variation in the coefficients (µxΣββµ
′
x), (iii) the interaction between the variation

in the log-inputs and the coefficients [tr(ΣββΣxx)], and (iv) the disturbance variation

(σ2).

2.3 The distribution of output

We next characterize the distribution of output, Y , by its origo moments. Since Y =

ey = exβ+u, we know from (6) – (8) that (Y |x, β), (Y |x) and (Y |β) follow log-normal

distributions. From the normality of (y|x, β) it follows, by using (6) and Evans, Hastings,

and Peacock (1993, chapter 25), that

E(Y r|x, β) = E(ery|x, β) = exp[rxβ + 1
2 r

2σ2].(11)

In a similar way, (7) and (8) imply

E(Y r|β) = Ex,u(ery|β) = exp[rµxβ + 1
2 r

2(β′Σxxβ + σ2)],(12)

E(Y r|x) = Eβ,u(ery|x) = exp[rxµβ + 1
2 r

2(xΣββx
′ + σ2)].(13)

Marginally, however, Y is not log-normal, since xβ is non-normal. From (12) or (13) and

the law of iterated expectations, we find that the marginal r’th order origo moment of

Y can be written alternatively as

E(Y r) = Eβ[Ex,u(ery|β)] = e
1
2 r2σ2

Eβ[exp(rµxβ + 1
2 r

2β′Σxxβ)],(14)

E(Y r) = Ex[Eβ,u(ery|x)] = e
1
2 r2σ2

Ex[exp(rxµβ + 1
2 r

2xΣββx
′)].(15)

Using (14), and inserting for the density function of β, we have

E(Y r) = exp(1
2 r

2σ2)
∫

Rn+1
exp[rµxβ + 1

2 r
2β′Σxxβ](16)

× (2π)− n+1
2 |Σββ |− 1

2 exp[−1
2 (β − µβ)′Σ−1

ββ (β − µβ)]dβ

= exp(1
2 r

2σ2)(2π)− n+1
2 |Σββ |− 1

2

∫
Rn+1

eλβrdβ,

where

λβr = −1
2 [(β − µβ)′Σ−1

ββ (β − µβ) − 2rµxβ − r2β′Σxxβ].(17)

7



Using (15), and inserting for the density function of z, we have

E(Y r) = exp(1
2 r

2σ2)
∫

Rn
exp[r(µα + zµγ) + 1

2 r
2(σαα + 2zσγα + zΣγγz

′)(18)

× (2π)− n
2 |Σzz|− 1

2 exp[−1
2 (z − µz)Σ−1

zz (z − µz)′]dz

= exp(rµα + 1
2 r

2(σαα + σ2)(2π)− n
2 |Σzz|− 1

2

×
∫

Rn
exp[−1

2 ((z−µz)Σ−1
zz (z−µz)′−2rµ′

γz
′ − r2(2zσγα+zΣγγz

′))]dz

= exp(rµα + 1
2 r

2(σαα + σ2)(2π)− n
2 |Σzz|− 1

2

∫
Rn
eλzrdz,

where

λzr = −1
2 [(z − µz)Σ−1

zz (z − µz)′ − 2rµ′
γz

′ − r2(2zσγα + zΣγγz
′)].(19)

Eqs. (16) and (18) show that in order to evaluate E(Y r) exactly, we have to evaluate

either of the multiple integrals
∫
Rn+1 eλβrdβ and

∫
Rn eλzrdz, whose integrands are both

exponential functions with one linear term and two quadratic forms in the exponent. We

show in Appendix A that

∫
Rn+1

eλβrdβ and
∫

Rn
eλzrdz exist

⇐⇒
all eigenvalues of Σ−1

ββ − r2Σxx are strictly positive.

(20)

A condition of this kind is a consequence of assuming that β and z have both infinite

supports.

3 Approximations to the origo moments of output

We now present two ways of obtaining approximate closed form expressions for E(Y r),

one based on (14) and one based on (15). To check the numerical accuracy, we also

describe a way of computing numerical approximations to (15).

3.1 Analytical approximations

We first let δ = β − µβ ∼ N (0,Σββ) and rewrite (14) as

E(Y r) = e
1
2 r2σ2

E
[
exp[rµxµβ + rµxδ + 1

2 r
2µ′

βΣxxµβ + r2µ′
βΣxxδ + 1

2 r
2δ′Σxxδ]

]
(21)

= exp
[
rµxµβ + 1

2 r
2(µ′

βΣxxµβ + σ2)
]
E
[
exp[(rµx + r2µ′

βΣxx)δ + 1
2 r

2δ′Σxxδ]
]
.
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The exponent in the expression after the last expectation operator is the sum of a nor-

mally distributed variable and a quadratic form in a normally distributed vector. Since

its distribution is complicated, we, for simplicity, replace δ′Σxxδ = tr[δδ′Σxx] by its ex-

pectation, tr[ΣββΣxx]. We then get from (21), provided that (20) holds, the following

approximation to the r’th origo moment of output:

E(Y r) ≈ Gβr(Y ) = exp
[
rµxµβ + 1

2 r
2(µ′

βΣxxµβ + tr[ΣββΣxx] + σ2)
]

(22)

× exp
[

1
2 (rµx + r2µ′

βΣxx)Σββ(rµx + r2µ′
βΣxx)′

]
= exp

[
rµxµβ + 1

2 r
2(µ′

βΣxxµβ + µxΣββµ
′
x + tr[ΣββΣxx] + σ2)

+ r3µ′
βΣxxΣββµ

′
x + 1

2 r
4µ′

βΣxxΣββΣxxµβ

]
,

since var[(rµx + r2µ′
βΣxx)δ] = (rµx + r2µ′

βΣxx)Σββ(rµx + r2µ′
βΣxx)′.

We next let v = x− µx ∼ N (0,Σxx) and rewrite (15) as

E(Y r) = e
1
2 r2σ2

E
[
exp[rµxµβ + rvµβ + 1

2 r
2µxΣββµ

′
x + r2vΣββµ

′
x + 1

2 r
2vΣββv

′]
]

(23)

= exp
[
rµxµβ + 1

2 r
2(µxΣββµ

′
x + σ2)

]
E
[
exp[(rµ′

β + r2µxΣββ)v′ + 1
2 r

2vΣββv
′]
]
.

Again, the exponent in the expression after the last expectation operator is the sum of

a normally distributed variable and a quadratic form in a normally distributed vector.

We, for simplicity, replace vΣββv
′ = tr[v′vΣββ ] by its expectation, tr[ΣxxΣββ ], and get

from (23), provided that (20) holds, the following alternative approximation to the r’th

order origo moment of output:

E(Y r) ≈ Gxr(Y ) = exp
[
rµxµβ + 1

2 r
2(µxΣββµ

′
x + tr[ΣxxΣββ ] + σ2)

]
(24)

× exp
[

1
2 (rµ′

β + r2µxΣββ)Σxx(rµ′
β + r2µxΣββ)′

]
= exp

[
rµxµβ + 1

2 r
2(µxΣββµ

′
x + µ′

βΣxxµβ + tr[ΣxxΣββ ] + σ2)

+ r3µ′
βΣxxΣββµ

′
x + 1

2 r
4µxΣββΣxxΣββµ

′
x

]
,

since var[(rµ′
β + r2µxΣββ)v′] = (rµ′

β + r2µxΣββ)Σxx(rµ′
β + r2µxΣββ)′.

The expressions after the last equality sign in (22) and (24) coincide, except for the

last term in the exponents. This term is 1
2 r

4µ′
βΣxxΣββΣxxµβ when using the approx-

imation derived from the expectation conditional on β, i.e., (14), and the symmetric
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expression 1
2 r

4µxΣββΣxxΣββµ
′
x when using the approximation derived from the expec-

tation conditional on x, i.e., (15). We can then write the two approximations to E(Y r)

as

Gβr(Y ) = Φr(y)ΓrΛβr, Gxr(Y ) = Φr(y)ΓrΛxr,(25)

where

Φr(y) = exp
[
rµy + 1

2 r
2σyy

]
,(26)

Γr = exp
[
r3µxΣββΣxxµβ

]
,(27)

Λβr = exp
[

1
2 r

4µ′
βΣxxΣββΣxxµβ

]
, Λxr = exp

[
1
2 r

4µxΣββΣxxΣββµ
′
x

]
.(28)

The first term in (25), Φr(y), is the approximation we would have obtained if we had

proceeded as if y were normally and Y were log-normally distributed marginally [cf. (9)

and (10)], and hence it may be viewed as a kind of ‘first-order’ approximation. The

second and third terms, Γr, Λβr and Λxr, where Λβr is used if we rely on (22) and Λxr is

used if we rely on (24), are correction factors to this first-order approximation.

3.2 Numerical approximations

There are several methods for approximating the moments numerically. One is to eval-

uate the multivariate integrals in (16) or (18) using quadrature methods [see, e.g.,

Greene (2003, Appendix E.5.4)]. A simpler and more robust method, albeit compu-

tationally more intensive, is to simulate the expectations in (14) or (15). The idea is

simple and well known: estimating the expectation in a distribution by a corresponding

sample average based on synthetic data.

To obtain this we first define the variables V (x; r) = exp(rxµβ + 1
2 r

2xΣββx
′), r =

1, 2, . . . . Next, we draw a sample of x’s from the N (µx,Σxx) distribution2 and, for each

element in the sample, calculate V (x; r). Finally, the sample averages of these V ’s are

used as estimators for the corresponding expectations, the E[V (x; r)]’s. As long as the

r’th origo moment of Y exists, cf. (20), the law of large numbers ensures that the sample

average converges in probability towards the expectation.
2The random number generator g05ezf in NAG’s library of Fortran77 routines (Mark 16) was used.
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4 An approximate aggregate production function

in origo moments

We now derive approximate relationships between E(Y r) and E(Zr) to be used in ex-

amining aggregation biases in the production function parameters when the aggregate

variables are represented by their arithmetic means. In doing this, we note that eE[ln(Y )]

and eE[ln(Zi)] can be associated with the geometric means, and E(Y ) and E(Zi) with the

arithmetic means of the output and the i’th input, respectively. We initially consider an

arbitrary value of r, assuming that (20) is satisfied, and then discuss the case r = 1 in

more detail.

4.1 An aggregate Cobb-Douglas production function

Let

θyβr = ln[Gβr(Y )] − rµy = ln[Φr(y)ΓrΛβr] − rµxµβ

= 1
2 r

2σyy + r3µxΣββΣxxµβ + 1
2 r

4µ′
βΣxxΣββΣxxµβ,

θyxr = ln[Gxr(Y )] − rµy = ln[Φr(y)ΓrΛxr] − rµxµβ

= 1
2 r

2σyy + r3µxΣββΣxxµβ + 1
2 r

4µxΣββΣxxΣββµ
′
x,

(29)

which can be interpreted as two alternative approximations to ln[E(Y r)] − E[ln(Y r)].

Further, let Zi denote the i’th element of Z, i.e., the i’th input, and zi = ln(Zi). From

(2) it follows that

zi ∼ N (µzi, σzizi), i = 1, . . . , n,

where µzi is the i’th element of µz and σzizi is the i’th diagonal element of Σzz. Hence,

E(Zr
i ) = E(ezir) = exp

(
µzir + 1

2σzizir
2
)
, r = 1, 2, . . . ; i = 1, . . . , n.(30)

Let µγi be the i’th element of µγ , i.e., the expected input elasticity of the i’th input.

