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1 Introduction

In panel data, the same unit is observed repeatedly over time. As is well documented,

this enables us to estimate models with complex behavioral relationships; e.g. about

consumer and firm behavior. On the other hand, missing data problems are severe in

most panel surveys. A particular problem, which is the theme of this paper, is that

a unit which initially is in the sample may drop out before the survey period is over.

This phenomenon is called attrition. Examples include firms which close down due to

bankruptcy, households who stop responding to consumer surveys, and patients who die

during the test of an AIDS drug. A traditional “fix” is to retain a balanced sub-sample

of the original sample. In most cases this leads to severely biased inference — unless

attrition is independent of the endogenous variables; an unreasonable assumption in most

econometric applications.

A typical situation is described in Hirano et al. (1998): In the Dutch Transportation

Panel, households are asked to fill out a travel diary over one week each year in subsequent

years. The burden of responding to the questionnaire depends on the total number of

travels. Therefore, non-response is highly correlated with an endogenous variable. In their

approach, Hirano et al. suggest replacing non-responding units with so-called refreshment

samples to make inferences about the non-response mechanism. This is done in order to

impute missing data. Unfortunately, their method has limited applicability in complex

models or when attrition is not due to non-response, such as is the case with e.g. firm

exit.

The study of attrition has, of course, a long history in econometrics. A classical model

is due to Hausman and Wise (1979), who allow the probability of attrition to depend on

unobserved contemporary variables — but not on lagged endogenous variables. Another

well-known approach where self-selection is based on unobserved endogenous variables is

described in Heckman (1979).

This paper focuses on methods and models of attrition based on the missing at random

(MAR) hypothesis: Given the full history of observed variables on an observation unit, the

probability of exit in the current period is independent of unobserved (contemporary and

future) variables (see Little and Rubin, 1987). Moffitt, Fitzgerald and Gottschalk (1999)

study the role of the MAR assumption in econometrics, and use the term selection on
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observables to characterize this situation. Another recent contribution to the econometric

literature about attrition and the MAR hypothesis is Abowd, Kramarz and Crepon (2001).

The MAR assumption may be particularly relevant in the analysis of firm behavior.

For example, if a firm’s decision of whether to exit or not is made at the end of the year,

and is based on expected profits given this years observed profit and historically observed

profits, then an exited firm will be MAR. However, if the firm makes predictions about

future profitability based on information about random variables which are unknown to

the econometrician, the MAR assumption may fail.

If (i) the MAR assumption holds and (ii) the exit mechanism is independent of the

interest parameters, attrition is said to be ignorable with respect to likelihood based

inference (see Little and Rubin, 1987). In many situations condition (i) may be reasonable,

while (ii) is too restrictive. An example is the so-called passive learning model of Jovanovic

(1982), which fits naturally into the MAR framework, but where firm exit depends on

interest-parameters. I shall return to this example at the end of the next section.

If MAR holds, but attrition is non-ignorable, we obtain a partial likelihood if we

ignore the attrition mechanism when setting up the likelihood function. The term partial

likelihood is often associated with a conditional likelihood or a profile likelihood (see Cox,

1975). However, that is not the case in the present situation. Therefore, I shall call this

likelihood a pseudo likelihood (see Gourieroux and Montfort, 1984). The term pseudo

likelihood is also motivated by the desire to investigate the properties of the implied

estimators outside model conditions, e.g. when distributional assumptions fail.

While there may be a loss of efficiency associated with pseudo likelihood based in-

ference, we shall see that there is no asymptotic bias if the MAR condition is fulfilled.

Moreover, the general inference results in White (1982) and Gourieroux and Montfort

(1984) are valid, thus providing tools for assessing the accuracy of estimates (e.g. con-

structing confidence intervals) and testing hypotheses.

TheMAR assumption is substantially more general than what is needed for consistency

of traditional generalized method of moments (GMM) estimators. However, interesting

attempts to rescue GMM under the MAR assumption have been put forward. Abowd et

al. (2001) propose to weigh orthogonality conditions implied by the econometric model

by the inverse sampling probability. Their weighted GMM (WGMM) estimator is con-
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sistent under the MAR assumption. But there is a drawback to their method: Sampling

probabilities are nuisance parameters which have to be modelled and estimated from the

data. Moreover, simulations presented in this paper suggest that their method may not

perform well in practice (see Section 5).

The aimed contributions of the present paper are threefold: (i) to provide rigorous

regularity conditions for identification of interest parameters when the MAR assumption

holds but attrition is non-ignorable; (ii) to show that the MAR assumption has testable

implications in parametric models — a fact which has been widely overlooked (see e.g.

Horowitz and Manski, 1998); and (iii), in the particular case of the linear-normal au-

toregressive model, to present Monte Carlo results about the performance of the pseudo

likelihood (PL) and moment estimators under different attrition rules and error distribu-

tions. The simulations show that the MAR assumption is critical for the good performance

of the PL estimator. On the other hand, normality is not: The PL estimator (derived from

normality assumptions) strikingly outperforms the moment estimators also in simulation

models with non-normal errors.

2 Basic assumptions

We assume that a variable xit is observed on each unit i = 1, ..,N from some initial

observation date ιi, and then each period until a stopping date τ i. Both ιi and τ i are

random variables. The stopping date τ i may be the last year of the survey period (T ),

or the date of exit. It is assumed that there are no wholes in the data between ιi and τ i,

and that ιi is an ancillary random variable. That is, ιi is independent of θ in distribution

(see Barndorff-Nielsen and Cox (1994)).

