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Abstract 

This paper examines the forecast accuracy of cointegrated vector autoregressive models when 

confronted with extreme observations at the end of the sample period. It focuses on comparing two 

outlier correction methods, additive outliers and innovational outliers, within a forecasting 

framework for macroeconomic variables. Drawing on data from the COVID-19 pandemic, the study 

empirically demonstrates that cointegrated vector autoregressive models incorporating additive 

outlier corrections outperform both those with innovational outlier corrections and no outlier 

corrections in forecasting post-pandemic household consumption. Theoretical analysis and Monte 

Carlo simulations further support these findings, showing that additive outlier adjustments are 

particularly effective when macroeconomic variables rapidly return to their initial trajectories 

following short-lived extreme observations, as in the case of pandemics. These results carry 

important implications for macroeconomic forecasting, emphasising the usefulness of additive 

outlier corrections in enhancing forecasts after periods of transient extreme observations. 

Keywords: Extreme observations, additive outliers, innovational outliers, cointegrated vector 

autoregressive models, forecasting. 
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Sammendrag 

Denne studien sammenlikner prognoseegenskaper til kointegrerende vektor autoregressive 

modeller (CVAR-modeller) som håndterer ekstreme observasjoner gjennom enten additive 

korreksjoner for uteliggere (AO-korreksjoner) eller innovative korreksjoner for uteliggere (IO-

korreksjoner). Sammenlikningen er gjennomført empirisk, teoretisk og ved hjelp av Monte Carlo-

simuleringer.  

Som et motiverende empirisk eksempel anvender vi et oppdatert datasett for den norske 

konsumfunksjonen, som viser et betydelig strukturelt brudd under COVID-19-pandemien. Basert på 

målene RMSFE («root mean squared forecast error») og MAPE («mean absolute percentage error») 

viser vi at en CVAR-modell for husholdningenes konsum, inntekt og formue med AO-korreksjoner 

for de ekstreme observasjonene under pandemien gir bedre prognoser enn CVAR-modeller med IO-

korreksjoner og uten korreksjoner. Den prognostiske overlegenheten til modellen med AO-

korreksjoner er særlig fremtredende når en «normal» observasjon er tilgjengelig i slutten av 

estimeringsperioden. 

Med utgangspunkt i forenklede antakelser, som en kort tidsforsinkelse, et begrenset antall ekstreme 

observasjoner og fravær av strukturelle brudd i prognoseperioden, utvikler vi et teoretisk 

rammeverk som forklarer hvorfor CVAR-modellen med AO-korreksjoner gir bedre prognoser når 

makroøkonomiske variabler raskt vender tilbake til sine normale forløp etter midlertidige ekstreme 

observasjoner. Vi viser spesielt at CVAR-modeller med IO-korreksjoner og uten korreksjoner ofte gir 

skjeve prognoser, mens modellen med AO-korreksjoner leverer forventningsrette prognoser med 

potensielt lavere usikkerhet. Videre viser vi at prognoseusikkerheten kan reduseres ytterligere når 

modellen tar høyde for en «normal» observasjon som følger rett etter de ekstreme observasjonene. 

Våre Monte Carlo-simuleringer, utført under mer generelle antakelser, inkludert en lengre 

tidsforsinkelse, et større antall ekstreme observasjoner og tilstedeværelse av strukturelle brudd i 

prognoseperioden, støtter den teoretiske rangeringen av prognoseegenskapene til de tre CVAR-

modellene. 

Basert på våre funn argumenterer vi for at CVAR-modellen med AO-korreksjoner er særlig godt 

egnet til å håndtere spesielle hendelser som involverer ekstreme observasjoner. Dette gjør 

modellen til et foretrukket verktøy for å prognostisere sentrale makroøkonomiske variabler, som 

husholdningskonsum, ved gjennomføring av økonomisk politikk.  

 



1 Introduction

Many macroeconomic time series exhibit extreme observations during events such as

financial crises, wars, natural disasters or pandemics. These observations typically

manifest as structural breaks in empirical models and may lead to poor forecasting

performance depending on the origins and characteristics of the breaks. Therefore,

a careful analysis of the forecasting implications of alternative methods for han-

dling such extreme observations is crucial in time series modelling, see e.g. Bauwens

et al. (2015) and Castle et al. (2015, 2016, 2024). This paper provides new insights

into this issue through an empirical example from the COVID-19 pandemic, along-

side theoretical formulations and Monte Carlo simulations of forecasts within the

multivariate context of the cointegrated vector autoregressive (CVAR) model. Our

primary focus is to compare the forecasting performance of CVAR models that incor-

porate additive outlier (AO) and innovational outlier (IO) corrections as alternative

methods for handling extreme observations in-sample. The main contribution of

our study is that the CVAR model with AO corrections delivers the most accurate

forecasts when macroeconomic variables rapidly return to their initial trajectories

following transient extreme observations.

More than fifty years ago, Fox (1972) distinguished between IOs and AOs in

analysing the effects of extreme observations on time series behaviour. An IO corre-

sponds to a situation where a single extreme shock affects the innovation term of a

time series, whereas an AO corresponds to a situation where a single extreme event

affects only a specific observation. As pointed out by Fox (1972), an IO impacts

not only the observation at the time of the shock but also influences subsequent

observations through the dynamic structure of the time series. In contrast, an AO

removes the extreme observation independently of the series’ dynamics. Whereas

IOs may be more suitable in cases such as financial crises, wars or natural disasters,

where the economy may take considerable time to recover, AOs may be more ap-

propriate in instances of pandemics, where the economy may quickly return to its

pre-pandemic trajectory. However, the question of which type of outlier correction

is most effective in a particular forecasting exercise remains open.

The last four decades of research on time series forecasting, including the roles

of IOs and AOs, are reviewed in De Gooijer and Hyndman (2006) and Petropoulos

et al. (2022). Numerous studies have explored the detection and estimation of

different types of outliers and their influence on forecasting performance within the

context of ARIMA-models (see e.g. Ljung, 1993; Ledolter, 1989; Findley et al., 1998;

5



Battaglia et al., 2020; Laome et al., 2021) and GARCH-models (see e.g. Franses and

Ghijsels, 1999; Catalán and Tŕıvez, 2007; Hotta and Trućıos, 2018; Akpan et al.,

2019; Patrocinio et al., 2024). Several studies have also examined the effects of

IOs and AOs on inference and estimation within the context of CVAR models (see

e.g. Franses and Haldrup, 1994; Franses and Lucas, 1998; Johansen et al., 2000;

Lütkepohl et al., 2004; Nielsen, 2004, 2008; Hungnes, 2010; Johansen and Nielsen,

2018; Kurita and Nielsen, 2019). Furthermore, a number of studies have explored

the impacts of various methods for addressing outliers and structural breaks on

forecasting performance in the context of CVAR models (see e.g. Clements and

Hendry, 1996, 1998, 1999; Castle et al., 2015, 2016, 2024).

Surprisingly, however, alternative AO corrections for handling extreme obser-

vations in forecasting studies have rarely been applied in CVAR models. To the best

of our knowledge, the only study that addresses AO corrections in the context of

forecasting with a CVAR model is that of Ahumada and Garegnani (2012), who con-

duct an empirical forecasting competition between several models of money demand

in Argentina. To date, no studies seem to have developed theoretical frameworks or

conducted Monte Carlo simulations to assess the forecasting ability of CVAR models

that incorporate AO corrections for extreme observations.

Our study is the first to compare the forecasting performance of CVARmodels

that incorporate both AOs and IOs as alternative correction methods for extreme

observations, using empirical analysis, theoretical examination and Monte Carlo

simulations. As a motivating empirical example, we build on Boug et al. (2021)

and consider a refreshed data set for the Norwegian consumption function, which

exhibits a substantial structural break during the COVID-19 pandemic. We demon-

strate, using the root mean squared forecast error (RMSFE) and mean absolute

percentage error (MAPE) metrics, that a CVAR model for household consump-

tion, income and wealth with AO corrections for the extreme observations during

the pandemic outperforms both a CVAR model with IO corrections and a CVAR

model without any corrections when forecasting after the pandemic. The forecast-

ing superiority of the model with AO corrections is particularly pronounced when

a “normal” observation is available for estimation at the end of the in-sample pe-

riod. Using simplifying assumptions of a short lag length, a limited number of

extreme observations and no out-of-sample structural breaks, we develop a theo-

retical framework that explains the superior forecast accuracy of the CVAR model

with AO corrections when macroeconomic variables rapidly return to their initial

trajectories following transient extreme observations. Specifically, we show that
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while CVAR models with IO and no outlier corrections produce biased forecasts,

the model with AO corrections provides unbiased forecasts with potentially lower

forecast uncertainty. Moreover, we demonstrate that forecast uncertainty can be

further reduced when the model conditions on a ”normal” observation following the

extreme observations. Our Monte Carlo simulations, conducted under more general

settings, including longer lag lengths, a higher number of extreme observations and

structural breaks during the forecasting period, reinforce the theoretical ranking of

the forecast accuracy of the three CVAR models.