Since (30) implies eµziµγir = exp(− 1
2σzizir

2µγi)[E(Zr
i )]µγi , it follows from (22) and (24)

that

Gβr(Y ) = eµαrAβr

n∏
i=1

[E(Zr
i )]µγi ,

Gxr(Y ) = eµαrAxr

n∏
i=1

[E(Zr
i )]µγi ,

(31)
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where
Aβr = exp

(
θyβr − 1

2 r
2∑n

i=1σziziµγi

)
= exp(θyβr − 1

2 r
2µ′

γσzz),

Axr = exp
(
θyxr − 1

2 r
2∑n

i=1σziziµγi

)
= exp(θyxr − 1

2 r
2µ′

γσzz),
(32)

and σzz = diagv(Σzz).3 Eq. (31) can be interpreted (approximately) as a Cobb-Douglas

function in the r’th origo moments of Y and Z1, . . . , Zn with exponents equal to the

expected micro elasticities µγ1, . . . , µγn and an intercept eµαr, adjusted by either of the

factors Aβr or Axr. These factors depend, via θyβr and θyxr [cf. (9), (10) and (29)], on

the first and second moments of the log-input vector x, the coefficient vector β, and the

disturbance u. For r = 1, (31) gives in particular

Gβ1(Y ) = eµαAβ1

n∏
i=1

[E(Zi)]µγi ,

Gx1(Y ) = eµαAx1

n∏
i=1

[E(Zi)]µγi .

(33)

At a first glance, it seems that this equation could be interpreted as a Cobb-Douglas

function in the arithmetic means E(Y ) and E(Z1), . . . ,E(Zn), with elasticities coinciding

with the expected micro elasticities µγ1, . . . , µγn and an intercept eµα adjusted by the

factor Aβ1 or Ax1. However, we will show below that the situation is not so simple.

4.2 Aggregation by analogy and aggregation biases

in output and in input elasticities

Assume now that we, instead of (33), use as our aggregate production function the

function obtained by aggregating by analogy from arithmetic means, i.e.,

Ê(Y ) = eµα

n∏
i=1

[E(Zi)]
µγi .(34)

This can be said to mimic the aggregation by analogy often used by macro-economists

and macro model builders. The resulting aggregation error in output when we use the

approximate formula for E(Y ) is

εβ(Y ) = Gβ1(Y ) − Ê(Y ) = (Aβ1 − 1)eµα

n∏
i=1

[E(Zi)]
µγi ,

εx(Y ) = Gx1(Y ) − Ê(Y ) = (Ax1 − 1)eµα

n∏
i=1

[E(Zi)]
µγi .

(35)

3We here and in the following use ‘diagv’ to denote the column vector containing the diagonal elements

of the following square matrix.
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We next consider the aggregate input elasticities and their biases, still representing

the exact parametric aggregate production function by its approximation (33) and the

incorrect one by (34). The latter way of aggregating the Cobb-Douglas production func-

tion will bias not only its intercept, but also its derived input elasticities, because Aβ1

and Ax1 respond to changes in µz and Σzz. From (9), (10) and (29) we see that when

Σγγ is non-zero, a change in µz affects not only the expectation of ln(Y ), but also its

variance σyy, as well as θyβ1 and θyx1. Eqs. (9), (10), (22) and (24) imply

ln[Gβ1(Y )] = µy + 1
2σyy + µxΣββΣxxµβ + 1

2µ
′
βΣxxΣββΣxxµβ,

ln[Gx1(Y )] = µy + 1
2σyy + µxΣββΣxxµβ + 1

2µxΣββΣxxΣββµ
′
x.

(36)

Using the fact that, from (30), ∆ ln[E(Z)]′ = ∆(µ′
z + 1

2σzz), we show in Appendix B that

∂ ln[Gβ1(Y )]
∂ ln[E(Z)]′ = µ∗

γβ = µγ + Σγγµ
′
z + ΣγγΣzzµγ when Σzz is constant,

∂ ln[Gx1(Y )]
∂ ln[E(Z)]′ = µ∗

γx = (I + ΣγγΣzz)(µγ + Σγγµ
′
z) when Σzz is constant,

(37)

∂ ln[Gβ1(Y )]
∂ ln[E(Z)]′ = µ∗∗

γβ = diagv(µγµ
′
γ +Σγγ +2µγµzΣγγ +µγµ

′
γΣzzΣγγ +ΣγγΣzzµγµ

′
γ)

when µz and the off-diagonal elements of Σzz are constant,
∂ ln[Gx1(Y )]
∂ ln[E(Z)]′ = µ∗∗

γx = diagv(µγµ
′
γ +Σγγ +2µγµzΣγγ +Σγγµ

′
zµzΣγγ)

when µz and the off-diagonal elements of Σzz are constant.

(38)

From these formulae it is not obvious how we should define and measure the exact

aggregate input elasticity of input i, interpreted as (∂ ln[E(Y )])/(∂ ln[E(Zi)]), since, in

general, both the mean and the variance vector of the log-input distribution change over

time. Eq. (37) may be interpreted as a vector of dispersion preserving aggregate input

elasticities, and eq. (38) as a vector of mean preserving elasticities. Anyway, µγ provides

a biased measure of the aggregate elasticity vector. The bias vector implied by the

dispersion preserving macro input elasticities, obtained from (37), is

εβ(µγ) = µ∗
γβ − µγ = Σγγ

(
µ′

z + Σzzµγ

)
,

εx(µγ) = µ∗
γx − µγ = Σγγ

(
µ′

z + Σzzµγ + ΣzzΣγγµ
′
z

)
.

(39)

The bias vectors for the mean preserving elasticities can be obtained from (38) in a similar

way.

The dispersion preserving elasticities may be of most interest in practice, since con-

stancy of the variance of the log of input i, i.e., σzizi, implies constancy of the coefficient
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of variation of the untransformed input i. This will follow when the i’th input of all micro

units change proportionally.4 This is seen from the following expression for the coefficient

of variation of Zi [cf. (30) and Evans, Hastings, and Peacock (1993, chapter 25)]:

v(Zi) =
std(Zi)
E(Zi)

= (eσzizi − 1)
1
2 .(40)

5 Econometric model, data and estimation

We next turn to the parametrization of the micro production (1), the data, and the

estimation procedure. We specify four inputs: (n = 4), capital (K), labour (L), energy

(E) and materials (M), and include a deterministic linear trend (t), intended to capture

the level of the technology. We parametrize (1) as

yit = α∗
i + κt+

∑
j βjixjit + uit, j, k = K,L,E,M,(41)

where subscripts i and t denote plant and year of observation, respectively, yit = ln(Yit),

xjit = ln(Xjit) (j = K,L,E,M), and α∗
i and βji (j = K,L,E,M) are random coefficients

specific to plant i, and κ is plant invariant. The disturbance uit ∼ N (0, σuu). We let

xit = (xKit, xLit, xEit, xMit)′, collect all the random coefficients for plant i in the vector

ψi = (α∗
i , βKi, βLi, βEi, βMi)′, and describe the heterogeneity in the model structure as

follows: All xit, uit, and ψi are independently distributed, with

E(ψi) = ψ = (ᾱ∗, β̄K , β̄L, β̄E , β̄M )′, E[(ψi − ψ)(ψi − ψ)′] = Ω,

where Ω is a symmetric, but otherwise unrestricted matrix.

Since our focus will be on aggregation biases on a yearly basis it is convenient to

rewrite (41) as

yit = αit +
∑

j βjixjit + uit, j = K,L,E,M,(42)

where αit = α∗
i + κt, satisfying E(αit) = ᾱt = ᾱ∗ + κt. In the following we sometimes

suppress the indices for plant and year and write (42) as (1) with j, k = K,L,E,M .
4The mean preserving elasticities relate to a more ‘artificial’ experiment in which E[ln(Zi)] is kept

fixed and v(Zi) is increased, i.e., std(Zi) is increased relatively more than E(Zi).
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The unknown parameters are estimated by ML, using the PROC MIXED procedure in

the SAS/STAT software [see Littell et al. (1996)]. Positive definiteness of Ω is imposed

as an a priori restriction. This application draws on the estimation results in Biørn,

Lindquist and Skjerpen (2002, in particular Section 2 and Appendix A). The data are

unbalanced panel data for the years 1972 – 1993 from two Norwegian manufacturing in-

dustries, Pulp and paper and Basic metals. A further description is given in Appendix C.

The estimates, as well as the estimates of the mean scale elasticity β̄ =
∑

j β̄j , are given

in Appendix E.

6 Empirical results

6.1 Tests of the normality of the log-input distribution

Since this study relies on log-normality of the inputs, we present, in Appendix D, the

results of univariate statistical tests of whether, for each year in the sample period, log-

output and log-inputs are normally distributed. The test statistic takes into account both

skewness and excess kurtosis. Summary results are presented in Table 1. Log-normality is

in most cases not rejected. However, for Pulp and paper, some evidence of non-normality,

especially in the first years in the sample, is found. Non-normality is most pronounced

for energy and materials, and normality is rejected at the 1 per cent significance level for

both of these inputs in the first five years. Despite these irregularities, we conclude from

these results that (2) is an acceptable simplifying assumption for the study.

6.2 Simulations of the origo moments of output

Before embarking on the task of simulating the origo moments of output, one should

check whether or not the condition for their existence, (20), is met. We found that for

both industries, the first and second-order moments exist in all years, except for Basic

metals in 1993 where only the first-order moment exists. For Pulp and paper also the

third-order moment exists in 1992.

The fact that the highest existing moments are of low order may cause problems that

should not be neglected. Estimates of moments based on simulated sample averages are

of little value unless accompanied by measures of the sampling error, such as confidence
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intervals. However, in order to obtain confidence intervals one usually relies on standard

central limit theorems, thereby assuming the existence of both the expectation and the

variance of the random variable in question. If we let r̄ ≥ 1 denote the highest existing

moment and regard Y r̄ as a random variable, it is clear that var(Y r̄) = E(Y 2r̄)− [E(Y r̄)]2

does not exist, since E(Y 2r̄) does not exist by definition.

In this case, a generalization of the central limit theorem is appropriate, see McCul-

loch (1986) and Embrechts et al. (1997, pp. 71–81) for the points to follow. In general,

the distribution of a sample average of n IID random variables converges towards a stable

distribution characterized by four parameters and denoted by S(α, β, c, δ), where α is the

characteristic exponent, β is a skewness parameter, while c and δ determines scale and

location, respectively. The shape of the distribution is determined by α and β, while c

compresses or extends the distribution about δ. The standard central limit theorem is a

special case: if both the expectation and the variance of the IID variables exist, α = 2 and

the limiting distribution is the normal. If the expectation, but not the variance, of the

IID variables exists, 1 < α < 2. Several familiar features of the normal distribution are

also generally valid for stable distributions, one of them is invariance under averaging.5

The crux of the problem of simulating the highest existing origo moment is the following:

consistency of the sample average of output as an estimator of its expectation is ensured

as long as its theoretical moment exists, but inaccuracy in the estimate may be persistent

even for very large samples.

We have simulated the first and second-order moments of output, using 108 synthetic

observations for every year in each of the two industries. Each of the samples of 108 ob-

servations have been divided in 104 sub-samples, and sample averages for the sub-samples

have been calculated, enabling us to study the distribution of the sub-sample averages.

Provided that these distributions belong to the stable class, estimated distribution pa-

rameters will be applicable to the total sample since the total average is the average of
5More precisely, if n IID random variables are drawn from a stable distribution S(α, β, c, δ), their

average will also have a stable distribution S(α, β, cn(1/α)−1, δ), cf. McCulloch (1986, pp. 1122-1123).

In the normal case, with α = 2, the scale parameter of the average equals cn−1/2. This implies that

the distribution of the average is more compressed than the original distribution, and thus the width of

confidence intervals will be rapidly decreasing in n. In the case where α is close to 1, the factor n(1/α)−1

is close to 1, implying that the width of confidence intervals decreases slowly.
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all sub-sample averages, due to the invariance under averaging property.6

Parameters in stable distributions can, in principle, be estimated by maximum like-

lihood, but this is rather difficult. McCulloch (1986) suggest a far simpler, albeit less

efficient, method based on functions of sample quantiles. Using this latter method, we

found for both industries estimates of α in the interval (0.7, 0.9). Typical estimates of β

were above 0.75, indicating strong right skewness.