The econometrician is not interested in the process that determines death or birth per

se, but in the law that governs the state process xit. This law is assumed known up to

some parameter vector θ. However, since the xit-process is subject to attrition, it is well

known that inference about θ may be severely biased if we ignore self-selection.

Formally, for unit i = 1, ..,N , we observe the sequence (ιi, xiιi,..., x
i
τ i, τ

i), where ιi ≥ 1 is
the (exogenous) birth or entry date and τ i ≤ T is the (endogenous) exit date. To simplify
notation, we will drop the i-superscript from now on unless needed to avoid ambiguity.
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Next, define the exit-indicator variable

zt =

�
1
0

t ≥ τ
else

and the sequence

Zt = {ι, z0, z1, ..., zt}.

Thus, Zt contains all information about the life-span of the observation unit up until time

t.

The underlying probability model concerns the joint distribution of (ι, xι, ..., xτ , τ).

Let F denote the corresponding σ-field, i.e. F = σ(ι, xι, ..., xτ , τ). (See Billingsley (1986)

for a construction of this σ-field). We now state some regularity conditions regarding this

probability space:

ASSUMPTION A.1: (a) The collections of random variables ι, xι, ..., xτ , τ are indepen-

dent across observation units i = 1, ...,N , with a joint probability measure P on

a measurable space (Ω,F). (b) The distribution of xs, .., xt conditional on ι = s

for 1 ≤ s ≤ t ≤ T has a density function f(xs, , .., xt|ι = s; θ) with respect to a

given measure ν(dxs, .., dxt) for every θ in Θ, a compact subset of a p-dimensional

Euclidean space.

The interest is in the parameters θ characterizing the probability distribution of the time

series xt, i.e. f(·; θ), not in the stopping times ι or τ . On the other hand, the joint

probability measure P may also depend on nuisance parameters, say ϕ, characterizing

the entry and exit process.

We cannot disregard the stopping times ι and τ when making inferences about θ, as

ι and τ determine the ”window” through which we observe xt. But we shall assume that

ι is exogenous, so that we can always condition on entry. On the other hand, we cannot

condition on τ because we would then need an explicit model of attrition. Note that the

marginal distribution of τ depends on θ, i.e. τ is not an ancillary statistic.

The fundamental MAR assumption is stated next:

ASSUMPTION A.2: (MAR) The distribution of xt+1 conditional on Zt and xι, ..., xt has

a density with respect to ν(dxt+1) which satisfies

f(xt+1|Zt, xι, .., xt) = f(xt+1|ι, xι, .., xt; θ) for t = ι, ..., T − 1. (1)
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That is, xt+1 is independent of the life-span information Zt given (ι, xι, .., xt). Note that

(1) must hold also for t ≥ τ : There is no conditioning on xt+1 actually being observed in

the definition of MAR in (1).

It is easily verified that Assumption A.2 is equivalent to the following, more usual,

formulation of the MAR condition:

xτ+1, .., xT ⊥ τ | ι, xι, .., xτ ,

which says that the unobserved variables are independent of attrition (the exit date) given

the observed variables. It should be noted here that the transition equation f(xt+1|ι, xι, .., xt; θ)
may depend explicitly both on the ”cohort” ι and on calendar time t. E.g. the model

may contain both time- and cohort-specific dummies.

Panel data models are typically formulated in terms of latent variables which are

specific to each observation unit, say vit. It is then useful to formulate a slightly different

version of MAR (where we again drop the i-superscript):

f(xt+1, vt+1|Zt, xι, .., xt) = f(xt+1, vt+1|ι, xι, .., xt; θ). (2)

That is; xt+1 and vt+1 are jointly independent of Zt, given (ι, xι, .., xt). In particular, this

implies that, having made predictions about the latent variable vt+1 based on observation

of (ι, xι, .., xt), the additional information that the xt-process is subject to attrition is

irrelevant for predicting of vt+1. Clearly, (2) implies (1).

ASSUMPTION A.3: (a) For every 1 ≤ s ≤ t ≤ T , f(xs, .., xt|ι = s; θ) is continuous in
θ and positive. (b) (Identification) If θ 9= θ0 there exist integers s ≤ k and a set of
sequences (xs, ..., xk) with positive υ-measure, so that for every (xs, ..., xk) in this set

f(xs, .., xk|ι = s; θ) 9= f(xs, .., xk|ι = s; θ0), P (τ = k|ι = s, xs, .., xk) > 0 and P (ι =
s) > 0. (c) E{ln f(xι, .., xτ |ι; θ0)} exists. (d)|ln f(xι, .., xτ |ι; θ0)| ≤ m(ι, xι, ..., xτ ) for
all θ in Θ for a function m(·) integrable with respect to P .

It follows from A.3.(a) that F (A) ≡ U
A
f dυ = 0 implies υ(A) = 0, regardless of θ

and ι. Hence the support of F is determined by υ. Furthermore, A.3.(b) is the ordinary

identification condition supplemented by an observability condition: Identification must

not depend upon outcomes that cannot be observed. In the next section we shall investi-

gate identification of θ based on a pseudo likelihood function which ignores the attrition

mechanism. I show in Section 3 that θ is identified under Assumption A.1-3.
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Motivating example: An interesting illustration of the setup described above is the

so-called passive learning model of Jovanovic (1982). In this model firm i is equipped at

birth with some productivity parameter vi. The productivity parameter is unobserved by

the firm, but the firm knows the stochastic model which has generated vi:

vi = β + ηi, ηi ∼ N (0, δ2),

where β and δ2 are parameters known to the firm. As a by-product of operation, the firm

observes a variable xit, and each year it updates the conditional distribution of v
i based

on the observation equation:

xit = v
i + εit, εit ∼ N (0, σ2),

for known σ2. Here θ = (β, δ2,σ2), vit = v
i, and ιi = 1.