Based on our findings, we argue that the CVAR model with AO corrections

for special events involving extreme observations may be preferable when forecasting

important macroeconomic variables such as household consumption. The insights

gained from this model can significantly enhance the precision of fiscal and mone-

tary policy decisions, enabling policymakers to better manage economic growth and

business cycle fluctuations.

The remainder of the paper is organised as follows: Section 2 presents the

findings from the empirical example. Section 3 develops the theoretical framework

motivated by these findings. Section 4 undertakes the Monte Carlo simulations

with generalised settings to support the theoretical findings. Section 5 offers some

conclusions.

2 A motivating empirical example

As a motivating empirical example, we build on Boug et al. (2021) and consider a

refreshed data set, including the extreme observations during the COVID-19 pan-

demic, for the Norwegian consumption function. First, we give an overview of the

data set with a particular focus on time series behaviour during the COVID-19

pandemic. Second, we carry out a benchmark cointegration analysis based on a

trivariate CVAR model for household consumption, income and wealth. Third, we

estimate CVAR models with additive outlier corrections, innovational outlier correc-

tions and no outlier corrections for the extreme observations during the pandemic.

Finally, we compare the forecasting performance of the three estimated CVAR mod-

els using available observations after the pandemic.1

1The econometric modelling in this section was carried out with PcGive 15 and Ox 8, see
Doornik and Hendry (2018) and Doornik (2013). The data set applied and the Ox code written
to estimate the CVAR model with additive outlier corrections are available from the authors upon
request.
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2.1 Overview of data

Throughout the analysis, following Eitrheim et al. (2002), Jansen (2013) and Boug

et al. (2021), we consider the data set Yt = (ct, yt, wt)
′, where ct is the log of house-

hold real consumption excluding housing, yt is the log of household real disposable

income excluding equity dividends and wt is the log of household real net wealth.2

All three time series are quarterly, seasonally unadjusted, covering the effective sam-

ple period 1983q3− 2024q2 for estimation and forecasting purposes.

Whereas Boug et al. (2021) present a detailed data analysis of consumption,

income and wealth for the period up to 2016 with a significant structural break

identified around the time of the global financial crisis, we pay attention to influential

observations related to major events during the COVID-19 pandemic. Figure 1

shows the seasonally unadjusted time series ct, yt and wt alongside the seasonally

unadjusted time series St, the household savings ratio excluding equity dividends,

for the sub-sample period 2015q1− 2024q2. For later reference, Figure 1 also shows

the seasonally adjusted time series csat , ysat and Ssa
t , see Appendix A for details about

data definitions and sources.

The pandemic in Norway, which began early in 2020, involved several waves

of infections and various phases of infection control measures and restrictions. Al-

though the strictest lockdowns and measures were gradually eased during 2021, the

pandemic continued to affect Norway at the beginning of 2022, with the emergence

of the Omicron variant necessitating further changes in infection control measures.

In Norway, most of the measures were lifted in February 2022, marking a transition

to a more normal everyday life.

During the pandemic in Norway, household consumption and savings under-

went notable changes. For example, at the onset of the pandemic, when society

shut down and spending opportunities were limited, savings rose significantly. Since

consumption declined by almost 20 per cent during the first half of 2020, while in-

come increased steadily due to various factors, inter alia, social security schemes,

the savings ratio reached a record-high level of slightly more than 15 per cent in

the same period. The consumption level more than recovered to its pre-pandemic

level in 2021q4, but dropped sharply again in 2022q1 alongside the infection control

measures associated with the Omicron variant. Then, in 2022q2, when most of the

measures were no longer in effect, the consumption level rebounded more or less

2Unlike Jansen (2013) and Boug et al. (2021), we disregard the real after-tax interest rates
faced by households from Yt to simplify matters without loss of establishing a well-specified CVAR
model.
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Figure 1: Real consumption (ct and c
sa
t ), real disposable income (yt and y

sa
t ), real

net wealth (wt) and savings ratio (St and S
sa
t )
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Notes: Sub-sample period: 2015q1−2024q2. The time series ct, c
sa
t , yt, y

sa
t and wt are

measured in logs, the time series St and Ssa
t are measured in per cent and the superscript

sa denotes seasonally adjusted time series. Sources: The databank of the KVARTS model
at Statistics Norway and the quarterly national and non-financial sector accounts in the
Statbank of Statistics Norway.

to its level in 2019q4, whereas income increased during the first half of 2022. As a

result, the savings ratio went down from its record-high level by more than 10 per-

centage points during the period of the pandemic. Household wealth, meanwhile,

increased substantially during the years of the pandemic, driven by historically low

interest rates and steady income growth. The time series for consumption, income

and wealth also reveal that their growth paths before the pandemic were higher than

those after the pandemic.

Against this backdrop, we define the period from 2020q1 to 2022q1 as a series

of special events during the pandemic that influenced the time series behaviour

of Norwegian consumption in an extreme way. These nine quarters of influential

observations form the basis for the estimation of the CVAR models with either

additive outlier or innovational outlier corrections.

2.2 Benchmark cointegration analysis

Our benchmark cointegration analysis, conducted over the effective sample period

preceding the pandemic t = 1983q3, . . . , 2019q4, follows Boug et al. (2021) and is
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based on a p-dimensional CVAR model of order k = 6 for the p = 3 variables ct, yt

and wt, augmented with indicators capturing the structural break in the long-run

relationship around the time of the global financial crisis. The model after the global

financial crisis is specified as

(1) ∆Yt = αβ′Yt−1 +
k−1∑
i=1

Γi∆Yt−i + µ+ εt,

where the parameter µ is a p-dimensional vector of constants, the parameters α and

β are p × r matrices for r ≤ p, thus forming the composite parameter Π = αβ′,

the autoregressive parameters Γi for i = 1, . . . , k − 1 are p × p matrices and the

independent Gaussian innovations εt have expectation zero and a p × p positive

definite variance-covariance matrix Ω.3 For later reference, we assume that the

following assumption is fulfilled, see Johansen (1996, Theorem 4.2):

Assumption 1

1. The characteristic polynomial associated with (1), A(z) = Ip −
∑k

i=1Akz
k =

(1− z)Ip −Πz−
∑k−1

i=1 Γi(1− z)zi, where Ip denotes the p× p identity matrix,

satisfies the condition that if det[A(z)] = 0, then either |z| > 1 or z = 1.

2. Rank (Π) = r ≤ p.

3. If r < p, then det (α′
⊥Ψβ⊥) ̸= 0, where Ψ = Ip −

∑k−1
i=1 Γj and α⊥ and β⊥ are

the orthogonal complements to α and β, respectively.

Assumption 1-1 ensures that Yt is not an explosive process. Combined with As-

sumption 1-2, it ensures that there exist p× r matrices α and β of rank r such that

Π = αβ′, where we here consider p = 3. If also Assumption 1-3 is fulfilled, it ensures

that ∆Yt − E [∆Yt] and β′Yt − E [β′Yt] can be given initial distributions such that

they become I(0).

Both the Akaike information criterion and likelihood ratio tests of sequential

model reduction support that the underlying VAR model should include six lags.

A battery of diagnostic tests also indicates no serious departures from white noise

errors with k = 6. Using the trace test statistic for rank determination and critical

values derived from the response surface estimated in Johansen et al. (2000),4 we

3The indicators for the structural break around the time of the global financial crisis, which is
not the main focus of this paper, are, along with centred seasonal dummies, suppressed in (1) for
ease of exposition. See Appendix B for details.

4See Table 4 and equations 3.12 and 3.13 in Johansen et al. (2000).
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find support for the hypothesis of a single cointegrating vector among ct, yt and wt

at the 5 per cent significance level.