A full treatment of this subject is beyond our scope. For the second-order moments,

we simply report the average, the 5 per cent, and the 95 per cent quantile in the distribu-

tion of sub-sample averages in Table 2b. The average exceeds the 95 per cent quantile in

almost every year, due to the heavy upper tail. First-order moments are reported, with

normal confidence intervals, in Table 2a.

6.3 Decompositions of the origo moments of output

Tables 3 – 8 present the decomposition of the log of expected output for Pulp and paper

and Basic metals. Tables 3 and 4 give, respectively, the decomposition of the log of

expected output and the log of the second-order moment of output according to the first

formulae in (25). The corresponding results based on the second formula are given in

Tables 5 and 6. In Tables 7 and 8 we report on a further decomposition of the factor

ln[Ψr(y)] (r = 1, 2), which is common to both decomposition formulae. In Table 3 we

decompose the log of expected output in three parts. We also compare the estimate of the

log of expected output with the corresponding results based on simulations as outlined

earlier. The first column for both industries gives the log of expected output if one

proceeds as if output were log-normally distributed, which is not in accordance with our

stochastic assumptions. In Table 7 we perform a further decomposition of ln[Ψ1(y)], into

five sub-components. The first column for each industry in Table 7 shows the downward

bias caused by the naive way of representing the expectation of a log-normal variable, say

Z, by eE[ln(Z)]. We note that the results based on the approximation formulae (22) agree

more closely with the simulation results than those based on the alternative formula (24).

This is most pronounced for the log of the second-order origo moment.
6Note that this is a simplifying assumption, and that there is no guarantee that the distribution of

sub-sample averages is stable even when each sub-sample consists of 104 observations.
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We observe from Table 3 that taking account of the correction factors ln(Γ1) and

ln(Λβ1), generally reduces the discrepancy between results based on the approximate

analytical formulae and the simulation results. This is true for both industries, except

for Basic metals in the ultimate year. Note also that ln(Γ1) yields a negative and ln(Λβ1)

a positive contribution. The absolute value of the latter is, however, generally larger

than the former. For the (log of the) second-order moment, Table 4 reveals that there

is a positive discrepancy between the simulation results and the log of the second-order

origo moment calculated from the approximation formula (22). Thus, the approximation

formula seems to perform better for the log of first-order than for the log of the second-

order moment. This may be due to the fact that condition (20) is closer to being violated

for r = 2 than for r = 1; cf. Section 6.2.

Using the approximation formulae (24), we see that the the total effect of including

the two correction terms ln(Γ1) and ln(Λx1) is to widen the gap between the results from

simulations and from analytical formulae. This is the case for both industries. Besides,

the absolute value of ln(Λx1) is very small and for practical purposes negligible. From

Tables 7 and 8 we see that all sub-components contribute positively. For the first-order

moment the largest contribution comes from µy followed by the term picking up the

contribution from the variation in the random coefficients. Smaller contributions are

given by the variation in log-inputs, the interaction term and the term representing the

variance of the genuine disturbances. For the second-order moments the effect of the

random variation in coefficients contributes more than the effects from 2µy.

6.4 Scale and input elasticities

In Tables 9 – 12 we report on four types of input and scale elasticities at the industry level

for Pulp and paper and Basic Metals. Tables 9 and 11 are based on the approximation

formula Gβ1, whereas Tables 10 and 12 are based on the approximation formula Gx1. We

label the elasticities in Tables 9 and 10 dispersion preserving macro elasticities and the

elasticities in Tables 11 and 12 mean preserving macro elasticities. The companion, time

invariant, micro elasticities are reported in Table E.1. We see that the micro elasticities

lie between the dispersion preserving and mean preserving micro elasticities irrespective

of which approximation formula is applied. The energy elasticity at the industry level
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mainly comes out as negative when using the dispersion preserving elasticity formulae,

but they are positive in the mean preserving case. However, the micro energy elasticity

is also low, especially for Pulp and paper. Many of the elasticities do not change very

much over time, but there are important exceptions. Consider, for instance, the labour

elasticity for Basic metals which has a negative trend over time regardless of which

elasticity formula is used. At the micro level, the materials elasticity was found to be

the largest among the input elasticities in all industries, whereas labour possesses this

property at the industry level. Within Pulp and paper also the capital elasticity is higher

than the materials elasticity at the industry level. Of course one can also calculate time-

varying weighted elasticities between these two ‘limiting’ cases. Also these elasticities

emphasize the arguments against using ‘raw’ micro elasticities in macro contexts. Since

the macro elasticties are quite different from the micro elasticities and some of them

trends over time, policy conclusions based on the micro parameters have the potential to

be misleading.

7 Conclusions

In this paper, we consider aggregation of Cobb-Douglas production functions from the

micro to the industry level when the production function parameters as well as the log-

input variables are assumed to be multivariate normally distributed. Although output

will then not be log-normally distributed marginally, we are able to provide analytical

approximation formulae for both the expectation and the higher-order origo moments of

the output distribution. One is derived from the conditional distribution of output given

the inputs, the other from the conditional distribution of output given the parameters.

We also give conditions for the existence of the origo moments. These conditions turn

out to be rather strong in the present case, as only the two first origo moments of the

output distribution exist. This, inter alia, seems to be due to our assumption that the

distribution of the log-inputs and the coefficients are normal and hence have infinite

supports. This suggests directions for future research, even if relaxation of normality

will, most likely, increase the analytical and numerical problems. To evaluate the quality

of the approximate formulae, we supplement the analytical formulae with simulation
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experiments.

We derive the industry level production function, expressed as a relationship between

expected inputs and expected output, and bias formulae obtained when comparing cor-

rectly aggregated input and scale elasticities with elasticities obtained from the micro

level, denoted as aggregation by analogy. However, as it is not obvious what should be

meant by aggregate elasticities, we give different definitions, based on different assump-

tions about how the distribution of the micro variables is restricted in the aggregation

process. Our modeling framework is applied to two unbalanced panel data sets for the

Norwegian Pulp and paper and Basic metals industries.

We demonstrate different ways of decomposing expected log of output. One of the

components is the one we get when erroneously assuming that output is log-normally

distributed marginally. When additional terms are included in the approximation for-

mula, exploiting the distribution of output conditional on the inputs, we obtain results

that agree better with those obtained by the simulations. The opposite is the case when

we apply the distribution with the reverse conditioning.

With respect to industry level input and scale elasticities, we present results for two

limiting cases, labeled as variation preserving and mean preserving elasticities. We find

the scale elasticities to be uniformly higher at the industry than at the micro level for

industries. Besides, the ranking of the input elasticities by size is not the same at the

micro and the industry level. Unlike the micro elasticities, which are, by assumption,

time-invariant, the elasticities at the industry level change over time. For some elasticities

we find a clear trending pattern over the sample period. It is thus safe to conclude that

the aggregation by analogy strategy followed by many macro economists is far from

innocent and may lead to wrong conclusions.

Throughout this paper, we have assumed that production function parameters and

log-inputs are uncorrelated. An interesting extension would be to relax this assumption.

This can, for instance, be done within a model in which all parameters are fixed and

plant specific. However, this will imply that a substantial part of the sample must be

wasted, since we need a minimum number of observations for each plant to estimate the

plant specific parameters properly. It is not clear whether the approach pursued in this

paper can be applied to more flexible functional forms, such as the CES, the Translog,
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or the Generalized Leontief production functions. Probably, it will be harder to obtain

useful analytical approximation formulae for expected output, and since the production

functions involve higher-order terms, the problems related to the non-existence of higher-

order origo moments of output will most likely be aggravated. Consequently, in such cases

it may be more fruitful to stick to an aggregation approach where the assumption that

parameters and log-input variables are drawn from a specific parametric distributions are

relaxed, as exemplified in Biørn and Skjerpen (2002).
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Table 1. Testing of normality of log-transformed variables. Numbers of years (out of 22) in which 

the statistic is significant at the indicated significance level  

 log(X) log(K) log(L) log(E) log(M) 
Pulp and paper      

      

Skewness:      

1 per cent 1 0 0 0 5 

5 per cent 7 8 2 1 10 

10 per cent 9 10 4 1 12 

      

Kurtosis:      

1 per cent 1 0 0 8 0 

5 per cent 4 0 0 21 0 

10 per cent 7 0 1 22 0 

      

Normality:      

1 per cent 0 0 0 7 3 

5 per cent 9 5 1 12 6 

10 per cent 11 8 3 20 10 
Basic metals      

      

Skewness      

1 per cent 0 0 0 0 0 

5 per cent 1 0 0 0 0 

10 per cent 4 0 0 0 0 

      

Kurtosis      

1 per cent 0 0 0 0 0 

5 per cent 8 2 9 1 2 

10 per cent 14 15 18 11 10 

      

Normality      

1 per cent 0 0 0 0 0 

5 per cent 1 0 0 1 0 

10 per cent 11 0 4 7 0 
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Table 2a. Simulated first order moments
1
 with confidence intervals, in logarithms 

 

Moment Lower limit Upper limit Moment Lower limit Upper limit 

 Pulp and paper Basic metals 

1972 5.9642 5.9619 5.9665 6.7566 6.7491 6.7604 

1973 6.0421 6.0396 6.0445 6.8375 6.8286 6.8419 

1974 6.2679 6.2633 6.2724 6.7475 6.7414 6.7507 

1975 6.1488 6.1443 6.1532 6.9647 6.9540 6.9701 

1976 6.1558 6.1511 6.1604 6.7192 6.7115 6.7231 

1977 5.9498 5.9471 5.9524 6.7825 6.7733 6.7871 

1978 5.9708 5.9681 5.9734 6.4945 6.4886 6.4976 

1979 6.0949 6.0923 6.0974 6.9541 6.9461 6.9581 

1980 6.1343 6.1321 6.1364 6.9318 6.9252 6.9351 

1981 6.2062 6.2037 6.2086 6.8530 6.8469 6.8561 

1982 6.2892 6.2863 6.2921 6.7398 6.7341 6.7428 

1983 6.2855 6.2836 6.2873 6.8360 6.8300 6.8391 

1984 6.2953 6.2936 6.2970 7.0430 7.0375 7.0458 

1985 6.4049 6.4030 6.4067 7.0030 6.9988 7.0051 

1986 6.3942 6.3923 6.3961 7.0995 7.0955 7.1016 

1987 6.4191 6.4169 6.4212 7.2459 7.2403 7.2488 

1988 6.4893 6.4869 6.4918 7.3868 7.3813 7.3896 

1989 6.4741 6.4721 6.4762 7.3270 7.3229 7.3291 

1990 6.4467 6.4445 6.4489 7.3848 7.3798 7.3874 

1991 6.5224 6.5201 6.5246 7.3421 7.3375 7.3444 

1992 6.2779 6.2770 6.2788 7.1605 7.1585 7.1615 

1993 6.3373 6.3362 6.3384 7.2189 7.2151 7.2209 
 

1. Moments are averages over 108 synthetic observations. 

 

 

Table 2b. Simulated second order moments
1
 and percentiles

2
 in distribution of sample averages 

 

Pulp and paper Basic metals 

 Moment 5% perc. 95% perc. Moment 5% perc. 95% perc. 