The firm chooses output so as to maximize expected discounted profits given its current

update of the distribution of vi. The firm decides to close down if the value of remaining

operative is lower than the ”scrap value”, or alternative value, of the firm. The structure

of the problem is such that the firm exits at the end of year t if the posterior mean

E{vi|xi1, ..., xit} falls short of a time-varying threshold (depending on deterministic prices).
The Jovanovic model is thus a model with non-ignorable selection. On the other hand, if

xit is observed by the econometrician, the MAR condition is satisfied.

3 Identification

This section is concerned with identification. I present detailed conditions which are suffi-

cient for identification and consistent estimation based on the pseudo likelihood function

obtained by ignoring the attrition mechanism. The main result is stated in Proposition

2. This, and other, results rely on a martingale property of the pseudo likelihood ratio

under the MAR assumption established in Proposition 1.

In the general case, the likelihood of the complete set of observations {xt, zt, t = ι, ..., τ}
can be written

L(θ,ϕ) = P (zι|ι, xι; (θ,ϕ))f(xι|ι; θ)
τ\

t=ι+1

P (zt|Zt−1, xι, .., xt; (θ,ϕ))f(xt|Zt−1, xι, .., xt−1; (θ,ϕ))

where θ are the interest parameters and ϕ are the nuisance parameters. The fundamental

question is whether we can make inferences about θ based on N independent realizations
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(for i = 1, .., N) of the function:

hL(θ) = f(xι|ι; θ) τ\
t=ι+1

f(xt|ι, xι, .., xt−1; θ), (4)

which ignores attrition and only depends on θ. If (i) the MAR assumption (1) holds and

(ii) P (zt|Zt−1, xι, ..., xt; (θ,ϕ)) is independent of θ in distribution, L(θ,ϕ) and hL(θ) are
identical (except for an uninteresting proportionality constant which only depends on ϕ).

If any of these two conditions fail, hL(θ) differs from L(θ,ϕ). Note that, regardless of the

attrition mechanism, hL(θ) satisfies the conditions of a likelihood because it is a probability
density function. I will therefore refer to (4) as the pseudo likelihood function (PL). We

shall now investigate the properties of the PL estimator when condition (i) holds but not

(ii).

Let Et{·} denote the expectation conditional on the σ-field Ft, where

Ft =
�

σ(Zt, xι, ..., xt∧τ ) t = ι, .., T
σ(Zt) t = 0, .., ι− 1,

and let E{·} denote the unconditional expectation (both under the true distribution P ).
Define: hLt(θ) = f(xι|ι; θ) t∧τ\

t=ι+1

f(xt|ι, xι, .., xt−1; θ).

Furthermore, let

Qt =
hLt(θ)hLt(θ0) for t ≥ ι and Qt = 1 for t < ι.

We shall first see that Qt is a martingale under the true model.

Proposition 1 (The Martingale property of Qt). Given Assumption A.1-3

Et{Qt+1} = Qt a.s.. (5)

Proof. If t ≥ τ or t < ι− 1 (5) obviously holds. If t = ι− 1, then Qt = 1 and

Et{Qt+1} =
]
f(xι|ι; θ)
f(xι|ι; θ0)

× f(xι|ι; θ0)ν(dxι) = Qt.

Finally, if ι ≤ t < τ :

Et{Qt+1} = Et

�
Qt
f(xt+1|ι, xι, .., xt; θ)
f(xt+1|ι, xι, .., xt; θ0)

�
= Qt

]
f(xt+1|ι, xι, .., xt; θ)
f(xt+1|ι, xι, .., xt; θ0)

× f(xt+1|Zt, xι, .., xt)ν(dxt+1)

= Qt

]
f(xt+1|ι, xι, .., xt; θ)
f(xt+1|ι, xι, .., xt; θ0)

× f(xt+1|ι, xι, .., xt; θ0)ν(dxt+1)
= Qt,
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where Assumption A.2 was used in the third equation.

The next proposition shows that θ0 is identified from the pseudo-likelihood function

given that it is identified in the family f(·; θ).

Proposition 2 (Identification) Given A.1-3, if θ 9= θ0, E{ln hL(θ0)} > E{ln hL(θ)}.
Proof. It follows from the martingale property of Qt that E0{QT} = E0{Q1} = 1

and thus, averaging over ι,

E{QT} = 1. (6)

Furthermore,

E{QT}

=
T[
s=1

T[
k=s

]
[τ=k∩ι=s]

f(xs, .., xk|ι = s; θ)
f(xs, .., xk|ι = s; θ0)

dP

=
T[
s=1

T[
k=s

]
f(xs, .., xk|ι = s; θ)
f(xs, .., xk|ι = s; θ0)

P (τ = k|ι = s, xs, .., xk)f(xs, .., xk|ι = s; θ0)×

P (ι = s)ν(dxs, .., dxk).

Under A.3.(a)-(b), if θ 9= θ0, the integrand QT =
f(xι,..,xτ |ι;θ)
f(xι,..,xτ |ι;θ0) will differ from 1 on a set

with positive probability. Hence, taking the logarithm on both sides of (6), and using

Jensen’s inequality yields:

E{ln hLT (θ)− ln hLT (θ0)} < 0.
Using A.3.(c), and the identity hL(θ) = hLT (θ), we obtain

E{ln hL(θ0)} > E{ln hL(θ)}
if θ 9= θ0.