After conducting preliminary tests of restrictions under the assumption of

r = 1 on Π = αβ′, where α′ = (αc, αy, αw) and β′ = (βc, βy, βw), we arrive at

a long-run structure where the hypothesis of homogeneity between consumption,

income and wealth (βy + βw = 1) is not rejected by a likelihood ratio test statistic

of χ2(1) = 0.79 (p-value = 0.37). The restricted estimates of the parameters of

interest, α and β, then become

(2) α̂′ =

(
−0.238
(0.085)

, 0.228
(0.071)

, 0.131
(0.119)

)
and β̂

′
=

(
1
(−)
,−0.787

(0.027)
,−0.213

(0.027)

)
,

where the figures in parentheses are standard errors. A comparison with the findings

of Boug et al. (2021) shows that the estimated long-run coefficients for income and

wealth are nearly reproduced when extending the sample period to 2019q4. Having

established a benchmark long-run structure for the Norwegian consumption function

using the refreshed data set, we proceed to the estimation of CVAR models with

and without outlier corrections for the extreme observations during the pandemic.

2.3 CVAR models with and without outlier corrections

As pointed out above, we estimate a CVAR model with additive outlier corrections

(AO model), a CVAR model with innovational outlier corrections (IO model) and

a CVAR model without any outlier corrections (NC model, short for no-correction

model), all of which are subject to the cointegrating rank r = 1 and the restriction of

homogeneity between ct, yt and wt. To account for the aforementioned nine quarters

of influential observations during the pandemic in the estimation of the former two

models, we define the cluster of impulse dummies

Dt = (1t=2020q1, 1t=2020q2, . . . , 1t=2022q1)
′,

where 1t=s denotes an indicator function taking the value of one when t = s and

zero otherwise. The unusual consumption patterns observed during the pandemic,

contrasted with the relatively stable trajectories of income and wealth, suggest that

only consumption requires outlier corrections in the AO model. Thus, following the
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notation in Nielsen (2008), the AO model is specified as

(3) ∆(Yt − θDt) = αβ′(Yt−1 − θDt−1) +
k−1∑
i=1

Γi∆(Yt−i − θDt−i) + µ+ εt,

where the CVAR model in (1) is augmented with Dt as additive dummies and

the 3 × 9 parameter matrix θ. This parameter matrix imposes zero elements in

its second and third rows through θ = (1, 0, 0)′ θc, where θc is a 9-dimensional

vector corresponding to the extreme observations of ct. Since (3) imposes non-

linear restrictions on the parameters, estimation relies on the algorithm described

in Nielsen (2004). Essentially, the additive dummies in (3) mitigate the impact of

extreme observations on consumption during the pandemic by replacing the observed

extreme observations with their model-based predictions. Conversely, the IO model

in this context is specified as

(4) ∆Yt = αβ′Yt−1 +
k−1∑
i=1

Γi∆Yt−i + ϕDt + µ+ εt,

where the CVAR model in (1) is augmented with Dt as unrestricted innovational

dummies and the 3× 9 parameter matrix ϕ. This parameter matrix imposes no re-

strictions as there is no direct correspondence between its elements and the variables

in Yt. Unlike the additive dummies, the innovational dummies in (4) do not remove

the impact of extreme observations on consumption (and income and wealth) dur-

ing the pandemic. Instead, they act as indicators of shocks to εt, with their effects

dissipating over time through the dynamics of the model.

Before presenting estimates of the CVAR models in (1), (3) and (4), we repeat

from Section 1 that using a “normal” observation after the pandemic for estimation

is likely to enhance the forecasting performance of the AO model relative to the IO

and NC models. To explore this issue in the subsequent forecasting analysis, we

provide two sets of estimates of the three CVAR models. The first and second sets

assume, respectively, that the last extreme observation of the pandemic, 2022q1,

and a “normal” observation after the pandemic, 2022q2, represent the end of the

estimation period. These assumptions are justified by the fact that consumption

was back on track with the pre-pandemic trajectory by 2022q2, as shown in Figure

1.

Tables 1 and 2 report the first and second sets of estimates of α and β of

the three CVAR models along with the corresponding χ2(1) test statistics for the
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Table 1: Estimates of three CVAR models — without a “normal” observation
prior to forecasting

AO model

α̂′ =

(
−0.219
(0.081)

, 0.276
(0.073)

, 0.106
(0.114)

)
, β̂

′
=

(
1
(−)
,−0.788

(0.025)
,−0.212

(0.025)

)
, χ2(1) = 0.11[0.74]

IO model

α̂′ =

(
−0.238
(0.085)

, 0.228
(0.071)

, 0.131
(0.119)

)
, β̂

′
=

(
1
(−)
,−0.787

(0.027)
,−0.213

(0.027)

)
, χ2(1) = 0.84[0.36]

NC model

α̂′ =

(
−0.265
(0.073)

, 0.232
(0.051)

, 0.031
(0.077)

)
, β̂

′
=

(
1
(−)
,−0.801

(0.033)
,−0.199

(0.033)

)
, χ2(1) = 2.01[0.16]

Notes: Estimation period: t = 1983q3, . . . , 2022q1. AO model, IO model and NC model
denote the CVAR models in (3), (4) and (1), respectively, figures in parentheses are standard
errors and χ2(1) denotes the likelihood ratio test statistic for the hypothesis βy+βw = 1 with
the p-value in square brackets.

hypothesis βy + βw = 1. Overall, the two sets of estimates of the parameters

of interest, irrespective of which CVAR model is estimated, are quite similar to

those from the benchmark cointegration analysis. Not surprisingly, the first set of

estimates of the IO model is identical to those in (2), since carrying out innovational

outlier corrections are equivalent to excluding the extreme observations during the

pandemic from the estimation period. However, because only ct is subject to additive

outlier corrections during the pandemic, the first set of estimates of the AO model

differs slightly from those of the IO model, which would otherwise not be the case

if ct, yt and wt were all subject to additive outlier corrections. Nevertheless, the

corresponding estimates of θ and ϕ for ct as our time series of interest, θ̂c = (1, 0, 0) θ̂

and ϕ̂c = (1, 0, 0) ϕ̂, using the two estimation periods, are

θ̂c =

{
1

100 (−5.1,−18.5,−8.4,−11.3,−13.2,−12.1,−5.5,−1.0,−7.5) , t = 1983q3, . . . , 2022q1
1

100 (−5.6,−18.5,−8.4,−11.4,−14.0,−11.9,−5.2,−1.0,−7.3) , t = 1983q3, . . . , 2022q2

and

ϕ̂c =

{
1

100 (−6.8,−15.8,−3.2,−1.8,−2.7, 4.6, 4.6, 1.0, 0.1) , t = 1983q3, . . . , 2022q1
1

100 (−6.7,−16.2,−3.3,−1.4,−2.6, 4.3, 4.1, 0.1,−0.2) , t = 1983q3, . . . , 2022q2.

Altogether, the estimates of θc and ϕc are fairly large and seem to align well with the

quarters of extreme observations in ct during the pandemic. For example, the largest

estimated element of θc and ϕc both occur in 2020q2 during which ct, as shown in
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Table 2: Estimates of three CVAR models — with a “normal” observation prior
to forecasting

AO model

α̂′ =

(
−0.216
(0.080)

, 0.275
(0.073)

, 0.111
(0.113)

)
, β̂

′
=

(
1
(−)
,−0.788

(0.025)
,−0.212

(0.025)

)
, χ2(1) = 0.29[0.59]

IO model

α̂′ =

(
−0.276
(0.082)

, 0.169
(0.069)

, 0.174
(0.113)

)
, β̂

′
=

(
1
(−)
,−0.783

(0.026)
,−0.217

(0.026)

)
, χ2(1) = 0.15[0.70]

NC model

α̂′ =

(
−0.285
(0.071)

, 0.201
(0.050)

, 0.047
(0.075)

)
, β̂

′
=

(
1
(−)
,−0.800

(0.035)
,−0.200

(0.035)

)
, χ2(1) = 1.66[0.20]

Notes: Estimation period: t = 1983q3, . . . , 2022q2. AO model, IO model and NC model
denote the CVAR models in (3), (4) and (1), respectively, figures in parentheses are standard
errors and χ2(1) denotes the likelihood ratio test statistic for the hypothesis βy+βw = 1 with
the p-value in square brackets.

Figure 1, was at its lowest observed level.5 According to the estimates of θc, the neg-

ative effects on consumption through the five first quarters of the pandemic increase

when 2022q2 is also included in the estimation period. Through the remaining four

quarters, however, the negative effects on consumption are slightly smaller. Overall,

the updated estimates of θc when 2022q2 is included in the estimation period imply

a flatter slope for the AO adjusted consumption series, cAO
t = ct − θ̂cDt, which will

affect the forecasts of consumption. We note from the χ2(1) test statistics that the

homogeneity restriction between ct, yt and wt remains clearly significant with the

implied outlier corrections in the AO and IO models as well as without any outlier

corrections in the NC model across both estimation periods.