1972 20.3222 16.2083 19.9855 23.6420 18.6538 23.1054 

1973 20.7355 16.4392 20.2932 24.3111 18.8108 23.3087 

1974 23.3204 17.3739 21.9618 23.0945 18.3958 22.4790 

1975 22.9392 17.0538 21.5681 25.0652 19.1299 23.8377 

1976 23.0748 17.0582 21.5762 23.6211 18.3669 22.6613 

1977 20.7370 16.1659 20.0623 24.0757 18.4756 22.9266 

1978 20.7938 16.2440 20.1622 22.1762 17.6244 21.5623 

1979 20.9894 16.5070 20.3702 23.9905 18.7571 23.0237 

1980 20.5820 16.4588 20.0643 23.4015 18.6020 22.6752 

1981 21.1147 16.7027 20.4655 22.9574 18.3655 22.3305 

1982 21.9550 17.1010 21.1639 22.5748 18.1302 22.0074 

1983 20.4060 16.6433 19.9861 23.0892 18.4202 22.3085 

1984 20.2310 16.6265 19.9286 23.1622 18.7618 22.6147 

1985 20.7483 16.9436 20.3429 22.6312 18.7498 22.4278 

1986 20.7294 16.9265 20.3530 22.5904 18.8266 22.3586 

1987 21.2076 17.0818 20.6653 23.9776 19.3790 23.2859 

1988 21.9431 17.3971 21.1483 24.4038 19.7025 23.5507 

1989 21.3069 17.2215 20.7920 23.5459 19.5700 23.3294 

1990 21.4994 17.1843 20.8154 24.1807 19.6895 23.4925 

1991 21.8167 17.4039 21.0742 23.5246 19.4685 23.2638 

1992 18.0353 15.9672 18.3643 20.9543 18.5309 21.2384 

1993 18.6202 16.2304 18.8946 28.2954 20.3039 26.2111 

 
1. Moments are averages over 108 synthetic observations. 

2. Percentiles from distribution of 104 sample averages, each based on 104 observations.  
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Table 3. Decomposition of ln[E(Y)] as given by ln[Gβ1(Y)] 
 Pulp and paper Basic metals 

Year ln[ψ1(y)] ln(Γ1) ln(Λβ1) ln[E(Y)] Simulation ln[ψ1(y)] ln(Γ1) ln(Λβ1) ln[E(Y)] Simulation 

1972 5.8221 -0.1336 0.2241 5.9126 5.9642 6.5750 -0.1186 0.2111 6.6675 6.7566 

1973 5.8886 -0.1301 0.2300 5.9885 6.0421 6.6588 -0.1394 0.2302 6.7497 6.8375 

1974 6.0399 -0.1524 0.3090 6.1965 6.2679 6.6042 -0.1211 0.1863 6.6694 6.7475 

1975 5.9314 -0.1559 0.3047 6.0802 6.1488 6.7501 -0.1205 0.2440 6.8736 6.9647 

1976 5.9413 -0.1622 0.3085 6.0876 6.1558 6.5689 -0.1446 0.2158 6.6401 6.7192 

1977 5.8042 -0.1485 0.2434 5.8991 5.9498 6.6196 -0.1544 0.2387 6.7038 6.7825 

1978 5.8231 -0.1493 0.2450 5.9188 5.9708 6.3791 -0.1339 0.1805 6.4258 6.4945 

1979 5.9353 -0.1263 0.2336 6.0426 6.0949 6.7926 -0.1217 0.2084 6.8793 6.9541 

1980 5.9900 -0.1171 0.2125 6.0854 6.1343 6.8043 -0.1425 0.1984 6.8602 6.9318 

1981 6.0488 -0.1184 0.2246 6.1550 6.2062 6.7392 -0.1455 0.1898 6.7836 6.8530 

1982 6.0927 -0.1067 0.2440 6.2301 6.2892 6.6320 -0.1415 0.1793 6.6698 6.7398 

1983 6.1363 -0.0792 0.1826 6.2397 6.2855 6.7103 -0.1255 0.1757 6.7605 6.8360 

1984 6.1470 -0.0747 0.1779 6.2502 6.2953 6.9263 -0.1300 0.1756 6.9718 7.0430 

1985 6.2474 -0.0752 0.1854 6.3577 6.4049 6.8837 -0.1081 0.1482 6.9238 7.0030 

1986 6.2395 -0.0844 0.1923 6.3475 6.3942 6.9838 -0.1014 0.1438 7.0261 7.0995 

1987 6.2426 -0.0742 0.2013 6.3696 6.4191 7.1013 -0.1042 0.1664 7.1635 7.2459 

1988 6.2859 -0.0641 0.2126 6.4344 6.4893 7.2176 -0.0732 0.1591 7.3036 7.3868 

1989 6.2919 -0.0647 0.1961 6.4232 6.4741 7.1698 -0.0767 0.1480 7.2411 7.3270 

1990 6.2698 -0.0790 0.2047 6.3955 6.4467 7.2243 -0.0766 0.1528 7.3004 7.3848 

1991 6.3335 -0.0687 0.2040 6.4688 6.5224 7.2103 -0.1095 0.1645 7.2653 7.3421 

1992 6.1708 -0.0398 0.1114 6.2424 6.2779 7.0697 -0.0712 0.0941 7.0927 7.1605 

1993 6.2397 -0.0725 0.1334 6.3007 6.3373 7.1142 -0.3304 0.2801 7.0639 7.2189 

 

 

Table 4. Decomposition of ln[E(Y
2
)] as given by ln[Gβ2(Y)] 

 Pulp and paper Basic metals 

Year ln[ψ2(y)] ln(Γ2) ln(Λβ2) ln[E(Y)] Simulation ln[ψ2(y)] ln(Γ2) ln(Λβ2) ln[E(Y)] Simulation 

1972 15.7045 -1.0688 3.5857 18.2214 20.3222 20.1521 -0.9489 3.3775 22.5807 23.6420 

1973 15.8728 -1.0408 3.6798 18.5118 20.7355 20.5013 -1.1149 3.6837 23.0702 24.3111 

1974 16.7528 -1.2192 4.9443 20.4779 23.3204 19.8479 -0.9692 2.9816 21.8603 23.0945 

1975 16.4704 -1.2468 4.8747 20.0983 22.9392 20.9268 -0.9639 3.9046 23.8675 25.0652 

1976 16.5261 -1.2974 4.9357 20.1643 23.0748 20.0598 -1.1567 3.4520 22.3552 23.6211 

1977 15.7070 -1.1880 3.8939 18.4128 20.7370 20.3634 -1.2352 3.8186 22.9468 24.0757 

1978 15.7740 -1.1946 3.9203 18.4996 20.7938 19.2740 -1.0711 2.8884 21.0912 22.1762 

1979 15.9206 -1.0106 3.7379 18.6479 20.9894 20.4934 -0.9736 3.3345 22.8542 23.9905 

1980 15.8562 -0.9369 3.3999 18.3193 20.5820 20.2736 -1.1398 3.1746 22.3084 23.4015 

1981 16.0864 -0.9472 3.5935 18.7327 21.1147 20.0626 -1.1638 3.0372 21.9360 22.9574 

1982 16.3489 -0.8535 3.9044 19.3998 21.9550 19.7675 -1.1319 2.8683 21.5039 22.5748 

1983 15.9355 -0.6338 2.9221 18.2239 20.4060 19.8954 -1.0042 2.8118 21.7029 23.0892 

1984 15.9089 -0.5973 2.8457 18.1573 20.2310 20.2629 -1.0404 2.8094 22.0319 23.1622 

1985 16.1904 -0.6013 2.9670 18.5561 20.7483 19.7910 -0.8651 2.3718 21.2977 22.6312 

1986 16.1914 -0.6748 3.0775 18.5940 20.7294 19.9254 -0.8115 2.3001 21.4140 22.5904 

1987 16.2786 -0.5938 3.2204 18.9051 21.2076 20.5655 -0.8332 2.6616 22.3939 23.9776 

1988 16.4840 -0.5127 3.4019 19.3733 21.9431 20.6914 -0.5853 2.5458 22.6519 24.4038 

1989 16.3544 -0.5177 3.1375 18.9742 21.3069 20.3009 -0.6138 2.3672 22.0542 23.5459 

1990 16.3813 -0.6320 3.2756 19.0249 21.4994 20.5871 -0.6129 2.4445 22.4187 24.1807 

1991 16.5299 -0.5499 3.2642 19.2442 21.8167 20.5945 -0.8760 2.6322 22.3508 23.5246 

1992 15.2931 -0.3184 1.7822 16.7569 18.0353 19.0666 -0.5692 1.5062 20.0036 20.9543 

1993 15.6447 -0.5797 2.1349 17.1999 18.6202 19.8738 -2.6436 4.4814 21.7116 28.2954 
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Table 5. Decomposition of ln[E(Y)] as given by ln[Gx1(Y)] 
 Pulp and paper Basic metals 

Year ln[ψ1(y)] ln(Γ1) ln(Λx1) ln[E(Y)] Simulation ln[ψ1(y)] ln(Γ1) ln(Λx1) ln[E(Y)] Simulation 

1972 5.8221 -0.1336 0.0081 5.6967 5.9642 6.5750 -0.1186 0.0059 6.4623 6.7566 

1973 5.8886 -0.1301 0.0082 5.7667 6.0421 6.6588 -0.1394 0.0072 6.5267 6.8375 

1974 6.0399 -0.1524 0.0079 5.8954 6.2679 6.6042 -0.1211 0.0062 6.4892 6.7475 

1975 5.9314 -0.1559 0.0066 5.7822 6.1488 6.7501 -0.1205 0.0059 6.6355 6.9647 

1976 5.9413 -0.1622 0.0067 5.7858 6.1558 6.5689 -0.1446 0.0070 6.4313 6.7192 

1977 5.8042 -0.1485 0.0055 5.6612 5.9498 6.6196 -0.1544 0.0055 6.4706 6.7825 

1978 5.8231 -0.1493 0.0062 5.6799 5.9708 6.3791 -0.1339 0.0047 6.2499 6.4946 

1979 5.9353 -0.1263 0.0060 5.8149 6.0949 6.7926 -0.1217 0.0052 6.6760 6.9541 

1980 5.9900 -0.1171 0.0067 5.8795 6.1343 6.8043 -0.1425 0.0075 6.6692 6.9318 

1981 6.0488 -0.1184 0.0063 5.9368 6.2062 6.7392 -0.1455 0.0063 6.6001 6.8530 

1982 6.0927 -0.1067 0.0059 5.9919 6.2892 6.6320 -0.1415 0.0071 6.4976 6.7398 

1983 6.1363 -0.0792 0.0056 6.0626 6.2855 6.7103 -0.1255 0.0089 6.5937 6.8360 

1984 6.1470 -0.0747 0.0053 6.0777 6.2953 6.9263 -0.1300 0.0094 6.8057 7.0430 

1985 6.2474 -0.0752 0.0062 6.1784 6.4049 6.8837 -0.1081 0.0119 6.7874 7.0030 

1986 6.2395 -0.0844 0.0054 6.1605 6.3942 6.9838 -0.1014 0.0104 6.8927 7.0996 

1987 6.2426 -0.0742 0.0041 6.1724 6.4191 7.1013 -0.1042 0.0121 7.0093 7.2459 

1988 6.2859 -0.0641 0.0044 6.2262 6.4893 7.2176 -0.0732 0.0108 7.1552 7.3868 

1989 6.2919 -0.0647 0.0047 6.2319 6.4741 7.1698 -0.0767 0.0147 7.1078 7.3270 

1990 6.2698 -0.0790 0.0054 6.1962 6.4467 7.2243 -0.0766 0.0132 7.1609 7.3848 

1991 6.3335 -0.0687 0.0061 6.2709 6.5224 7.2103 -0.1095 0.0117 7.1125 7.3421 

1992 6.1708 -0.0398 0.0045 6.1355 6.2779 7.0697 -0.0712 0.0127 7.0112 7.1605 

1993 6.2397 -0.0725 0.0056 6.1729 6.3373 7.1142 -0.3304 0.0720 6.8558 7.2189 
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Table 6. Decomposition of ln[E(Y
2
)] as given by ln[Gx2(Y)] 