We have just established identification of θ as the unique maximizer of the pseudo

likelihood hL(θ), regardless of whether the exit mechanism is ignorable or not.

4 Estimation and testing

4.1 The pseudo likelihood estimator

Let hLi(θ) be the realization of hL(θ) on observation unit i, i.e. based on (ιi, xiιi ,..., xiτ i , τ i).
Define

lN(θ) = N
−1

N[
i=1

ln hLi(θ).
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Under standard regularity conditions, such as A.4-A.6 in White (1982), it can now be

shown that (a) lN(θ) converges almost surely, uniformly on the parameter space Θ, to

l∞(θ) = E{ln hLi(θ)}, (b) the pseudo likelihood estimator eθN defined aseθN = argmax
θ∈Θ

lN(θ)

will be a consistent estimator of θ0, (c)
√
N(eθN−θ0) converges in distribution toN (0, J−1IJ−1)

where

J = E

+
−∂2 ln hLi(θ0)

∂θ∂θ�

,

I = E

+
∂ ln hLi(θ0)

∂θ

∂ ln hLi(θ0)�
∂θ

,
.

The proofs of these results can be taken directly from the proofs of Theorem 2.2 and

3.2 in White (1982). My assumptions A.1-3 together with the identification result in

Proposition 2, ensure that the regularity conditions A.1-3 in White is fulfilled.

In exact likelihood inference, it is well known that I = J . This is the so-called

information equality. Typically I 9= J in pseudo likelihood based inference (even when

the estimator is consistent), but Cox (1975) shows that the information equality also

holds for partial likelihood, and therefore in our case. For completeness, this result is

established in Proposition 3.

Proposition 3 (The information equality). Given Assumption A.1-3 in Section 2, and

Assumption A.4-6 in White (1982):

E

+
−∂2 ln hLi(θ0)

∂θ∂θ�

,
= E

+
∂ ln hLi(θ0)

∂θ

∂ ln hLi(θ0)�
∂θ

,
Proof. Differentiating equation (6) with respect to θ, yields

∂2E{QiT}
∂θ∂θ�

= 0

By assumption, we can interchange the order of integration and differentiation. This

yields
T[
s=1

T[
k=s

]
[τ=k∩ι=s]

∂2f(xs, .., xk|ι = s; θ)
∂θ∂θ�

× 1

f(xs, .., xk|ι = s; θ0)
dP = 0 (7)

For θ = θ0, (7) is equivalent to] #
∂2 ln hLi(θ0)

∂θ∂θ�
+

∂ ln hLi(θ0)
∂θ

∂ ln hLi(θ0)�
∂θ

$
dP = 0,

and the conclusion follows.

11



4.2 Moment estimators

The results established in this section show that the MAR assumption is sufficient for

the validity of pseudo likelihood based methods. It is interesting to compare with GMM-

methods, which have a dominant position in the econometric literature. We shall do so

in relation to a concrete example.

Our starting point will be the autoregressive AR(1) model with random effects:

xit = φxit−1 + (1− φ)vi + εit for t = 2, ...., T (8)

xi1 = vi + εi1,

where vi is a random effect, withE{vi} = 0, E{viεit} = 0, and V ar(vi) = σ2v. Furthermore,

εit is white noise: E{εit} = 0, E{εitεis} = 0 for s 9= t, V ar(εi1) = σ21, and V ar(ε
i
t) = σ2ε

for t = 2, ..., T . Finally, it is assumed that E{xi1εit} = 0 for t > 1. This model is weakly
stationary if |φ| < 1 and σ21 =

σ2ε
1−φ2 . On the other hand, x

i
t is a pure random walk when

φ = 1. The interest parameter is φ — the autoregressive coefficient.

To estimate φ it is common to apply the generalized method of moments (GMM) using

instrumental variables. The traditional set of instruments is obtained by differencing (8)

to eliminate vi (assuming, for simplicity of notation, that ιi = 1 for all i):

xit − xit−1 − φ(xit−1 − xit−2) = εit − εit−1 for t = 3, ..., T.

We then obtain the following orthogonality conditions:

E{(εit − εit−1)x
i
t−k} = 0 for k = 2, ..., t− 1 and t = 3, ..., T. (9)

That is, the xit−k are instruments for the differenced equations (see Arellano and Bover,

1995; Ahn and Schmidt, 1995). Another set of instruments has been studied by Blundell

and Bond (1998) and Hahn (1999):

E{uit∆xit−1} = 0 for t = 3, ..., T , (10)

where uit = (1− φ)vi + εit. Thus, the ∆x
i
t−1 are instruments for equations in levels.

Since we do not observe xit for t > τ i, extending (9) and (10) to the case with attrition

would require:

E
�
(εit − εit−1)x

i
t−k|t ≤ τ i

�
= 0

E
�
uit∆x

i
t−1|t ≤ τ i

�
= 0, (11)
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or equivalently:

E
�
(εit − εit−1)x

i
t−kI(t ≤ τ i)

�
= 0

E
�
uit∆x

i
t−kI(t ≤ τ i)

�
= 0, (12)

where I(t ≤ τ i) is the indicator function which is 1 if t ≤ τ i and 0 otherwise. Unfortu-

nately, equations (12) are not implied by the MAR assumption because the event t ≤ τ i

could depend on all lagged realizations xit−1, ... , x
i
1 and hence on εit−1, ..., ε

i
1 and v

i. For

example, the conditional expectation of εit−1 given that t ≤ τ i will in general differ from

its unconditional expectation E{εit−1} = 0.
It is possible to rescue the GMM estimator for this model by applying the weighting

procedure proposed in Abowd et al. (2001): The orthogonality conditions in (9)-(10)

have the form E (gt(x
i
1, ..., x

i
t)) = 0. Abowd et al. show that the weighted orthogonality

conditions:

E

�
gt(x

i
1, ..., x

i
t)I(t ≤ τ i)

πit

�
= 0, with πit = P (t ≤ τ i|xi1, ..., xit−1),

hold under the MAR assumption. We shall return to questions regarding implementation

and performance of this weighted GMM estimator in Section 5.