In the forecasting analysis below, we use the two sets of estimates from the

three CVAR models to compare their out-of-sample properties. We emphasise that

only the extreme observations during the pandemic, and not the level shifts in

the growth rates of the time series after the pandemic, are explicitly modelled by

different applications of the cluster of impulse dummies.
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Figure 2: Actual values of ct as well as fitted values and dynamic forecasts (with
forecast error bands) from three CVAR models — without a “normal” observation
prior to forecasting
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Notes: Estimation period: t = 1983q3, . . . , 2022q1 and forecasting period: t =
2022q2, . . . , 2024q2. The AO, IO and NC fitted values and dynamic forecasts are de-
rived from the CVAR models in (3), (4) and (1), respectively. The AO adjusted values

of ct during the pandemic in the upper panel are calculated as cAO
t = ct − θ̂cDt. The

forecast error bands are 95 per cent confidence intervals.

2.4 Comparison of forecasting performance

Our comparison of forecasting performance is, in line with the two sets of esti-

mates from the three CVAR models, based on the two forecasting periods t =

2022q2, . . . , 2024q2 and t = 2022q3, . . . , 2024q2. Accordingly, we compute dynamic

forecasts of ct from the three CVAR models using nine and eight available out-of-

sample observations, respectively.

5The estimates of θc do not change much if yt and wt are also subject to additive outlier
corrections across both estimation periods, which reflects that the developments of these two time
series were not much affected by the pandemic, cf. Figure 1.
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Figure 2 displays actual values of ct, along with fitted values and dynamic

forecasts (with forecast error bands) from the AO, IO and NC models, based

on the estimation period t = 1983q3, . . . , 2022q1 and the forecasting period

t = 2022q2, . . . , 2024q2. The upper panel of Figure 2 also records additive outlier

adjusted values of ct, c
AO
t = ct − θ̂cDt, during the pandemic. Generally, the

forecasting performance of the three models is quite good in the sense that the

majority of the actual values of ct fall inside or on the corresponding forecast error

bands. A closer look at the different forecast paths, however, reveals that the

directions of the forecasts from the AO model match those of the actual values

perfectly throughout the forecasting period, while the directions of the forecasts

from the IO and NC models are opposite to those of the actual values during the

two quarters 2022q3 and 2023q3. All in all, the forecasts from the AO model seem

to outperform the forecasts from the two model contenders.

These different forecasting properties are attributable to the varying influ-

ences of the extreme observations during the pandemic on the parameter estimates

and the distinct conditioning values of consumption on the forecasts. As opposed

to the estimates of the AO model, which are effectively based on observations of ct

prior to the pandemic and observations of yt and wt including the pandemic, the

estimates of the IO and NC models are, respectively, based on observations of ct,

yt and wt prior to and including the pandemic. Whereas the forecasts from the AO

model are conditioned on the predicted values of ct during the pandemic, which are

effectively counterfactual predicted values, the forecasts from the IO and NC models

are conditioned on the actual values of ct during the pandemic.

Figure 3 shows actual values of ct, along with fitted values and dynamic

forecasts (with forecast error bands) from the AO, IO and NC models, based

on the estimation period t = 1983q3, . . . , 2022q2 and the forecasting period

t = 2022q3, . . . , 2024q2. Again, the upper panel records additive outlier adjusted

values of ct during the pandemic. Having a “normal” observation instead of

an extreme observation at the end of the estimation period, the forecasting

performance of the AO model improves, while the forecasting performance of the

IO and NC models worsens. Most actual values of ct now fall inside the forecast

error bands of the AO model, while most fall outside the forecast error bands of the

IO and NC models. These improved forecasting properties of the AO model arise

from the “normal” observation at the end of the estimation period, which provides

a more accurate estimate of θc and thereby a more accurate forecasting path of

consumption.
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Figure 3: Actual values of ct as well as fitted values and dynamic forecasts (with
forecast error bands) from three CVAR models — with a “normal” observation prior
to forecasting
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Notes: Estimation period: t = 1983q3, . . . , 2022q2 and forecasting period: t =
2022q3, . . . , 2024q2. The AO, IO and NC fitted values and dynamic forecasts are de-
rived from the CVAR models in (3), (4) and (1), respectively. The AO adjusted values

of ct during the pandemic in the upper panel are calculated as cAO
t = ct − θ̂cDt. The

forecast error bands are 95 per cent confidence intervals.

We end the comparison of forecasting performance by means of the root mean

squared forecast error (RMSFE) and mean absolute percentage error (MAPE) met-

rics for ct. Table 3 presents values of the RMSFE and MAPE for ct calculated by the

forecasts from the three models across the forecasting periods t = 2022q2, . . . , 2024q2

and t = 2022q3, . . . , 2024q2.6 Consistent with the evidence from Figures 2 and 3,

the AO model outperforms the two model contenders in terms of having smaller

values of RMSFE and MAPE for ct across both forecasting periods. The forecasting

6RMSFEct =
[
1
h

∑h
t=1(ct − ĉt)

2
]1/2

and MAPEct = 100
h

∑h
t=1

∣∣∣ ct−ĉt
ct

∣∣∣, where h = 9, 8 and ĉt

denotes the forecast of consumption.
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Table 3: Forecasting performance for ct from three CVAR models

(i) without a “normal” observation (ii) with a “normal” observation
AO IO NC AO IO NC

RMSFE 0.055 0.069 0.057 RMSFE 0.049 0.096 0.083
MAPE 0.378 0.464 0.384 MAPE 0.347 0.690 0.606

Notes: Forecasting period (i) t = 2022q2, . . . , 2024q2 and (ii) t = 2022q3, . . . , 2024q2. AO,
IO and NC denote the CVAR models in (3), (4) and (1), respectively. Figures are root
mean squared forecast error (RMSFE) and mean absolute percentage error (MAPE).

superiority of the AO model is, as discussed above, particularly pronounced in the

case of t = 2022q3, . . . , 2024q2, since the RMSFE and MAPE values from this model

are only between 50 and 60 per cent of those from the IO and NC models.

Although empirical models, as emphasised by inter alia Clements and Hendry

(1999, p. 25), never coincide perfectly with the underlying data generation process

(DGP), they can match the data evidence in all measurable ways, and thereby be

congruent prior to forecasting. However, when a structural change occurs after

the in-sample period, the empirical models will not coincide with the DGP in the

forecasting period. Generally, forecasting may or may not fail significantly when

structural breaks occur. As demonstrated by Castle et al. (2024), a model with

poor fit in-sample may produce far better forecasts than a model with good fit in-

sample depending on the origins and characteristics of the structural breaks. Our

empirical findings on the forecasting properties of the three CVAR models, both

with and without outlier corrections during the pandemic, nevertheless motivate

the theoretical formulation of forecasts in the next section, assuming that the AO

model coincides with the DGP. The implications for forecast accuracy of simplified

versions of the three CVAR models, when allowing for the unmodelled level shifts

in the growth rates of ct, yt and wt after the pandemic, are investigated through the

Monte Carlo simulation experiments in Section 4.

3 Theoretical formulations

In this section, we focus exclusively on one-step-ahead forecasts. Although multi-

step-ahead forecasts can also be derived, Clements and Hendry (1993, p. 631)

point out that it is usually sufficient to consider one-step-ahead forecasts for ranking

different models. First, we specify the general model for the DGP. Second, we

examine forecasts produced using the AO, IO and NC models when the extreme

observations occur at the end of the sample period. Third, we also assume the
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presence of a “normal” observation prior to making the forecasts. Note that the

parameters for the outliers in the AO and IO models are estimated using maximum

likelihood.

3.1 A DPG with additive outliers

We assume the presence of n additive outliers, occurring towards the end of the

sample period, which affect all variables in the system. This assumption differs from

the assumption in the empirical example, where only one variable (consumption)

exhibits such extreme observations. The fact that all the variables are affected by

extreme values simplifies the formulation of the forecasts.

Initially, we assume that these outliers occur as the last n observations of the

sample period. Later, we assume that there is one “normal” observation after the

additive outliers. The observed values in the AO model can be decomposed by

(5) Yt = Xt + θDt,

where Yt is the p-dimensional vector of variables with the extreme observations from

period T − n + 1 to period T , Xt is the p-dimensional vector of variables without

the extreme observations and Dt = (1t=T−n+1, . . . , 1t=T )
′ is a vector of indicator

variables. The corresponding additive outlier coefficients are given by the matrix

θ = (θT−n+1, . . . , θT ), where θt is the p-dimensional vector of the coefficients for the

additive outliers in period t (for t = T − n + 1, . . . , T ). The observations net of

the extreme observations are assumed to follow a CVAR model of order k satisfying

Assumption 1 in Section 2.2:

(6) ∆Xt = αβ′Xt−1 +
k−1∑
i=1

Γi∆Xt−i + µ+ εt,

where the parameters and the distribution of the error vector εt are defined in

Section 2.2. The DGP is described by (5) and (6). We assume the absence of

extreme observations or structural breaks during the forecasting period.