 Pulp and paper Basic metals 

Year ln[ψ2(y)] ln(Γ2) ln(Λx2) ln[E(Y)] Simulation ln[ψ2(y)] ln(Γ2) ln(Λx2) ln[E(Y)] Simulation 

1972 15.7045 -1.0688 0.1301 14.7658 20.3222 20.1521 -0.9489 0.0951 19.2983 23.6420 

1973 15.8728 -1.0408 0.1310 14.9630 20.7355 20.5013 -1.1149 0.1158 19.5022 24.3112 

1974 16.7528 -1.2192 0.1261 15.6597 23.3204 19.8479 -0.9692 0.0986 18.9774 23.0945 

1975 16.4704 -1.2468 0.1062 15.3298 22.9392 20.9268 -0.9639 0.0939 20.0568 25.0652 

1976 16.5261 -1.2974 0.1074 15.3361 23.0748 20.0598 -1.1567 0.1118 19.0150 23.6211 

1977 15.7070 -1.1880 0.0879 14.6069 20.7370 20.3634 -1.2352 0.0875 19.2157 24.0757 

1978 15.7740 -1.1946 0.0990 14.6783 20.7938 19.2740 -1.0711 0.0745 18.2773 22.1762 

1979 15.9206 -1.0106 0.0953 15.0053 20.9894 20.4934 -0.9736 0.0825 19.6023 23.9905 

1980 15.8562 -0.9369 0.1065 15.0258 20.5820 20.2736 -1.1398 0.1194 19.2532 23.4015 

1981 16.0864 -0.9472 0.1010 15.2402 21.1147 20.0626 -1.1638 0.1016 19.0004 22.9574 

1982 16.3489 -0.8535 0.0942 15.5896 21.9550 19.7675 -1.1319 0.1144 18.7500 22.5748 

1983 15.9355 -0.6338 0.0894 15.3911 20.4060 19.8954 -1.0042 0.1429 19.0341 23.0892 

1984 15.9089 -0.5973 0.0853 15.3969 20.2310 20.2629 -1.0404 0.1510 19.3736 23.1622 

1985 16.1904 -0.6013 0.0996 15.6887 20.7483 19.7910 -0.8651 0.1901 19.1161 22.6312 

1986 16.1914 -0.6748 0.0858 15.6024 20.7294 19.9254 -0.8115 0.1656 19.2795 22.5904 

1987 16.2786 -0.5938 0.0659 15.7506 21.2076 20.5655 -0.8332 0.1930 19.9253 23.9776 

1988 16.4840 -0.5127 0.0706 16.0420 21.9431 20.6914 -0.5853 0.1723 20.2784 24.4038 

1989 16.3544 -0.5177 0.0759 15.9126 21.3069 20.3009 -0.6138 0.2348 19.9218 23.5459 

1990 16.3813 -0.6320 0.0871 15.8364 21.4994 20.5871 -0.6129 0.2115 20.1857 24.1807 

1991 16.5299 -0.5499 0.0979 16.0780 21.8167 20.5945 -0.8760 0.1869 19.9054 23.5246 

1992 15.2931 -0.3184 0.0722 15.0469 18.0353 19.0666 -0.5692 0.2028 18.7002 20.9543 

1993 15.6447 -0.5797 0.0901 15.1550 18.6202 19.8738 -2.6436 1.1523 18.3825 23.6895 
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Table 7. Decomposition of ln[ψ1(y)] 
Pulp and paper Basic metals  

   Year 
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ββ µµ
xx
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( )
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2

1 2

2
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σ

 

ln[ψ1(y)]

1972 3.7920 1.6622 0.2131 0.1344 0.0204 5.8221 3.0739 2.9927 0.2677 0.1913 0.0493 6.5750 

1973 3.8408 1.6760 0.2161 0.1353 0.0204 5.8886 3.0670 3.0811 0.2773 0.1842 0.0493 6.6588 

1974 3.7034 1.9610 0.2159 0.1392 0.0204 6.0399 3.2845 2.8307 0.2758 0.1639 0.0493 6.6042 

1975 3.6275 1.9477 0.1973 0.1384 0.0204 5.9314 3.0368 3.2270 0.2596 0.1774 0.0493 6.7501 

1976 3.6195 1.9655 0.1959 0.1400 0.0204 5.9413 3.1078 2.9886 0.2574 0.1658 0.0493 6.5689 

1977 3.7550 1.7172 0.1869 0.1248 0.0204 5.8042 3.0574 3.1199 0.2403 0.1527 0.0493 6.6196 

1978 3.7592 1.7227 0.1931 0.1277 0.0204 5.8231 3.1213 2.8368 0.2380 0.1336 0.0493 6.3791 

1979 3.9103 1.6803 0.1985 0.1257 0.0204 5.9353 3.3385 3.0251 0.2414 0.1383 0.0493 6.7926 

1980 4.0518 1.5885 0.1983 0.1309 0.0204 5.9900 3.4717 2.8882 0.2526 0.1425 0.0493 6.8043 

1981 4.0545 1.6453 0.1993 0.1293 0.0204 6.0488 3.4472 2.8606 0.2431 0.1391 0.0493 6.7392 

1982 4.0110 1.7312 0.1949 0.1353 0.0204 6.0927 3.3802 2.8161 0.2473 0.1391 0.0493 6.6320 

1983 4.3047 1.4942 0.1954 0.1216 0.0204 6.1363 3.4730 2.7874 0.2487 0.1520 0.0493 6.7103 

1984 4.3396 1.4732 0.1999 0.1139 0.0204 6.1470 3.7212 2.7609 0.2556 0.1394 0.0493 6.9263 

1985 4.3996 1.5023 0.2098 0.1153 0.0204 6.2474 3.8718 2.5396 0.2647 0.1582 0.0493 6.8837 

1986 4.3833 1.5183 0.2047 0.1128 0.0204 6.2395 4.0049 2.5266 0.2612 0.1418 0.0493 6.9838 

1987 4.3458 1.5714 0.1954 0.1096 0.0204 6.2426 3.9199 2.7059 0.2730 0.1532 0.0493 7.1013 

1988 4.3297 1.6227 0.1939 0.1192 0.0204 6.2859 4.0896 2.6569 0.2745 0.1474 0.0493 7.2176 

1989 4.4065 1.5481 0.2001 0.1167 0.0204 6.2919 4.1892 2.4672 0.2967 0.1674 0.0493 7.1698 

1990 4.3489 1.5767 0.2032 0.1205 0.0204 6.2698 4.1550 2.5806 0.2910 0.1484 0.0493 7.2243 

1991 4.4020 1.5806 0.2023 0.1282 0.0204 6.3335 4.1233 2.5909 0.2928 0.1540 0.0493 7.2103 

1992 4.6950 1.1542 0.1989 0.1023 0.0204 6.1708 4.6061 1.9923 0.2986 0.1234 0.0493 7.0697 

1993 4.6571 1.2376 0.2178 0.1068 0.0204 6.2397 4.2915 2.0502 0.3946 0.3285 0.0493 7.1142 

 

 

 

Table 8. Decomposition of ln[ψ2(y)] 
Pulp and paper Basic metals   

Year 
2µy /

2
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2
xx

µµ ββΣ
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2 ββ µµ
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Σ  ( )
xx

tr ΣΣββ2 2
2σ  ln[ψ2(y)]

1972 7.5840 6.6488 0.8526 0.5375 0.0816 15.7045 6.1478 11.9709 1.0709 0.7652 0.1972 20.1521 

1973 7.6815 6.7040 0.8645 0.5411 0.0816 15.8728 6.1339 12.3246 1.1090 0.7366 0.1972 20.5013 

1974 7.4067 7.8440 0.8636 0.5570 0.0816 16.7528 6.5690 11.3230 1.1031 0.6557 0.1972 19.8479 

1975 7.2550 7.7910 0.7893 0.5535 0.0816 16.4704 6.0735 12.9080 1.0383 0.7098 0.1972 20.9268 

1976 7.2390 7.8619 0.7836 0.5600 0.0816 16.5261 6.2157 11.9544 1.0294 0.6631 0.1972 20.0598 

1977 7.5100 6.8690 0.7474 0.4990 0.0816 15.7070 6.1148 12.4794 0.9611 0.6108 0.1972 20.3634 

1978 7.5184 6.8908 0.7724 0.5108 0.0816 15.7740 6.2426 11.3473 0.9522 0.5346 0.1972 19.2740 

1979 7.8206 6.7213 0.7942 0.5029 0.0816 15.9206 6.6770 12.1006 0.9655 0.5531 0.1972 20.4934 

1980 8.1037 6.3540 0.7934 0.5235 0.0816 15.8562 6.9435 11.5526 1.0102 0.5700 0.1972 20.2736 

1981 8.1089 6.5813 0.7973 0.5173 0.0816 16.0864 6.8943 11.4424 0.9723 0.5564 0.1972 20.0626 

1982 8.0220 6.9247 0.7796 0.5411 0.0816 16.3489 6.7604 11.2646 0.9891 0.5562 0.1972 19.7675 

1983 8.6095 5.9766 0.7815 0.4863 0.0816 15.9355 6.9459 11.1495 0.9949 0.6079 0.1972 19.8954 

1984 8.6792 5.8929 0.7995 0.4558 0.0816 15.9089 7.4423 11.0436 1.0222 0.5576 0.1972 20.2629 

1985 8.7991 6.0093 0.8390 0.4613 0.0816 16.1904 7.7436 10.1585 1.0588 0.6329 0.1972 19.7910 

1986 8.7666 6.0732 0.8187 0.4513 0.0816 16.1914 8.0098 10.1064 1.0448 0.5672 0.1972 19.9254 

1987 8.6917 6.2854 0.7816 0.4383 0.0816 16.2786 7.8399 10.8236 1.0921 0.6126 0.1972 20.5655 

1988 8.6595 6.4907 0.7755 0.4768 0.0816 16.4840 8.1791 10.6276 1.0980 0.5895 0.1972 20.6914 

1989 8.8130 6.1926 0.8003 0.4669 0.0816 16.3544 8.3785 9.8688 1.1868 0.6695 0.1972 20.3009 

1990 8.6978 6.3070 0.8130 0.4820 0.0816 16.3813 8.3099 10.3224 1.1641 0.5935 0.1972 20.5871 

1991 8.8041 6.3223 0.8094 0.5126 0.0816 16.5299 8.2466 10.3635 1.1712 0.6160 0.1972 20.5945 

1992 9.3900 4.6168 0.7957 0.4090 0.0816 15.2931 9.2122 7.9692 1.1945 0.4935 0.1972 19.0666 

1993 9.3142 4.9504 0.8711 0.4274 0.0816 15.6447 8.5831 8.2007 1.5786 1.3142 0.1972 19.8738 
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Table 9. Dispersion preserving macro input and scale elasticities based on ln[Gβ1(Y)] 
 Capital 

elasticity 

Labour 

elasticity 

Energy 

elasticity 

Materials 

elasticity 

Scale 

elasticity 
Pulp and paper      

      