4.3 Testing the MAR assumption

The MAR assumption has been criticized because it does not imply any testable restric-

tions. For example, Horowitz and Manski (1998) writes:

”Survey non-response is problematic for identification of population parameters. Whether

nonresponse takes the form of particular missing items or entire missing interviews, the

only way to identify population parameters is to make assumptions about ...[what]... de-

termine the ... distribution of missing data. A basic problem ... is that such assumptions

are not testable.”

Nevertheless, as is frequently overlooked, the MAR assumption does not only imply

restrictions on the distribution of the missing data, but also on the observed data. More-

over, the formulation of the MAR assumption in (2) suggests a very simple way to test

its validity.

Let us consider the common situation where f(xit+1|vit+1, ιi, xiιi , .., xit; θ) is formulated
in terms of an explicit transition equation. Equation (2) then implies that no information
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about the life-span of observation unit i contained in Zit should help us to predict x
i
t+1

given vit+1, ι
i, xiιi , ..., x

i
t. In the particular case of the linear-normal autoregressive model

with random effects (8), we have vit = v
i and θ = (φ, σ21, σ

2
v, σ

2
ε). Then (2) implies that

the parameter vector θ entering the transition equation is ”invariant” with respect to the

survival time (”age”) Ait of observation unit i at time t, where A
i
t = (t∧ τ i)− ιi+1. Note

that Ait is a random variable and a function of Zit .

For any component θj of θ, we can write:

θj = θ0j +
t[
s=2

θjsI(A
i
t = s),

where I(Ait = s) is the indicator function which is 1 if the survival time of observation unit

i at time t is s (and 0 otherwise), while θjs, for s ≥ 2, are auxiliary parameters. If the MAR
assumption holds, the pseudo true value of θjs = 0 for all s. That is, θj = θ0j independently

of the ”age” Ait of the observation unit at the time of the transition. Furthermore, we can

test the hypothesis that θjs = 0 by estimating these auxiliary parameters and then apply

the results about pseudo likelihood based inference established above.

This procedure requires that θjs is identified, which is a non-trivial requirement. For

example, assume that the model (8) contains time-dummies:

xit = φxit−1 + µt + (1− φ)vi + εit for t = 2, ...., T

xi1 = vi + εi1.

If we assume, as in Abowd et al. (2001), that attrition is related to the level of the

endogenous variables, it is natural to test whether the survival timeAit affects the estimates

of the intercepts µt. Hence, let θj = µt (for some j and t). In this case, if all units have

entered the sample at the same date ιi = 1, identification of θjs will fail because all

observation units will have the same survival time: For all i, I(Ait = s) = 1 when s = t

and 0 when s 9= t. To discriminate between time-effects and self-selection effects, we

therefore need to have sufficient ”cohort” variation in the sample. In general, therefore,

the possibility of testing the MAR assumption is facilitated by an approperiate sampling

design.
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5 Monte Carlo results

In this section we analyze pseudo likelihood and moment estimators of the autoregressive

parameter φ in (8) using Monte Carlo experiments. We shall consider different attrition

mechanisms and distributions of error terms. Since moment estimators have been mostly

developed for balanced panel data sets, I shall first present these estimators in some

detail. Then, an explicit form for the pseudo likelihood function which is convenient for

estimation purposes will be derived. Throughout we assume that ιi = 1.

The GMM and WGMM estimators: We first define the diagonal matrix:

Di =

 I(3 ≤ τ i) 0 · · ·
0

. . . · · ·
... · · · I(T ≤ τ i)


and the (T − 2)× 1

2
(T − 2)(T − 1) matrix Yi:

Yi =


yi1 0 0 0 · · · · · · 0
0 yi1 yi2 0 · · · · · · 0
. . . · · ·
0 0 0 · · · yi1 · · · yiT−2

 .
The GMM estimator of φ solves the linear equation#

N[
i=1

hyi−1 �D+
i Y

+
i

$
W

#
N[
i=1

Y +i
�D+

i (hyi − hyi−1φ)
$
= 0 (13)

where

Y +i =


Yi 0 0 · · · 0
0 ∆yi2 0 · · · 0

. . .
. . . 0

0 0 0 · · · ∆yiT−1


D+
i =

�
Di 0
0 Di

�

hyi = [∆yi3, .....,∆y
i
T , y

i
3, ....., y

i
T ]
�

hyi−1 = [∆yi2, .....,∆y
i
T−1, y

i
2, ....., y

i
T−1]

�

and W is a weight matrix.

For t = 3, .., T , each element in row number t− 2 and T + t− 4 in Y +i , hyi and hyi−1 are
multiplied by the indicator I(t ≤ τ i), and hence replaced by 0 if the corresponding variable
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is unobserved. The estimator (13) is implemented in the popular software package DPD

(see Arellano and Bond, 1998).

Under the assumption that all missing data are MCAR, (12) holds and#
1

N

N[
i=1

Y +i
�D+

i (hyi − hyi−1φ)
$

P−→ 0.

Thus the GMM estimator will be consistent, regardless of the choice of W .