3.2 Absence of “normal” observations

In the absence of “normal” observations following the additive outliers, period T is

the last observation prior to forecasting. In this case, we simplify by setting k = 1,

so that the CVAR model includes only one lag. With k = 1, we can reformulate (6)
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as

Xt = µ+ A1Xt−1 + εt,

where A1 = Ip + αβ′ as implicitly defined in Assumption 1 in Section 2.2.

Substituting this into (5), with the definitions of Dt and θ, yields

Yt −
n−1∑
i=0

θT−i1t=T−i = µ+ A1

(
Yt−1 −

n−1∑
i=0

θT−i1t−1=T−i

)
+ εt,

which for periods T and T + 1 are given by

YT − θT = µ+ A1 (YT−1 − θT−1) + εT ,(7a)

YT+1 = µ+ A1 (YT − θT ) + εT+1.(7b)

For later use, we also express these equations conditioned on YT−n, i.e. the

last observation before the additive outliers, as

YT − θT =
n−1∑
i=0

Ai
1µ+ An

1YT−n +
n−1∑
i=0

Ai
1εT−i,(8a)

YT+1 =
n∑

i=0

Ai
1µ+ An+1

1 YT−n−1 +
n∑

i=0

Ai
1εT−i.(8b)

3.2.1 Forecasts with the AO model

Assume that the AO model, which is correctly specified, is estimated using observa-

tions from period t = 1 to period t = T . With n additive outliers, the observations

from period t = T −n+1 are used to estimate the coefficient vectors for the additive

outliers, denoted θt. Consequently, the estimates of the remaining parameters (µ

and A1) are effectively based on observations from period t = 1 to period t = T −n.

We denote these estimates with a hat (̂ ), as

Yt = µ̂+ Â1

(
Yt−1 −

n−1∑
i=0

θ̂T−i1t−1=T−i

)
+ ε̂t.

The one-step-ahead forecasts of YT+1 using information up to and including

period T , is given by

(9) Ŷ AO
T+1|T = µ̂+ Â1

(
YT − θ̂T

)
.
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The corresponding one-step-ahead forecast error, using (7b) and (9), can be

expressed as

ε̂AO
T+1|T = YT+1 − Ŷ AO

T+1|T

= [µ− µ̂] +
[
A1 − Â1

]
YT −

[
A1θT − Â1θ̂T

]
+ εT+1.

The first equality represents the definition of the one-step ahead forecast error, while

the second equality decomposes the forecast error into biases in the estimates of µ,

A1 and A1θT along with the unpredictable error term εT+1.

We can rewrite the one-step-ahead forecast error as

ε̂AO
T+1|T = [µ− µ̂] +

[
A1 − Â1

]
(YT − θT )− Â1

(
θT − θ̂T

)
+ εT+1.

The estimate of the extreme observation is θ̂T = YT − Ŷ AO
T |T−n, i.e. the predic-

tion error of Y in period T conditioned on observations up to period T − n. This is

equivalent to replacing YT − θ̂T with its predicted value Ŷ AO
T |T−n.

The “true” and estimated θT are, respectively, given by

θT =YT −

(
n−1∑
i=0

Ai
1

)
µ− An

1YT−n −
n−1∑
i=0

Ai
1εT−i(10)

and

θ̂T =YT −

(
n−1∑
i=0

Â1
i

)
µ̂− Â1

n
YT−n,(11)

where (10) is obtained by solving (8a) for θT and (11) represents the corresponding

observational counterpart.

By combining (10) and (11), we obtain

θT − θ̂T =−

[(
n−1∑
i=0

Ai
1

)
µ−

(
n−1∑
i=0

Â1
i

)
µ̂

]
(12)

−
[
An

1 − Â1

n
]
YT−n −

n−1∑
i=0

Ai
1εT−i.
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Thus, the corresponding one-step-ahead forecast error is given by

ε̂AO
T+1|T =

[
Ip + Â1

(
n−1∑
i=0

Âi
1

)]
[µ− µ̂] + Â1

n−1∑
i=0

(
Ai

1 − Âi
1

)
µ

+
[
A1 − Â1

]
(YT − θT )

+ Â1

[
An

1 − Â1

n
]
YT−n

+ εT+1 + Â1

n−1∑
i=0

Ai
1εT−i.

3.2.2 Forecasts with the IO model

While the AO model corrects extreme observations of YT by using predicted val-

ues based on the additive outliers, the IO model corrects extreme values through

innovational outliers. Using observations from period t = 1 to period t = T , the

estimated IO model is

Yt = µ̂+ Â1Yt−1 +
n−1∑
i=0

ϕ̂T−i1t=T−i + ε̂t,

where ϕ̂T−n+1, . . . , ϕ̂T are the estimated coefficient vectors for the innovational out-

liers. When the observations of Y from period T − n + 1 to period T are used to

estimate ϕ, we have ϕ̂s = θ̂s− Â1θ̂s−1 (for s = T −n+1, . . . , T with θ̂T−n = 0). Fur-

thermore, since the remaining parameters are effectively estimated by observations

from period t = 1 to period t = T − n, they will be equal to those estimated when

using the AO model. Therefore, we use the same notation for the estimates of these

parameters; µ̂ and Â1.

The one-step-ahead forecast given by the IO model is

Ŷ IO
T+1|T = µ̂+ Â1YT .

The corresponding one-step-ahead forecast error is

ε̂IOT+1|T = YT+1 − Ŷ IO
T+1|T = [µ− µ̂] +

[
A1 − Â1

]
YT − A1θT + εT+1.

3.2.3 Forecasts with the NC model

Contrary to the AO and IO models, the NC model does not apply any corrections

for the extreme observations in the periods from T −n+1 to T . The one-step-ahead
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forecast and forecast error of the NC model will therefore have the same form as

those of the IO model, i.e.

Ŷ NC
T+1|T = µ̂+ Â1YT ,

ε̂NC
T+1|T = [µ− µ̂] +

[
A1 − Â1

]
YT − A1θT + εT+1.

If we assume that the parameters µ and A1 are estimated from period t = 1

to period t = T −n only, the estimates of these parameters will be identical to those

obtained by the AO and IO models. Then the forecasts (Ŷ NC
T+1|T = Ŷ IO

T+1|T ) and the

forecast errors (ε̂NC
T+1|T = ε̂IOT+1|T ) will also be identical to those produced by the IO

model.

3.2.4 Comparison of forecasts

When comparing the forecasts from the three models, we disregard the estimation

uncertainty of µ, A1 and Ω in order to isolate the effects of the extreme observations

on the forecast errors. The expectations of the forecast errors for the three models,

assuming no uncertainty in the parameter estimates except for those associated with

the extreme observations, are given by

E
[
ε̂AO
T+1|T ; µ̂ = µ, Â1 = A1

]
= 0,

E
[
ε̂IOT+1|T ; µ̂ = µ, Â1 = A1

]
= −A1θT ,

E
[
ε̂NC
T+1|T ; µ̂ = µ, Â1 = A1

]
= −A1θT .

Thus, the correctly specified AO model yields unbiased forecasts, whereas the fore-

casts of the IO and NC models are biased. The bias in these models depends on the

magnitude of the extreme observations, θT , and the persistence in the dynamics,

A1.

The forecast uncertainty, measured by the squared forecast errors, are given

by

E
[
ε̂AO
T+1|T ε̂

AO
T+1|T

′; µ̂ = µ, Â1 = A1, Ω̂ = Ω
]
= Ω+

n∑
i=1

Ai
1ΩA

i′
1 ,

E
[
ε̂IOT+1|T ε̂

IO
T+1|T

′; µ̂ = µ, Â1 = A1, Ω̂ = Ω
]
= Ω+ A1θT θ

′
TA

′
1,

E
[
ε̂NC
T+1|T ε̂

NC
T+1|T

′; µ̂ = µ, Â1 = A1, Ω̂ = Ω
]
= Ω+ A1θT θ

′
TA

′
1.
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It is noteworthy that the forecast uncertainty of the AO model increases with

the number of extreme observations, n. If n = 1, the forecast uncertainty of the

AO model is the smallest, provided that the extreme observation is substantial, i.e.