1972 0.532 0.883 -0.028 0.390 1.778 

1973 0.529 0.876 -0.022 0.394 1.777 

1974 0.523 0.884 -0.022 0.411 1.796 

1975 0.535 0.881 -0.023 0.398 1.791 

1976 0.542 0.871 -0.024 0.399 1.789 

1977 0.564 0.882 -0.028 0.364 1.782 

1978 0.557 0.871 -0.025 0.374 1.776 

1979 0.545 0.866 -0.022 0.386 1.775 

1980 0.552 0.864 -0.026 0.383 1.774 

1981 0.555 0.850 -0.025 0.392 1.772 

1982 0.544 0.842 -0.023 0.410 1.772 

1983 0.558 0.837 -0.028 0.397 1.765 

1984 0.552 0.835 -0.026 0.401 1.763 

1985 0.550 0.830 -0.024 0.408 1.764 

1986 0.557 0.838 -0.024 0.398 1.769 

1987 0.555 0.834 -0.024 0.405 1.769 

1988 0.552 0.817 -0.020 0.415 1.764 

1989 0.553 0.817 -0.021 0.412 1.761 

1990 0.555 0.817 -0.021 0.410 1.761 

1991 0.557 0.810 -0.018 0.412 1.760 

1992 0.566 0.804 -0.025 0.392 1.738 

1993 0.570 0.807 -0.025 0.393 1.744 

      

Basic metals      

      

1972 0.068 0.914 0.007 0.503 1.491 

1973 0.088 0.912 -0.016 0.515 1.498 

1974 0.116 0.878 -0.030 0.524 1.488 

1975 0.103 0.879 -0.027 0.538 1.494 

1976 0.108 0.880 -0.010 0.506 1.485 

1977 0.109 0.881 0.000 0.495 1.485 

1978 0.156 0.819 -0.012 0.500 1.463 

1979 0.132 0.828 -0.004 0.515 1.471 

1980 0.132 0.844 -0.003 0.500 1.473 

1981 0.166 0.829 -0.016 0.491 1.471 

1982 0.200 0.794 -0.034 0.503 1.462 

1983 0.185 0.778 -0.023 0.515 1.455 

1984 0.175 0.791 -0.016 0.510 1.459 

1985 0.213 0.772 -0.055 0.529 1.460 

1986 0.203 0.767 -0.038 0.523 1.455 

1987 0.219 0.756 -0.060 0.545 1.460 

1988 0.209 0.743 -0.059 0.563 1.457 

1989 0.199 0.739 -0.061 0.576 1.452 

1990 0.204 0.728 -0.052 0.568 1.449 

1991 0.183 0.741 -0.028 0.551 1.446 

1992 0.213 0.698 -0.025 0.537 1.424 

1993 0.122 0.738 0.024 0.537 1.421 
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Table 10. Dispersion preserving macro input and scale elasticities based on ln[Gx1(Y)] 
 Capital 

elasticity 

Labour 

elasticity 

Energy 

elasticity 

Materials 

elasticity 

Scale 

elasticity 
Pulp and paper      

      

1972 0.559 0.926 -0.031 0.382 1.836 

1973 0.556 0.917 -0.025 0.385 1.832 

1974 0.547 0.927 -0.023 0.406 1.857 

1975 0.558 0.923 -0.023 0.392 1.850 

1976 0.566 0.916 -0.026 0.393 1.850 

1977 0.588 0.929 -0.031 0.357 1.844 

1978 0.580 0.920 -0.028 0.367 1.839 

1979 0.570 0.917 -0.026 0.377 1.838 

1980 0.581 0.925 -0.031 0.367 1.841 

1981 0.581 0.906 -0.029 0.378 1.836 

1982 0.566 0.892 -0.027 0.401 1.832 

1983 0.587 0.892 -0.033 0.381 1.827 

1984 0.580 0.886 -0.031 0.387 1.821 

1985 0.579 0.881 -0.029 0.394 1.825 

1986 0.583 0.890 -0.029 0.386 1.831 

1987 0.576 0.878 -0.027 0.400 1.826 

1988 0.572 0.863 -0.023 0.408 1.820 

1989 0.574 0.861 -0.023 0.404 1.816 

1990 0.577 0.864 -0.023 0.400 1.818 

1991 0.582 0.860 -0.021 0.398 1.819 

1992 0.588 0.850 -0.029 0.378 1.788 

1993 0.596 0.857 -0.030 0.377 1.800 

      

Basic metals      

      

1972 0.070 0.942 -0.009 0.508 1.511 

1973 0.099 0.938 -0.046 0.530 1.522 

1974 0.132 0.899 -0.059 0.537 1.509 

1975 0.117 0.901 -0.058 0.556 1.515 

1976 0.118 0.903 -0.033 0.516 1.504 

1977 0.110 0.913 -0.016 0.500 1.506 

1978 0.161 0.842 -0.026 0.502 1.479 

1979 0.134 0.855 -0.016 0.515 1.488 

1980 0.129 0.877 -0.011 0.497 1.492 

1981 0.169 0.856 -0.029 0.492 1.489 

1982 0.208 0.815 -0.050 0.506 1.479 

1983 0.193 0.797 -0.039 0.519 1.470 

1984 0.183 0.810 -0.030 0.512 1.474 

1985 0.229 0.786 -0.081 0.543 1.477 

1986 0.211 0.778 -0.057 0.536 1.469 

1987 0.236 0.766 -0.086 0.559 1.476 

1988 0.226 0.752 -0.086 0.580 1.471 

1989 0.205 0.754 -0.086 0.594 1.468 

1990 0.216 0.740 -0.081 0.589 1.465 

1991 0.194 0.754 -0.055 0.568 1.461 

1992 0.224 0.707 -0.051 0.555 1.435 

1993 0.228 0.689 -0.069 0.579 1.428 
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Table 11. Mean preserving macro input and scale elasticities based on ln[Gβ1(Y)] 
 Capital 

elasticity 

Labour 

elasticity 

Energy 

elasticity 

Materials 

elasticity 

Scale 

elasticity 
Pulp and paper      

      

1972 0.318 0.425 0.011 0.227 0.982 

1973 0.317 0.423 0.012 0.231 0.983 

1974 0.314 0.426 0.012 0.250 1.001 

1975 0.320 0.425 0.012 0.235 0.992 

1976 0.323 0.421 0.012 0.237 0.993 

1977 0.334 0.425 0.011 0.197 0.967 

1978 0.331 0.421 0.012 0.208 0.972 

1979 0.325 0.420 0.012 0.221 0.978 

1980 0.328 0.419 0.012 0.219 0.977 

1981 0.330 0.414 0.012 0.228 0.984 

1982 0.324 0.411 0.012 0.249 0.996 

1983 0.332 0.410 0.011 0.234 0.986 

1984 0.329 0.409 0.012 0.238 0.987 

1985 0.327 0.407 0.012 0.247 0.993 

1986 0.331 0.410 0.012 0.235 0.987 

1987 0.330 0.408 0.012 0.243 0.993 

1988 0.328 0.403 0.013 0.255 0.998 

1989 0.329 0.403 0.012 0.251 0.995 

1990 0.330 0.403 0.012 0.249 0.994 

1991 0.331 0.400 0.013 0.251 0.995 

1992 0.335 0.398 0.012 0.229 0.974 

1993 0.337 0.399 0.012 0.229 0.977 

      

Basic metals      

      

1972 0.162 0.609 0.076 0.373 1.219 

1973 0.167 0.607 0.066 0.385 1.225 

1974 0.174 0.589 0.061 0.393 1.217 

1975 0.171 0.590 0.062 0.407 1.229 

1976 0.172 0.590 0.069 0.376 1.207 

1977 0.172 0.590 0.073 0.365 1.200 

1978 0.184 0.557 0.068 0.370 1.179 

1979 0.178 0.562 0.071 0.385 1.195 

1980 0.178 0.570 0.072 0.370 1.190 

1981 0.186 0.562 0.067 0.362 1.176 

1982 0.195 0.542 0.059 0.373 1.169 

1983 0.191 0.534 0.063 0.385 1.173 

1984 0.189 0.541 0.066 0.379 1.175 

1985 0.198 0.531 0.050 0.399 1.177 

1986 0.195 0.528 0.057 0.393 1.173 

1987 0.199 0.522 0.047 0.415 1.183 

1988 0.197 0.515 0.048 0.432 1.192 

1989 0.194 0.512 0.047 0.444 1.198 

1990 0.196 0.507 0.051 0.437 1.191 

1991 0.190 0.514 0.061 0.420 1.185 

1992 0.198 0.490 0.063 0.406 1.157 

1993 0.175 0.512 0.083 0.407 1.178 
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Table 12. Mean preserving macro input and scale elasticities based on ln[Gx1(Y)] 
 Capital 

elasticity 

Labour 

elasticity 

Energy 

elasticity 

Materials 

elasticity 

Scale 

elasticity 
Pulp and paper      

      

1972 0.354 0.827 0.025 0.229 1.436 

1973 0.352 0.826 0.025 0.233 1.435 

1974 0.355 0.818 0.025 0.228 1.426 

1975 0.374 0.819 0.025 0.216 1.434 

1976 0.379 0.803 0.025 0.215 1.422 

1977 0.385 0.804 0.025 0.214 1.428 

1978 0.386 0.779 0.025 0.218 1.407 

1979 0.376 0.781 0.025 0.226 1.408 

1980 0.380 0.767 0.025 0.231 1.403 

1981 0.383 0.759 0.025 0.233 1.401 

1982 0.392 0.755 0.025 0.230 1.402 

1983 0.388 0.755 0.025 0.237 1.405 

1984 0.382 0.757 0.025 0.241 1.405 

1985 0.377 0.745 0.025 0.247 1.394 

1986 0.382 0.743 0.025 0.243 1.393 

1987 0.392 0.746 0.025 0.237 1.399 

1988 0.396 0.742 0.025 0.236 1.400 

1989 0.393 0.735 0.025 0.242 1.395 

1990 0.393 0.730 0.025 0.242 1.390 

1991 0.396 0.723 0.025 0.241 1.385 

1992 0.398 0.730 0.025 0.245 1.398 

1993 0.384 0.718 0.025 0.255 1.382 

      

Basic metals      

      

1972 0.171 0.851 0.119 0.357 1.499 

1973 0.174 0.823 0.120 0.372 1.489 

1974 0.173 0.828 0.119 0.372 1.493 

1975 0.182 0.807 0.120 0.365 1.475 

1976 0.187 0.783 0.121 0.368 1.460 

1977 0.187 0.767 0.119 0.345 1.419 

1978 0.187 0.760 0.119 0.340 1.406 

1979 0.187 0.755 0.119 0.350 1.411 

1980 0.190 0.739 0.120 0.366 1.416 

1981 0.191 0.742 0.120 0.355 1.408 

1982 0.198 0.717 0.120 0.358 1.394 

1983 0.207 0.693 0.121 0.357 1.377 

1984 0.204 0.692 0.121 0.370 1.387 

1985 0.207 0.682 0.122 0.381 1.392 

1986 0.207 0.682 0.122 0.380 1.390 

1987 0.211 0.664 0.122 0.385 1.382 

1988 0.209 0.665 0.122 0.390 1.386 

1989 0.222 0.631 0.124 0.403 1.380 

1990 0.217 0.637 0.123 0.399 1.377 

1991 0.223 0.627 0.124 0.395 1.370 

1992 0.222 0.633 0.125 0.412 1.391 

1993 0.289 0.549 0.140 0.430 1.408 

 



APPENDIX A: Conditions for the existence of origo moments

In this Appendix, we prove condition (20), which ensures the existence of origo moments

of output. We also show that if the moment of order r exists, then all lower-order

moments also exist. Rearranging (17), we find

λβr = −1
2 [β′(Σ−1

ββ − r2Σxx)β − 2µ′
βΣ−1

βββ − 2rµxβ + µ′
βΣ−1

ββµβ],(A.1)

which can be simplified to

λβr = −1
2 [β′(Σ−1

ββ − r2Σxx)β + aβ + b],

where a = −2(µ′
βΣ−1

ββ + rµx) and b = µ′
βΣ−1

ββµβ. Diagonalizing Σ−1
ββ − r2Σxx we obtain

λβr = −1
2 [β′UDU ′β + aβ + b],

where U is an orthogonal matrix, and D is a diagonal matrix with the eigenvalues of