On the other hand, the weighted GMM (WGMM) method solves the equation:#
N[
i=1

hyi−1 �Π−1i D+
i Y

+
i

$
W

#
N[
i=1

Y +i
�D+

i Π
−1
i (hyi − hyi−1φ)

$
= 0,

with

Πi =



πi3 0 · · · · · · · · · 0

0
. . . · · · · · · · · · · · ·

· · · · · · πiT · · · · · · · · ·
· · · · · · · · · πi3 · · · · · ·
· · · · · · · · · · · · . . . · · ·
0 · · · · · · · · · · · · πiT


where

πit = P (τ
i ≥ t|xi1, ..., xit−1).

The results in Abowd et al. (2001) show that this estimator will be consistent under the

MAR hypothesis and that it can be applied in practice by using the recursive formula:

πit+1 = (1− qit)πit, with πi1 = 1

qit = P (τ i = t|τ i ≥ t, xi1, ..., xit),

where the conditional exit probability qit (i.e. the conditional probability that the last

observation of unit i will be at t) can be estimated from the sample of observation units

who were observed until (at least) t. In practice, qit might be a logistic or a probit function,

as suggested in Abowd et al. (2001) — implicitly assuming that attrition occurs when (a

function of) the endogenous variables meet some threshold.

It is easy to verify that the GMM and WGMM estimators are identical when the πit

do not depend upon i (but only on t) — and thus are independent of the endogenous

variables. Thus, in the MCAR case the two methods give identical results. Another

interesting situation occurs when πit becomes zero with positive probability. In this case

16



WGMM breaks down. An interesting example of this is when the event [τ i = t] depends

deterministically on the history xi1, ..., x
i
t. Thus, πit is one when t ≤ τ i and zero else.

For both moment estimators, the choice ofW is critical for the efficiency of the estima-

tors. I follow Arellano and Bond (1998) and choose W = ( 1
N

SN
i=1 Y

+
i
�D+

i H
+D+

i Y
+
i )

−1

for the GMM estimator — and its obvious modification in the WGMM case — where H+

is the 2T − 4 matrix:
H+ =

�
H 0
0 I

�
,

(I is the identity matrix of order T − 2) and

H =


2 −1 0 · · · 0
−1 2 −1 · · · 0
...

...
...

...
0 0 0 · · · −1

 .
In my experience, if H is replaced by I the performance of GMM and WGMM deteriorate

sharply as the sample becomes more unbalanced. Two-step estimators (see Blundell and

Bond (1998) and Abowd et al. (2001)) was partially tested in simulations. Despite being

computationally costly, I found no improvement in performance compared to the much

simpler one-step estimators.

The PL estimator: Let

uit = (1− φ)vi + εit for t = 2, ..., τ i. (14)

The first equation in (8) can then be written

xit = φxit−1 + u
i
t for t = 2, .., τ i. (15)

It is easily verified that

f(xi1, .., x
i
τ i) ∝ f(hui2, .., huiτ i |xi1)f(xi1),

where

huit =
+ t

t−1
t
(εit+1 − 1

t−1
St

v=2 ε
i
v) t = 2, .., τ i − 1 (τ i > 2)

(1− φ)vi + 1
τ i−1

Sτ i

v=2 ε
i
v t = τ i (τ i > 1).
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Note that the huit are linear functions of the unknown parameters:
huit =

+ t
t−1
t

�
(xit+1 − 1

t−1
St

v=2 x
i
v)− φ(xit − 1

t−1
St

v=2 x
i
v−1)

�
t = 2, .., τ i − 1

1
τ i

Sτ i

v=1(x
i
v − φxiv−1) t = τ i.

Hence, the PL estimator is easy to obtain from the distribution of huit:
huit ∼ IN (0, σ2ε) for t = 2, ..., τ i − 1.

Furthermore, (hui2, .., huiτ i−1) are independent of (huiτ i, xi1). The likelihood can therefore be
factorized as:

f(xi1, .., x
i
τ i) ∝ f(xi1)f(huiτ i|xi1) τ i−1\

t=2

f(huit).
From the relations

E{uiτ i|xi1} = (1− φ)E{vi|xi1}
V ar{uiτ i|xi1} = (1− φ)2V ar{vi|xi1}+

σ2ε
τ i − 1

and

E{vi|xi1} =
xi1
σ21

�
1

σ21
+
1

σ2v

�−1
V ar{vi|xi1} =

�
1

σ21
+
1

σ2v

�−1
we obtain:

huiτ i|xi1 ∼ N
�
βxi0,ω

2 +
σ2ε

τ i − 1
�

xi1 ∼ N �
0,ω21

�
,

where

β =
1− φ

σ21

�
1

σ21
+
1

σ2v

�−1
ω2 = (1− φ)2

�
1

σ21
+
1

σ2v

�−1
ω21 = σ21 + σ2v.

18



Exit rule τ i = t iff t is the first time the following event occurs

MCAR ξit < c
MAR xit + γξit < c
HW xit+1 + γξit < c
HYBRID 1√

2
(xit + x

i
t+1) + γξit < c

Table 1: Attrition rules used in simulations

Attrition rules: We focus on three main types of attrition mechanisms which all have

been extensively discussed in the literature:

(i) τ i ⊥ xi1, .., xiT (MCAR)

(ii) xiτ i+1, .., x
i
T ⊥ τ i | xi1, .., xiτ i (MAR)

(iii) xi1, .., x
i
τ i ⊥ τ i | xiτ i+1, .., xiT (HW)

Recall that the exit time τ i is the last period the unit is observed (and not the first time

it is missing).