A1θT θ
′
TA

′
1−A1ΩA

′
1 = A1 (θT θ

′
T − Ω)A′

1 ≻ 0, where ≻ is the succeeds operator such

that A ≻ 0 implies that the matrix A is positive definite (i.e. x′Ax > 0,∀x ̸= 0).

If A1 is non-singular, we can write this assumption as θT θ
′
T − Ω ≻ 0, see Lemma 1

in Appendix C. If n is large, the forecast uncertainty of the AO model can be the

largest, which occurs when
∑n

i=1A
i
1ΩA

i′
1 − A1θT θ

′
TA

′
1 ≻ 0, even though this is the

correctly specified model.

3.3 Presence of a “normal” observation

Thus far, we have considered forecasts in cases where the extreme observations

occur at the end of the sample period. We will now examine the case in which one

“normal” observation follows the additive outliers at the end of the sample period,

just prior to making forecasts. This “normal” observation can be used to improve

the estimate of the additive outliers in the AO model and thereby reduce the forecast

uncertainty.

When one “normal” observation is available after the additive outliers, the

forecasts of Y in period T + 2 use information up to and including period T + 1,

while the extreme observations remain within the n periods spanning from period

T −n+1 to period T . In this case, the one-step-ahead forecasts, assuming that the

estimates of µ and A1 are the same for the three models, will be identical across all

three models when k = 1. Therefore, we also consider the case when k = 2, where

the forecasts are conditioned on an extreme observation. In this case, the forecasts

of the AO model will differ from those of the IO and NC models.

3.3.1 One lag in the CVAR models

When k = 1 and one “normal” observation is available after the additive outliers,

the forecasts of all three models are given by

Ŷ i
T+2|T+1 = µ̂+ Â1YT+1, i = AO, IO,NC,

where the estimates of µ and A1 may differ across the models. Under certain condi-

tions, however, these estimates can be identical across the models. This uniformity

in estimates can be achieved by effectively estimating µ and A1 based on observa-
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tions prior to the extreme observations, implying that the AO and IO models are

both estimated based on observations from period 1 to period T − 1. The last n

observations in this estimation sample are used to estimate θ (for the AO model) or

ϕ (for the IO model). The remaining parameters are then estimated using observa-

tions from period 1 to period T − n − 1. Therefore, we obtain the same estimates

of these parameters in the NC model if they are estimated based on observations

from period 1 to period T −n−1.7 Thus, both the one-step-ahead forecasts and the

forecast errors for period T + 2, conditional on information available up to period

T + 1, will be identical across the three models.

These findings show that when a “normal” observation is available upon

which the forecasts are conditioned, the forecasts of the three models will be the

same, provided the following two conditions are met: First, the estimates of µ and

A1 are identical across the models. Second, the three estimated models use only

one lag, so that they condition solely on a “normal” observation when making the

forecasts. In the following, we will explore the importance of the last condition by

considering the case where two lags are used in the estimated models.

3.3.2 Two lags in the CVAR models

When k = 2, the system in (6) combined with (5) alongside the definitions of Dt

and θ can be formulated as

Yt −
n−1∑
i=0

θT−i1t=T−i =µ+ A1

(
Yt−1 −

n−1∑
i=0

θT−i1t−1=T−i

)
+

A2

(
Yt−2 −

n−1∑
i=0

θT−i1t−2=T−i

)
+ εt,

where A1 = (Ip + Γ1) + αβ′ and A2 = −Γ1. When there is only one extreme

observation in period T , i.e. n = 1, the DGP simplifies to

Yt − θT1t=T =µ+ A1 (Yt−1 − θT1t−1=T ) + A2 (Yt−2 − θT1t−2=T ) + εt,(13)

7Under this assumption, there is no need to use different notations for the estimates across the
three models.
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which for the periods T , T + 1 and T + 2 becomes

YT − θT = µ+ A1YT−1 + A2YT−2 + εT ,(14a)

YT+1 = µ+ A1 (YT − θT ) + A2YT−1 + εT+1,(14b)

YT+2 = µ+ A1YT+1 + A2 (YT − θT ) + εT+2.(14c)

For the AO model, the one-step-ahead forecast is given by

Ŷ AO
T+2|T+1 =µ̂+ Â1YT+1 + Â2

(
YT − θ̂T

)
and the corresponding forecast error is

ε̂AO
T+2|T+1 = [µ− µ̂] +

[
A1 − Â1

]
YT+1 +

[
A2 − Â2

]
(YT − θT )(15)

− Â2

[
θT − θ̂T

]
+ εT+2.

The estimate of θT must be carefully considered. We consider two possible estimators

of θT : the first, denoted θ̂T |T , uses information up to period T ; the second, denoted

θ̂T |T+1, also incorporates the additional information from period T +1. For the first

estimator, we apply (12) with n = 1. For the second, we exploit the additional

information from the observational counterpart to (14b).

The general estimator for θT , given observations up to period T + s (where

s ≥ 0) and estimates of the other parameters (µ, A1, A2, and Ω), is implicitly given

by

θ̂T |T+s =argmin
T+s∑
t=1

ε̂t
(
θT |T+s

)′
Ω̂−1ε̂t

(
θT |T+s

)
, where(16)

ε̂t
(
θT |T+s

)
=Yt − θT |T+s1t=T − µ̂

− Â1

(
Yt−1 − θT |T+s1t−1=T

)
− Â2

(
Yt−2 − θT |T+s1t−2=T

)
.

In Proposition 1, we consider the forecast bias and accuracy of the AO model with

this estimator of θT |T+s for s = 0 and s = 1 when there is one extreme observation

in period T only.

Proposition 1 Given that the parameter vector θT in (13) is estimated through (16)

conditioned on the estimates of µ, A1, A2 and Ω, the forecasts of period T +2 by the

AO model with one extreme observation in period T and one “normal” observation

in period T + 1 exhibit the following properties:
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(i) If the estimator of θT where only information up to and including period

T , denoted θ̂T |T , is applied, the forecast is unbiased since

E
[
ε̂AO
T+2|T+1

(
θ̂T |T

)
; µ̂ = µ, Â1 = A1, Â2 = A2

]
= 0.(17)

The corresponding covariance matrix is given by

E
[
ε̂AO
T+2|T+1

(
θ̂T |T

)
ε̂AO
T+2|T+1

(
θ̂T |T

)′
; µ̂ = µ, Â1 = A1, Â2 = A2, Ω̂ = Ω

]
(18)

=Ω + A2ΩA
′
2.

(ii) If the estimator of θT where information up to and including period T+1,

denoted θ̂T |T+1, is applied, the forecast is unbiased since

E
[
ε̂AO
T+2|T+1

(
θ̂T |T+1

)
; µ̂ = µ, Â1 = A1, Â2 = A2

]
= 0.(19)

The corresponding covariance matrix is given by

E
[
ε̂AO
T+2|T+1

(
θ̂T |T+1

)
ε̂AO
T+2|T+1

(
θ̂T |T+1

)′
; µ̂ = µ, Â1 = A1, Â2 = A2, Ω̂ = Ω

]
(20)

=Ω + A2

[
Ω−1 + A′

1Ω
−1A1

]−1
A′

2.

Proof. (i) When k = 2 and n = 1, the “true” and estimated values of θT ,

given information up to period T , are, respectively, given by

θT =YT − µ− A1YT−1 − A2YT−2 − εT(21)

and

θ̂T |T =YT − µ̂− Â1YT−1 − Â2YT−2,(22)

where (21) is derived by solving (14a) for θT and (22) represents the estimated

conterpart. The bias is given by the difference

θT − θ̂T |T = − [µ− µ̂]−
[
A1 − Â1

]
YT−1 −

[
A2 − Â2

]
YT−2 − εT .(23)

The results in (17) and (18) follow simply by inserting (23) in (15) and taking the

conditional expectation and variance.

(ii) As shown in (16), θ̂T |T+1 is included only when t = T and t = T + 1.
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This estimator for θT minimises the sum of the corresponding two squared errors

ε̂′T Ω̂
−1ε̂T + ε̂′T+1Ω̂

−1ε̂T+1. The estimator is a weighted average of θ̂T |T in (22) and

the observational counterpart to (14b) with ε̂T+1 set to zero:

θ̂T |T+1 =
[
Ω̂−1 + Â′

1Ω̂
−1Â1

]−1

Ω̂−1
[
YT − µ̂− Â1YT−1 − Â2YT−2

]
(24)

−
[
Ω̂−1 + Â′

1Ω̂
−1Â1

]−1

Â′
1Ω̂

−1
[
YT+1 − µ̂− Â1YT − Â2YT−1

]
,

which corresponds to equation 11 in Nielsen (2004). Substituting (24) into (15) and

taking the conditional expectation and variance yield the results in (19) and (20).