M(r) = Σ−1
ββ − r2Σxx,(A.2)

denoted λi, on the main diagonal. Using the linear transformation β̃ = U ′β, ã =

a(U ′)−1 = aU , we can write the last expression as

λβr = −1
2 [β̃′Dβ̃ + ãβ̃ + b],(A.3)

or, when letting β̃ = (β̃1, . . . , β̃n+1) and ã = (ã1, . . . , ãn+1), as

λβr = −1
2

[∑
i

λiβ̃
2
i +

∑
i

ãiβ̃i + b

]
= −1

2

[∑
i

λi

(
β̃i +

ãi

2λi

)2
+ b̃

]
,(A.4)

where b̃ = b− ∑
i
ãi

2/(4λ2
i ). The integral in (16) can now be expressed by

∫
Rn+1

eλβrdβ =
∫

Rn+1
exp

(
−1

2

[∑
i

λi

(
β̃i +

ãi

2λi

)2
+ b̃

])
dβ̃

= k

∫
Rn+1

exp

(
−
∑

i

λi

2
β̂2

i

)
dβ̂,

where β̂i = β̃i + ãi/(2λi) and k = ẽb/2. It is separable and can be written as

∫
Rn+1

eλβrdβ = k
n+1∏
i=1

∫
R

exp

(
−
∑

i

λi

2
β̂2

i

)
dβ̂i.(A.5)
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A necessary and sufficient condition for the existence of this multiple integral, is that

all eigenvalues of the matrix M(r) = Σ−1
ββ − r2Σxx are strictly positive. A corresponding

existence condition may be derived from (18) and (19), and says that all eigenvalues

of Σ−1
zz − r2Σγγ are strictly positive. The latter is equivalent to the condition that all

eigenvalues of Σ−1
γγ − r2Σzz are positive, since A − B is a positive definite matrix if and

and only if B−1 − A−1 is positive definite [cf. Magnus and Neudecker (1988, Chapter 1,

Theorem 24)].

If the moment of order r exists, then all lower-order moments also exist. To see this

we observe that

M(r − 1) = M(r) + (2r − 1)Σxx, r = 2, 3, . . . .(A.6)

If M(r) and Σxx are positive definite, then M(r−1) is also positive definite, since 2r > 1

and the sum of two positive definite matrices is positive definite.

APPENDIX B: The exact aggregate input elasticities – proofs

The purpose of this Appendix is to prove eqs. (37) and (38). Differentiating the various

terms in (36) with respect to µ′
z, we get

∂µy

∂µ′
z

=
∂(µxµβ)
∂µ′

z

=
∂(µzµγ)
∂µ′

z

= µγ ,(B.1)

∂σyy

∂µ′
z

=
∂(µxΣββµ

′
x)

∂µ′
z

=
∂(µzΣγγµ

′
z)

∂µ′
z

= 2Σγγµ
′
z,(B.2)

∂(µxΣββΣxxµβ)
∂µ′

z

=
∂(µzΣγγΣzzµγ)

∂µ′
z

= ΣγγΣzzµγ ,(B.3)

∂(µxΣββΣxxΣββµ
′
x)

∂µ′
z

=
∂(µzΣγγΣzzΣγγµ

′
z)

∂µ′
z

= 2ΣγγΣzzΣγγµ
′
z.(B.4)

Differentiation with respect to Σzz [using Lütkepohl (1996, Section 10.3.2, eqs. (2), (5)

and (21))] yields

∂σyy

∂Σzz
=
∂(µ′

βΣxxµβ)
∂Σzz

+
∂tr(ΣββΣxx)

∂Σzz
(B.5)

=
∂(µ′

γΣzzµγ)
∂Σzz

+
∂tr(ΣγγΣzz)

∂Σzz
= µγµ

′
γ + Σγγ ,

∂(µxΣββΣxxµβ)
∂Σzz

=
∂(µzΣγγΣzzµγ)

∂Σzz

=
∂tr(µzΣγγΣzzµγ)

∂Σzz

= µγµzΣγγ ,(B.6)
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∂(µ′
βΣxxΣββΣxxµβ)

∂Σzz

=
∂(µ′

γΣzzΣγγΣzzµγ)
∂Σzz

(B.7)

=
∂tr(µ′

γΣzzΣγγΣzzµγ)
∂Σzz

= µγµ
′
γΣzzΣγγ + ΣγγΣzzµγµ

′
γ ,

∂(µxΣββΣxxΣββµ
′
x)

∂Σzz

=
∂(µzΣγγΣzzΣγγµ

′
z)

∂Σzz

(B.8)

=
∂tr(µzΣγγΣzzΣγγµ

′
z)

∂Σzz

= Σγγµ
′
zµzΣγγ .

It follows from (36) and (B.1) – (B.8), that

∂ ln[Gβ1(Y )]
∂µ′

z
= µγ + Σγγµ

′
z + ΣγγΣzzµγ = µγ + Σγγ(µ′

z + Σzzµγ),

∂ ln[Gx1(Y )]
∂µ′

z
= µγ + Σγγµ

′
z + ΣγγΣzzµγ + ΣγγΣzzΣγγµ

′
z

= (I + ΣγγΣzz)(µγ + Σγγµ
′
z),

(B.9)

∂ ln[Gβ1(Y )]
∂Σzz

= 1
2 (µγµ

′
γ + Σγγ) + µγµzΣγγ + 1

2 (µγµ
′
γΣzzΣγγ + ΣγγΣzzµγµ

′
γ),

∂ ln[Gx1(Y )]
∂Σzz

= 1
2 (µγµ

′
γ + Σγγ) + µγµzΣγγ + 1

2 Σγγµ
′
zµzΣγγ .

(B.10)

Since, from (30), ∆ ln[E(Z)]′ = ∆(µ′
z + 1

2σzz), we have

∂ ln[Gβ1(Y )]
∂ ln[E(Z)]′ = µγ + Σγγµ

′
z + ΣγγΣzzµγ when Σzz is constant,

∂ ln[Gx1(Y )]
∂ ln[E(Z)]′ = (I + ΣγγΣzz)(µγ + Σγγµ

′
z) when Σzz is constant,

(B.11)

∂ ln[Gβ1(Y )]
∂ ln[E(Z)]′ = diagv(µγµ

′
γ + Σγγ + 2µγµzΣγγ + µγµ

′
γΣzzΣγγ + ΣγγΣzzµγµ

′
γ)

when µz and the off-diagonal elements of Σzz are constant,

∂ ln[Gx1(Y )]
∂ ln[E(Z)]′ = diagv(µγµ

′
γ + Σγγ + 2µγµzΣγγ + Σγγµ

′
zµzΣγγ)

when µz and the off-diagonal elements of Σzz are constant.

(B.12)

This completes the proof.

APPENDIX C: Data

The data are from the years 1972 – 1993 and represent two Norwegian manufacturing

industries, Pulp and paper and Basic metals. Table C.1, classifying the observations by

the number of years, and Table C.2, sorting the plants by the calendar year in which

they are observed, shows the unbalanced structure of the data set. There is a negative

trend in the number of plants for both industries.
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The primary data source is the Manufacturing Statistics database of Statistics Nor-

way, classified under the Standard Industrial Classification (SIC)-codes 341 Manufacture

of paper and paper products (Pulp and paper, for short) and 37 Manufacture of basic

metals (Basic metals, for short). Both plants with contiguous and non-contiguous time

series are included.

In the description below, MS indicates plant data from the Manufacturing Statistics,

NNA indicates that the data are from the Norwegian National Accounts and are identical

for plants classified in the same National Account industry. We use price indices from

NNA to deflate total material costs, gross investments and fire insurance values. The

two latter variables are used to calculate data on capital stocks, cf. below.

Y : Output, 100 tonnes (MS)

K = KB +KM : Total capital stock (buildings/structures plus

machinery/transport equipment), 100 000 1991-NOK (MS,NNA)

L: Labour input, 100 man-hours (MS)

E: Energy input, 100 000 kWh, electricity plus fuels (excl. motor gasoline) (MS)

M = CM/QM : Input of materials (incl. motor gasoline), 100 000 1991-NOK (MS,NNA)

CM : Total material cost (incl. motor gasoline) (MS)

QM : Price of materials (incl. motor gasoline), 1991=1 (NNA)

Output: The plants in the Manufacturing Statistics are in general multi-output plants

and report output of a number of products measured in both NOK and primarily tonnes

or kg. For each plant, an aggregate output measure in tonnes is calculated. Hence, rather

than representing output in the two industries by deflated sales, which may be affected

by measurement errors [see Klette and Griliches (1996)], our output measures are actual

output in physical units, which are in several respects preferable.

Capital stock: The calculations of capital stock data are based on the perpetual in-

ventory method assuming constant depreciation rates. We combine plant data on gross

investment with fire insurance values for each of the two categories Buildings and struc-

tures and Machinery and transport equipment from the MS. The data on investment

and fire insurance are deflated using industry specific price indices of investment goods

from the NNA (1991=1). The depreciation rate for Buildings and structures is 0.020,
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for Machinery and transport equipment, it is set to 0.040 in both industries. For further

documentation of the data and the calculations, see Biørn, Lindquist and Skjerpen (2000,

Section 4, and 2003).

Other inputs: From the MS get the number of man-hours used, total electricity con-

sumption in kWh, the consumption of a number of fuels in various denominations, and

total material costs in NOK for each plant. The different fuels are transformed to the

common denominator kWh by using estimated average energy content of each fuel [Statis-

tics Norway (1995, p. 124)]. This enables us to calculate aggregate energy use in kWh

for each plant. For most plants, this energy aggregate is dominated by electricity. Total

material costs is deflated by the price index (1991=1) of material inputs from the NNA.

This price is identical for all plants classified in the same National Account industry.

Table C.1. Number of plants classified by number of replications

p = no. of observations per plant, Np = no. of plants observed p times

Industry Pulp & paper Basic metals

p Np Npp Np Npp

22 60 1320 44 968
21 9 189 2 42
20 5 100 4 80
19 3 57 5 95
18 1 18 2 36
17 4 68 5 85
16 6 96 5 80
15 4 60 4 60
14 3 42 5 70
13 4 52 3 39
12 7 84 10 120
11 10 110 7 77
10 12 120 6 60
09 10 90 5 45
08 7 56 2 16
07 15 105 13 91
06 11 66 4 24
05 14 70 5 25
04 9 36 6 24
03 18 54 3 9
02 5 10 6 12
01 20 20 20 20

Sum 237 2823 166 2078
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Table C.2. Number of plants by calendar year

Year Pulp & paper Basic metals

1972 171 102
1973 171 105
1974 179 105
1975 175 110
1976 172 109
1977 158 111
1978 155 109
1979 146 102
1980 144 100
1981 137 100
1982 129 99
1983 111 95
1984 108 87
1985 106 89
1986 104 84
1987 102 87
1988 100 85
1989 97 83
1990 99 81
1991 95 81
1992 83 71
1993 81 83

Sum 2823 2078

We have removed observations with missing values of output or inputs. This reduced

the number of observations by 6 – 8 per cent in the three industries.

APPENDIX D: Testing normality of log-output and log-inputs

In this Appendix, we present the results of formal univariate tests of whether, for each

year in the sample period, log-output and log-inputs are normally distributed. The test

statistic takes into account both skewness and excess kurtosis. The skewness and excess

kurtosis test statistics are given by, respectively,

TS =

√
N

6
N2

(N − 1)(N − 2)
M3

M
3/2
2

,

TK =

√
N

24
N2

(N − 1)(N − 2)(N − 3)
(N + 1)M4 − 3(N − 1)M2

2

M2
2

,

(D.1)

where N is the sample size and M2, M3 and M4 are the centered second, third and fourth

order sample moments. Both TS and TK are standard normally distributed under nor-

mality. Table 1 contains summary information on the results. In Tables D.2 and D.3 we
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test for skewness and excess kurtosis and report the two-tailed significance probabilities.