In (i) exit is independent of the endogenous variables. Missing items are therefore

MCAR. Type (ii) is the MAR-case: Exit is independent of the unobserved endogenous

variables given the observed ones. Type (iii) is the Hausman-Wise (HW) model: Exit is

independent of the observed endogenous variables given the unobserved ones. In addition,

we will consider an attrition rule (HYBRID) which is neither MAR or HW: Exit depends

on both observed and unobserved endogenous variables.

Table 1 specifies the exit rules which are employed in the simulation study. All exit

rules say that attrition occurs if a certain lower threshold, c, is met. In Table 1, γ is a

scale parameter and ξit ∼ N (0, 1) is white noise — independently distributed of xit and
vi. The threshold c is a number chosen to keep E(τ i) constant in all simulations with

the same T . We shall consider the cases T = 6, with E(τ i) = 5, and T = 11, with

E(τ i) = 7.5. Throughout, the number of units is fixed at N = 500. We shall also assume

weak stationarity: σ2ε = σ2v = 1 and σ21 = (1− φ2)−1.

The attrition rule MCAR says that exit only depends on noise ξit. The rule MAR says

that exit occurs at t depending on the outcomes of ξit and the endogenous variable x
i
t.

The rule HW says that exit occurs at t depending ξit and the future variable x
i
t+1. The

rule HYBRID is a combination between MAR and HW: Exit occurs at t depending on

both xit, x
i
t+1, and noise ξ

i
t.
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Exit rule: MCAR MAR
Estimator: GMM PL GMM WGMM PL

T γ φ BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

6 0 .5 - - - - -.086 .096 - - .001 .036

.9 - - - - -.090 .104 - - -.007 .029

.99 - - - - -.031 .061 - - -.017 .037

σ1 .5 -.002 .042 -.001 .035 -.054 .070 -.016 .057 -.001 .037

.9 -.007 .049 -.007 .028 -.048 .068 -.022 .061 -.008 .030

.99 -.014 .049 -.017 .036 -.021 .055 -.015 .052 -.018 .039

11 0 .5 - - - - -.041 .052 - - -.000 .023

.9 - - - - -.057 .067 - - -.002 .018

.99 - - - - -.031 .045 - - -.009 .019

σ1 .5 -.007 .036 -.001 .028 -.033 .044 -.037 .056 .000 .022

.9 -.017 .035 -.003 .017 -.042 .053 -.050 .068 -.002 .017

.99 -.020 .038 -.010 .020 -.027 .042 -.028 .046 -.009 .020

Table 2: Estimates of φ. Simulation results for attrition rules MCAR and MAR.
N = 500; normal error terms; σ2v = σ2ε = 1, σ

2
1 =

1
1−φ2 .

The scale parameter γ determines the relative importance of the noise ξit relative to

the endogenous variables in the exit rules specified in Table 1. As γ increases, all scenarios

will approach MCAR. In the simulations, two cases are considered: (i) γ = 0; exit depends

deterministically on the endogenous variables and (ii) γ = σ1; the noise has, roughly, the

same impact on the exit decision as the endogenous variables. These scenarios, when

varying γ and φ, span a wide variety of relevant attrition rules.

The simulation results for normal error terms and with φ = 0.5,φ = 0.9 , and φ = 0.99

are depicted in Tables 2-3. In Table 4 simulation results with non-normal random variables

are presented. In the latter case, as in Blundell and Bond (1998), we use the highly non-

normal χ2(1)-distribution: vi, εi1, and εit (t ≥ 2) are distributed as σ (χ2(1)− 1) /
√
2 for

σ = σv, σ1, and σε, respectively.

Results: The results in Table 2 show that when data are missing completely at random

(MCAR), both the PL and the GMM estimator perform quite well — although there is

some negative bias as φ approaches one. Overall, the root mean square error (RMSE) of

the GMM estimator is 50% higher than for the PL estimator (which in this case coincides

with the maximum likelihood estimator). The results shift dramatically when we turn

to the MAR exit rule. While the performance of the PL estimator remains virtually
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Exit rule: HW HYBRID
Estimator: GMM WGMM PL GMM WGMM PL

T γ φ BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

6 0 .5 -.067 .078 - - -.067 .074 -.091 .100 - - -.077 .084

.9 -.079 .092 - - -.069 .084 -.082 .096 - - -.050 .065

.99 -.036 .063 - - -.044 .069 -.033 .058 - - -.032 .056

σ1 .5 -.048 .062 -.043 .058 -.044 .055 -.067 .078 -.060 .073 -.049 .059

.9 -.052 .071 -.037 .063 -.030 .045 -.057 .074 -.041 .064 -.027 .042

.99 -.019 .054 -.014 .053 -.023 .045 -.021 .053 -.017 .052 -.023 .045

11 0 .5 -.060 .066 - - -.065 .069 -.080 .084 - - -.077 .080

.9 -.075 .081 - - -.068 .073 -.078 .084 - - -.050 .056

.99 -.039 .050 - - -.026 .039 -.041 .052 - - -.020 .031

σ1 .5 -.041 .050 -.050 .058 -.041 .046 -.058 .064 -.080 .086 -.049 .054

.9 -.048 .057 -.056 .067 -.028 .036 -.053 .062 -.065 .075 -.023 .032

.99 -.026 .040 -.030 .046 -.012 .022 -.027 .041 -.032 .048 -.011 .021

Table 3: Simulation results for attrition rules HW and HYBRID. N = 500;
normal error terms; σ2v = σ2ε = 1, σ

2
1 =

1
1−φ2 .