Both AO estimators for θ give unbiased estimates. However, the estimator

using information up to period T + 1, denoted θ̂T |T+1, results in the lowest forecast

uncertainty. To demonstrate this, we compare the covariance matrices in (18) and

(20). Subtracting the latter from the former yields

A2ΩA
′
2 − A2

[
Ω−1 + A′

1Ω
−1A1

]−1
A′

2(25)

as the terms involving Ω alone cancel out. In Proposition 2, we show that the

resulting matrix is positive definite if both A1 and A2 are non-singular.

Proposition 2 Suppose both A1 and A2 are non-singular. Then

A2ΩA
′
2 − A2

[
Ω−1 + A′

1Ω
−1A1

]−1
A′

2 ≻ 0.

Proof. We can rewrite the difference as follows:

A2ΩA
′
2 − A2

[
Ω−1 + A′

1Ω
−1A1

]−1
A′

2 = A2

[
Ω−

(
Ω−1 + A′

1Ω
−1A1

)−1
]
A′

2,

which is positive definite if and only if

Ω−
(
Ω−1 + A′

1Ω
−1A1

)−1

is positive definite when A2 is non-singular, see Lemma 1 in Appendix C.

Since A1 is non-singular and Ω is positive definite, A′
1Ω

−1A1 is according

to Lemma 1 in Appendix C positive definite and so is Ω−1 + A′
1Ω

−1A1. Define
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M = Ω−1 + A′
1Ω

−1A1 and N = Ω−1 to find

M −N = Ω−1 + A′
1Ω

−1A1 − Ω−1 = A′
1Ω

−1A1 ≻ 0,

so that

N−1 −M−1 = Ω−
(
Ω−1 + A′

1Ω
−1A1

)−1 ≻ 0,

according to Magnus and Neudecker (2019, Theorem 24 in Chapter 1).

For the IO and NC models, the forecasts are given by

Ŷ i
T+2|T+1 =µ̂+ Â1YT+1 + Â2YT , i = IO,NC

and the corresponding forecast errors are

ε̂iT+2|T+1 = [µ− µ̂] +
[
A1 − Â1

]
YT+1

+
[
A2 − Â2

]
YT − A2θT + εT+2, i = IO,NC.

If the estimates of µ, A1 and A2 are the same, the forecasts of the IO and NC

models are identical; Ŷ IO
T+2|T+1 = Ŷ NC

T+2|T+1. The conditional forecast bias and the

corresponding forecast uncertainty are given by

E
[
ε̂iT+2|T+1; µ̂ = µ, Â1 = A1, Â2 = A2

]
=− A2θT

and

E
[
ε̂iT+2|T+1ε̂

i
T+2|T+1

′; µ̂ = µ, Â1 = A1, Â2 = A2, Ω̂ = Ω
]
=Ω+ A2θT θ

′
TA

′
2,

i = IO,NC.

Thus, both the IO and NC models still provide biased forecasts.

In the above analysis, we have considered the case where there is only one

extreme observation at the end of the sample period. As in the case when k = 1, the

forecast uncertainty of the AO model is typically smaller than that of the IO and

NC models. However, similar to the case when k = 1, the forecast uncertainty of the

AO model will increase if there are more extreme observations close to the end of

the sample period. Then, the AO model may not longer provide the most accurate

forecasts. Nonetheless, if one (or more) “normal” observations are available at the

end of the sample period, the estimate of the additive outlier will be more precise,
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leading to a reduction in the forecast uncertainty of the AO model compared to the

forecast uncertainty of the AO model without this information. Consequently, the

forecasts of the AO model with one “normal” observation at the end of the sample

period may be more accurate than those of the IO and NC models, even if the

forecasts of the AO model without one “normal” observation are less precise than

those of the IO and NC models.

3.4 Theoretical versus empirical findings

The theoretical framework for comparing forecasting performance, assuming that a

CVAR model with additive outliers in all variables of Yt coincides with the DGP

in-sample, has considered four cases: (i) k = 1, n extreme observations and no

“normal” observations at the end of the sample period; (ii) k = 1, n extreme

observations and one “normal” observation at the end of the sample period; (iii)

k = 2, one extreme observation and no “normal” observations at the end of the

sample period and (iv) k = 2, one extreme observation and one “normal” observation

at the end of the sample period. For simplicity, the theoretical framework has ignored

uncertainty of parameter estimates, except for θ and ϕ, across the AO, IO and NC

models in all four cases.

In contrast, the framework for the empirical example has considered two

cases: (i) k = 6, n = 9 and no “normal” observations at the end of the sample

period and (ii) k = 6, n = 9 and one “normal” observation at the end of the sample

period. In addition, the framework for the empirical example has assumed that

only one of the variables of Yt contains extreme observations. For these reasons,

the estimated parameters of interest reported in Tables 1 and 2 differ somewhat,

though not much, across the three CVAR models. As discussed in Section 2.4, the

varying impacts of the extreme observations during the pandemic on the parameter

estimates and the distinct conditioning values of consumption on the forecasts give

rise to the different forecasting properties reported in Table 3 across the three CVAR

models.

Although the theoretical and empirical frameworks differ in terms of the lag

length, the number of extreme observations and the number of variables affected by

extreme observations, the theoretical results support the empirical findings. Specif-

ically, the forecast accuracy of the AO model improves significantly relative to the

forecast accuracy of the IO and NC models when one “normal” observation is avail-

able prior to forecasting.
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In the theoretical formulation of forecasts, we have relied on simplifying as-

sumptions of a short lag length (k = 1 or k = 2), a small number of extreme obser-

vations (n = 1) for some of the results and no out-of-sample structural breaks. The

implications of relaxing these assumptions for the relative forecast accuracy of the

three CVAR models are explored through the Monte Carlo experiments presented

in the next section.

4 Monte Carlo experiments

This section undertakes Monte Carlo simulation experiments with a view to giving

quantitative support to the theoretical results developed above. The simulation set-

tings are formulated by partially referring to the preceding empirical study of the

Norwegian macroeconomic data for household consumption, income and wealth, a

study which has proved to be a noteworthy example for further research. First, we

discuss a set of simulation settings related to a DGP and a class of three CVAR

models. Second, we conduct a benchmark comparative study of forecasting perfor-

mance of the different models. Third, we compare forecasting performance in the

presence of unmodelled level shifts.8

4.1 DGP and three models

The DGP is formulated here as a trivariate CVAR process Yt = (Y1,t, Y2,t, Y3,t)
′ for

t = 1, . . . , T + j + h, which comprises a combination of (i) a dynamic process,

(ii) a cluster of nine additive outliers and (iii) a pair of deterministic shifts in

the level (also referred to as an unrestricted window function). The dynamic part

is formulated as Xt = (X1,t, X2,t, X3,t)
′ subject to r = 1, the cluster of additive

outliers is given as Dt = (1t=T−8, . . . , 1t=T )
′ and the unrestricted window function

is given as dt = 1t0≤t≤t1 , in which 1(·) denotes an indicator function. The values

for T, h, t0 and t1 vary in the experiments. Note that (i) T + j represents the

total number of observations for estimation with the default T = 100 and j = 0,

(ii) h corresponds to a forecast horizon and (iii) dt = 0 for all t is assumed in the

benchmark study, implying there are no level shifts in the process. The DGP is

conceived to be a simplified version of the Norwegian consumption-function model,

so that the triplet (Y1,t, Y2,t, Y3,t)
′ is viewed as corresponding to the triplet (ct, yt, wt)

′

8The Ox (see Doornik, 2013) code written to conduct the Monte Carlo simulations in this
section is available from the authors upon request.
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studied in the empirical example. The first series Y1,t of the triplet is thus seen as

the variable of most interest. The specification of the DGP is

Yt = Xt + θDt

and

∆Xt = α (β′Xt−1 + ρ) +
k−1∑
i=1

Γi∆Xt−i + η + ωdt + εt,

where θ = (1, 0, 0)′ θ1,

θ1 =
(

−0.10 −0.12 −0.12 −0.12 −0.10 −0.10 −ϕ −ϕ −ϕ
)

for ϕ = 0.06 or ϕ = 0.08,

α =

 −0.2

0.2

0.0

 , β =

 1.0

−0.8

−0.2

 , ρ = 0.68, η =

 0.0

0.014

0.006

 , ω =

 −0.01

0.0

0.0


and

Γ1 =

 0.2 −0.2 0.0

0.0 −0.4 0.0

0.0 0.0 0.3

 ,Γ2 =

 0.1 0.1 0.1

0.0 0.1 0.0

0.0 −0.2 0.3

 ,Γ3 =

 0.1 0.0 0.0

0.0 0.2 0.0

0.0 0.0 −0.1

 .