Furthermore, it can be shown that TS and TK are asymptotically independent, which

implies that

TN = T 2
S + T 2

K(D.2)

is χ2-distributed with 2 degrees of freedom asymptotically [cf. Davidson and MacKin-

non (1993, chapter 16.7) and Hall and Cummins (1999)]. The significance probabilities

for the normality tests based on TN are reported in Table D.1. If normality is rejected,

Tables D.2 and D.3 show whether this is due to skewness and/or excess kurtosis.

For Pulp and paper, we find some evidence of non-normality, especially in the first

years in the sample. Non-normality is most pronounced for energy and materials, and

normality is rejected at the 1 per cent significance level for both inputs in the first five

years. From Tables D.2 and D.3 skewness seems to be the reason for non-normality

for energy, whereas non-normality for materials can be associated with excess kurtosis.

For output and capital and labour inputs normality is never rejected at the 1 per cent

significance level. For Basic metals, normality is not rejected for any of the inputs or

output in any year using the 1 per cent significance level. Besides, at the 5 per cent

significance level, normality is only rejected in two cases, for output in 1972 and for

energy in the last year, 1993. From Table D.2 we see that the significance probability

for the skewness tests are generally very high. However, Table D.3 reveals that there

are some signs of excess kurtosis in this industry, especially for output and labour at the

start of the sample period.
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Table D.1. Testing for normality of log-output and log-input variables
1
  

Year log(X) log(K) log(L) log(E) log(M) 

Pulp and paper       

1972 0.027 0.097 0.158 0.005 0.051 

1973 0.017 0.055 0.176 0.003 0.063 

1974 0.013 0.043 0.068 0.001 0.006 

1975 0.016 0.049 0.124 0.003 0.001 

1976 0.014 0.036 0.124 0.003 0.002 

1977 0.012 0.037 0.128 0.006 0.023 

1978 0.024 0.044 0.120 0.013 0.020 

1979 0.020 0.078 0.095 0.021 0.044 

1980 0.040 0.103 0.038 0.009 0.062 

1981 0.079 0.183 0.250 0.028 0.165 

1982 0.120 0.386 0.349 0.024 0.126 

1983 0.063 0.300 0.472 0.041 0.090 

1984 0.279 0.536 0.489 0.054 0.399 

1985 0.239 0.374 0.672 0.054 0.160 

1986 0.291 0.367 0.578 0.054 0.305 

1987 0.321 0.591 0.556 0.073 0.436 

1988 0.586 0.643 0.632 0.073 0.371 

1989 0.483 0.728 0.379 0.115 0.545 

1990 0.202 0.871 0.249 0.066 0.578 

1991 0.289 0.735 0.339 0.115 0.246 

1992 0.416 0.313 0.322 0.089 0.337 

1993 0.299 0.276 0.184 0.070 0.302 

Basic metals      

1972 0.042 0.239 0.054 0.132 0.265 

1973 0.054 0.158 0.113 0.101 0.160 

1974 0.065 0.141 0.096 0.080 0.141 

1975 0.069 0.170 0.107 0.103 0.250 

1976 0.060 0.143 0.081 0.093 0.204 

1977 0.138 0.201 0.505 0.151 0.511 

1978 0.060 0.240 0.113 0.081 0.546 

1979 0.080 0.213 0.204 0.113 0.323 

1980 0.058 0.205 0.324 0.084 0.183 

1981 0.056 0.197 0.268 0.144 0.255 

1982 0.080 0.231 0.167 0.115 0.142 

1983 0.125 0.330 0.203 0.103 0.213 

1984 0.131 0.285 0.170 0.073 0.200 

1985 0.162 0.293 0.142 0.069 0.228 

1986 0.168 0.381 0.192 0.141 0.202 

1987 0.144 0.336 0.188 0.155 0.175 

1988 0.140 0.336 0.153 0.284 0.204 

1989 0.106 0.177 0.157 0.213 0.170 

1990 0.064 0.136 0.149 0.114 0.275 

1991 0.148 0.137 0.128 0.104 0.226 

1992 0.156 0.165 0.254 0.151 0.368 

1993 0.174 0.120 0.094 0.042 0.337 
1
  Significance probability. Chi-square distribution with two degrees of freedom. 
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Table D.2. Testing for skewness of log-output and log-input variables
1
  

Year log(X) log(K) log(L) log(E) log(M) 

Pulp and paper       

1972 0.071 0.056 0.182 0.297 0.031 

1973 0.251 0.021 0.320 0.322 0.035 

1974 0.036 0.034 0.161 0.317 0.002 

1975 0.011 0.042 0.123 0.193 0.000 

1976 0.030 0.023 0.223 0.262 0.000 

1977 0.005 0.012 0.069 0.125 0.006 

1978 0.012 0.014 0.041 0.130 0.005 

1979 0.046 0.028 0.052 0.039 0.033 

1980 0.059 0.033 0.013 0.114 0.055 

1981 0.121 0.066 0.157 0.156 0.125 

1982 0.143 0.194 0.368 0.428 0.045 

1983 0.020 0.121 0.464 0.188 0.029 

1984 0.288 0.265 0.719 0.341 0.213 

1985 0.173 0.161 0.514 0.358 0.058 

1986 0.311 0.159 0.506 0.475 0.132 

1987 0.679 0.306 0.874 0.672 0.254 

1988 0.552 0.353 0.887 0.709 0.192 

1989 0.715 0.425 0.806 0.686 0.467 

1990 0.633 0.653 0.632 0.804 0.398 

1991 0.966 0.433 0.830 0.748 0.116 

1992 0.849 0.325 0.428 0.972 0.647 

1993 0.519 0.346 0.341 0.539 0.585 

Basic metals      

1972 0.806 0.746 0.684 0.317 0.808 

1973 0.958 0.626 0.890 0.152 0.800 

1974 0.824 0.743 0.823 0.128 0.809 

1975 0.877 0.759 0.989 0.208 0.112 

1976 0.786 0.703 0.828 0.138 0.701 

1977 0.487 0.954 0.564 0.280 0.297 

1978 0.905 0.930 0.562 0.113 0.671 

1979 0.345 0.737 0.953 0.305 0.133 

1980 0.285 0.794 0.782 0.248 0.575 

1981 0.137 0.605 0.856 0.343 0.602 

1982 0.245 0.618 0.661 0.196 0.797 

1983 0.359 0.641 0.563 0.174 0.646 

1984 0.532 0.665 0.644 0.138 0.668 

1985 0.225 0.582 0.942 0.104 0.610 

1986 0.239 0.584 0.982 0.273 0.512 

1987 0.258 0.455 0.788 0.253 0.447 

1988 0.090 0.522 0.781 0.461 0.275 

1989 0.073 0.787 0.841 0.268 0.393 

1990 0.027 0.844 0.782 0.322 0.254 

1991 0.190 0.914 0.730 0.369 0.501 

1992 0.096 0.832 0.837 0.614 0.339 

1993 0.445 0.374 0.434 0.208 0.888 
1
 Two-tailed significance probability. Standard normal distribution. 

 

 

 

 



 41

Table D.3. Testing for excess kurtosis of log-output and log-input variables
1
  

Year log(X) log(K) log(L) log(E) log(M) 

Pulp and paper       

1972 0.045 0.313 0.167 0.002 0.249 

1973 0.009 0.489 0.115 0.001 0.302 

1974 0.038 0.180 0.065 0.000 0.468 

1975 0.181 0.171 0.180 0.002 0.649 

1976 0.050 0.223 0.101 0.001 0.568 

1977 0.341 0.566 0.372 0.005 0.872 

1978 0.262 0.633 0.799 0.012 0.873 

1979 0.049 0.599 0.334 0.063 0.190 

1980 0.089 0.892 0.533 0.009 0.173 

1981 0.102 0.918 0.379 0.023 0.263 

1982 0.148 0.639 0.255 0.009 0.717 

1983 0.708 0.916 0.326 0.031 0.838 

1984 0.233 0.953 0.254 0.026 0.593 

1985 0.315 0.938 0.544 0.025 0.773 

1986 0.230 0.876 0.418 0.021 0.745 

1987 0.147 0.963 0.284 0.024 0.550 

1988 0.398 0.884 0.344 0.024 0.596 

1989 0.250 0.987 0.170 0.041 0.408 

1990 0.085 0.784 0.110 0.020 0.536 

1991 0.115 0.971 0.146 0.040 0.565 

1992 0.190 0.244 0.200 0.028 0.161 

1993 0.157 0.194 0.115 0.026 0.148 

Basic metals      

1972 0.012 0.097 0.017 0.081 0.107 

1973 0.016 0.063 0.037 0.112 0.058 

1974 0.020 0.051 0.031 0.098 0.049 

1975 0.021 0.063 0.034 0.085 0.624 

1976 0.018 0.053 0.026 0.111 0.082 

1977 0.062 0.073 0.310 0.106 0.615 

1978 0.018 0.091 0.045 0.112 0.310 

1979 0.041 0.084 0.075 0.069 0.980 

1980 0.033 0.078 0.140 0.057 0.079 

1981 0.060 0.084 0.107 0.085 0.117 

1982 0.055 0.101 0.065 0.103 0.050 

1983 0.068 0.157 0.091 0.100 0.090 

1984 0.055 0.128 0.068 0.081 0.081 

1985 0.141 0.142 0.048 0.100 0.101 

1986 0.140 0.202 0.069 0.100 0.096 

1987 0.107 0.203 0.071 0.120 0.088 

1988 0.304 0.183 0.055 0.160 0.159 

1989 0.260 0.066 0.056 0.172 0.094 

1990 0.444 0.047 0.054 0.067 0.257 

1991 0.147 0.046 0.046 0.054 0.112 

1992 0.330 0.059 0.101 0.060 0.298 

1993 0.088 0.063 0.042 0.029 0.142 
1
 Two-tailed significance probability. Standard normal distribution. 
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Appendix E. Microeconometric results 
 

Table E.1. Estimates of parameters in the micro CD production functions 

 Pulp and paper Basic metals 

Parameter Estimate Standard error Estimate Standard error 
*

α  -2.3021 0.2279 -3.1177 0.2702 

κ  0.0065 0.0013 0.0214 0.0021 

K
β  0.2503 0.0344 0.1246 0.0472 

L
β  0.1717 0.0381 0.2749 0.0550 

E
β  0.0854 0.0169 0.2138 0.0374 

M
β  0.5666 0.0309 0.4928 0.0406 

β  1.0740 0.0287 1.1061 0.0324 

 

 

 

Table E.2. The distribution of plant specific coefficients. Variances on the main diagonal and 

correlation coefficients below  
Pulp and paper *

i
α  Ki

β  
Li

β  
Ei

β  
Mi

β  

*

i
α  5.9336     

Ki
β  -0.4512 0.1147    

Li
β  -0.7274 -0.0559 0.1515   

Ei
β  0.3968 -0.4197 -0.3009 0.0232  

Mi
β  0.3851 -0.6029 -0.4262 0.1437 0.1053 

Basic metals *

i
α  Ki

β  
Li

β  
Ei

β  
Mi

β  

*

i
α  3.5973     

Ki
β  -0.0787 0.1604    

Li
β  -0.6846 -0.5503 0.1817   

Ei
β  0.3040 -0.6281 0.1366 0.1190  

Mi
β  0.1573 0.1092 -0.3720 -0.6122 0.1200 
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