Estimator: GMM WGMM PL

Exit rule: φ BIAS RMSE BIAS RMSE BIAS RMSE

.5 -.004 .030 - - -.000 .023

MCAR .9 -.015 .035 - - -.002 .018

.99 -.020 .037 - - -.009 .021

.5 -.025 .036 -.006 .031 -.052 .022

MAR .9 -.045 .053 -.023 .040 .002 .015

.99 -.030 .042 -.020 .036 -.008 .018

.5 -.026 .037 -.017 .032 -.012 .024

HW .55 -.046 .053 -.030 .042 -.007 .018

.9 -.033 .045 -.027 .042 -.011 .022

.5 -.036 .044 -.023 .037 -.012 .025

HYBRID .9 -.052 .058 -.038 .048 -.007 .017

.99 -.036 .049 -.029 .043 -.011 .022

Table 4: Simulation results with χ2(1)-distributed random variables. N = 500;
σ2v = σ2ε = 1, σ

2
1 =

1
1−φ2 ; γ = σ1.
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unchanged, the GMM estimator exhibits substantial negative bias; varying between −.02
and −.09. On average, the RMSE of the GMM estimator is 125% higher than for the PL

estimator in the MAR simulations. The presence of noise in the MAR exit rule (γ 9= 0)
improves the performance of GMM relative to the deterministic case, i.e. γ = 0, as do a

high value of φ compared to a small φ.

The performance of the WGMMmethod in the MAR case is somewhat disappointing:

The weighting method succeeds in reducing the bias compared to GMM when T = 6,

but their RMSE is roughly the same. When T = 11, the weighting method is actu-

ally counterproductive. One explanation for this could be that the weighting method

is sensitive to errors in the estimates of qit, which are magnified when more terms are

multiplied together to obtain πit. Although the correct exit probability model was esti-

mated: qit =Probit(c/γ − xit/γ), the estimated parameters do, of course, differ from the

true ones due to estimation error. As noted above, when γ = 0 the WGMM estimator is

not well-defined.

Turning to the non-MAR scenarios HW and HYBRID (Table 3), the PL and GMM

estimators perform much more evenly. GMM performs similarly for these two exit rules,

while its RSME is about 15 percent higher than for the PL estimator in the HW case,

and 20 percent higher in the HYBRID case. Because the simulation scenario HYBRID is

closer to MAR than to HW, this relative difference is not surprising. As expected, there

is no substantial difference between GMM and WGMM in these cases.

The HW and HYBRID attrition models lead to a negative bias in the range of −.01
and −.09 for both the PL and the GMM estimator. This bias can be explained by a

consideration of standard regression arguments: The forward-looking exit rules imply

that a unit is observed at t + 1 if either xit or u
i
t+1 is large, thus inducing a negative

correlation between the ”regressor” xit and the error term εit+1. Consequently, as the exit

rules become more noisy (large γ), the performance of both estimators improve. The bias

(and RMSE) decrease as φ approaches 1. This result can be explained by the same type

of argument: When φ increases, V ar(xit) also increases, but not the covariance between

xit and εit+1. Thus the relative importance of the bias-inducing covariance decreases.

Some of the most striking results are found in Table 4, which compares the estimators

when the error terms in the autoregressive model are χ2(1)-distributed (re-scaled and
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re-centered to have mean zero and variance one). We see that the performance of the PL

estimator changes very little compared to normality. In particular, there is virtually no

bias in the MAR and MCAR attrition models, while the performance under the attrition

rules HW and HYBRID are actually somewhat better than before. The results for the

GMM and WGMM methods are also similar to those in Table 2-3. Averaging over all

cases reported in Table 4, the RMSE of the GMM method is more than 2 times as high

as for the PL estimator.

In econometrics it is often argued that GMM is preferable to likelihood based methods,

because one does not have to specify the distributions of the random variables (However,

see Sims (2000) for a different view). The results in Table 4 yield little merit to this

argument: The PL estimator outperforms GMM (and WGMM) under normality as well

as under the highly non-normal χ2(1)-distribution. The kind of departures from model

assumptions which are most critical for inference are related to the nature of the attrition

mechanism. A forward looking attrition rule that depends on the outcomes of future

variables (as in the HW and HYBRID attrition models) is problematic for inference. Our

simulations indicate that these problems are particularly important when there is little

noise in the attrition rule relative to the variance in the endogenous variables. Departure

from normality is a much lesser concern.

6 Conclusions

This paper has discussed identification, estimation and testing in panel data models with

attrition. In the situation where attrition is endogenous and depends on the outcomes

of an observed stochastic process and the interest-parameter characterizing this process,

attrition is non-ignorable even if selection is based only on observed variables — that is,

even if the missing items are missing at random (MAR). The likelihood function obtained

by ignoring the attrition mechanism is a pseudo likelihood function. Assuming that MAR

holds, this paper has established conditions for identification of interest parameters based

on the pseudo likelihood function.

In contrast to a widely held opinion, the MAR hypothesis has testable implications in

many situations which are encountered in practice: It implies that at any point in time

information about the life-span of the observation unit up until that point in time is irrel-
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evant for predicting future variables, given the complete history of the observed variables.

Hence, augmenting transition equations with auxiliary parameters which measure effects

of such information, should not lead to a significant increase in the pseudo likelihood.

While MAR is a sufficient condition for validity of pseudo likelihood based inference, it

is not sufficient for the validity of GMM-methods. Traditional GMM-estimators require

that attrition is independent of the endogenous variables. This is a very unreasonable

assumption in many applications. On the other hand, the MAR hypothesis allows attrition

to depend arbitrarily on observed endogenous variables, and may therefor accommodate

much more realistic attrition mechanisms. In many panel data studies, this provides a

strong rationale for using likelihood based methods instead of moment estimators.
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