Note that the unrestricted constant is given as µ = αρ+η, ensuring that the dynamic

part of the DGP is formulated in the same way as in (1) under Assumption 1 in

Section 2.2. The lag length k is assigned 2 or 4, so that only the corresponding

parameter matrices of Γ1, Γ2 and Γ3 are involved in the DGP. The error process

εt is a trivariate i.i.d. pseudo normal process, N(0,Ω), in which Ω is a positive

definite symmetric matrix, where each diagonal and off-diagonal element is assigned

a unit value and a quarter, respectively. All the elements are multiplied by a scalar

damping factor 0.0152. The starting values ofX1,t, X2,t andX3,t for t = −3, . . . , 0 are

assigned values close to the initial values for ct, yt and wt in the empirical example,

respectively. In line with common practice (see e.g. Castle et al., 2024), the number

of Monte Carlo replications in each experiment is set to 10, 000.

Using the DGP above, we conduct a range of Monte Carlo experiments to

compare forecasting performance of various models. The performance is assessed

using the root mean squared forecast error (RMSFE) metric. We study in principle
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the performance of three CVAR models, which are all well-specified in terms of lag

length k and cointegrating rank r but vary in terms of the manners of addressing

outliers in the DGP. The three models are, in line with Sections 2 and 3, as follows:

a CVAR model not corrected with any dummy variables (NC model), a CVAR

model corrected with nine innovational outlier (dummy) variables (IO model) and a

CVAR model corrected with nine additive outlier (dummy) variables (AO model).

Note that the estimated AO model is correctly specified in that it encompasses the

underlying DGP when dt = 0, i.e. when there are no level shifts in the DGP. This

means that we only estimate additive outliers for the first variable of Yt in accordance

with the empirical example. Also consistent with the empirical study, the estimation

of the AO model employs the restricted maximum likelihood method, aligning with

the structure of the parameter matrix θ given above.

4.2 Benchmark comparative study

We begin the comparative study by discussing the results of a class of benchmark

experiments, in which the DGPs have 100 observations (T = 100), no “normal”

observations prior to forecasting (j = 0), a relatively short forecasting horizon (h =

8), no presence of level shifts (dt = 0), relatively small additive outliers at the end

of the sample period (ϕ = 0.06) and both short and long lag lengths (k = 2 and

k = 4). Note that no “normal” observations prior to forecasting (j = 0) imply that

the end of the additive outlier series coincides with the end of the sample period

effective for estimation.

We first check a set of sample paths of Y1,t, the variable of most interest in

this study, based on a single realisation (replication) derived from the three models,

before launching a detailed RMSFE-based comparative study. Figure 4 displays

a set of sample paths of Y1,t (actual values) as well as dynamic forecasts, fitted

values and residuals derived from the NC and IO models with a short lag length

(k = 2). Note that the time range 1997q1 − 2025q1 is assigned to the horizontal

axis to make the artificial data conceivable with the quarterly data presented in the

empirical study. A series of additive outliers in the DGP causes a huge drop in

the residuals of the NC model, as shown in panel (b). In contrast, those outliers

are fully addressed in the IO model, resulting in a series of zero residuals in panel

(d). The forecast paths from the two models (see panels (a) and (c)) appear to be

comparable to some extent. However, the forecast error bands are rather different,

reflecting the influences of the outliers on the parameter estimates.
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Figure 4: Actual values of Y1,t as well as dynamic forecasts, fitted values and residuals
from the NC and IO models — without a “normal” observation prior to forecasting
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Fitted (NC model) 
Forecasts (NC model)  
Forecast error band (NC model) 
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(b)Residuals (NC model) 
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(d)
Residuals (IO model) 

Notes: (a) Dynamic forecasts (NC model), (b) Residuals (NC model), (c) Dynamic
forecasts (IO model) and (d) Residuals (IO model). T = 100, j = 0, h = 8, dt = 0,
ϕ = 0.06 and k = 2. Based on a single replication. The forecast error bands are 95 per
cent confidence intervals.

Figure 5 records a set of sample paths of Y1,t as well as dynamic forecasts and

fitted values derived from the AO model alongside those derived from the IO model,

taken from Figure 4 (c). Note that the series are displayed only over the latter half

of the sample period, so as to focus on the comparison of the two forecast paths.

The class of dots indicates a series of AO adjusted values, X1,t = Y1,t − θ̂1Dt, which

are free from the effects of the underlying outliers due to the AO adjustment. The

path of dynamic forecasts from the AO model tracks the actual value path much

better than that from the IO model, an encouraging feature attributable to the AO

adjustment.

We proceed to a detailed RMSFE-based comparative study with the number

of Monte Carlo replications being 10, 000. Table 4 presents a battery of RMSFEs in

the benchmark cases with short (k = 2) and long (k = 4) lag length, respectively.

Consistent with the evidence in Figures 4 and 5, the AO model outperforms the

other two models in terms of RMSFEs for Y1,t. This advantage is also observed in

almost all of the other RMSFEs for Y2,t and Y3,t. Table 5 reports the results for a

long forecasting horizon (h = 20) with all the other settings identical to those in
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Figure 5: Actual values of Y1,t as well as dynamic forecasts and fitted values from
the AO and IO models — without a “normal” observation prior to forecasting

Actual 
Forecasts (AO model) 
Forecast error band (AO model) 
AO adjusted series 
Fitted (IO model) 
Forecasts (IO model) 
Forecast error band (IO model) 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
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12.70

Actual 
Forecasts (AO model) 
Forecast error band (AO model) 
AO adjusted series 
Fitted (IO model) 
Forecasts (IO model) 
Forecast error band (IO model) 

Notes: The AO adjusted series, indicated by a class of dots, is calculated as X1,t =

Y1,t − θ̂1Dt. T = 100, j = 0, h = 8, dt = 0, ϕ = 0.06 and k = 2. Based on a single
replication. The forecast error bands are 95 per cent confidence intervals.

Table 4: Forecasting performance of three CVAR models — without a “normal”
observation (j = 0), short forecasting horizon (h = 8) and small additive outliers at
the end of the sample period (ϕ = 0.06)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0661 0.0405 0.0335
Y2,t 0.0225 0.0289 0.0227
Y3,t 0.0378 0.0424 0.0372

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0673 0.0472 0.0405
Y2,t 0.0267 0.0356 0.0270
Y3,t 0.0469 0.0598 0.0456

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
0, h = 8, dt = 0 and ϕ = 0.06. Based on 10, 000 replications.

Table 4. We arrive at the same conclusion as above in terms of the assessment of

the RMSFEs.

Next, we compare a class of RMSFEs when the magnitude of the last three

additive outliers is increased from ϕ = 0.06 to ϕ = 0.08. All the other settings in

the DGP are unchanged from those in the previous experiments. Tables 6 and 7

show that the superiority of the AO model is much enhanced, in comparison with

Tables 4 and 5, reflecting a larger magnitude of additive outliers at the end of the
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Table 5: Forecasting performance of three CVAR models — without a “normal”
observation (j = 0), long forecasting horizon (h = 20) and small additive outliers at
the end of the sample period (ϕ = 0.06)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0731 0.0464 0.0420
Y2,t 0.0332 0.0384 0.0333
Y3,t 0.0627 0.0674 0.0622

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0789 0.0583 0.0522
Y2,t 0.0420 0.0496 0.0422
Y3,t 0.0814 0.0931 0.0797

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
0, h = 20, dt = 0 and ϕ = 0.06. Based on 10, 000 replications.

Table 6: Forecasting performance of three CVAR models — without a “normal”
observation (j = 0), short forecasting horizon (h = 8) and large additive outlier at
the end of the sample period (ϕ = 0.08)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0813 0.0477 0.0335
Y2,t 0.0228 0.0328 0.0227
Y3,t 0.0380 0.0449 0.0372

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0822 0.0549 0.0406
Y2,t 0.0269 0.0402 0.0270
Y3,t 0.0470 0.0643 0.0456

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
0, h = 8, dt = 0 and ϕ = 0.08. Based on 10, 000 replications.

Table 7: Forecasting performance of three CVAR models — without a “normal”
observation (j = 0), long forecasting horizon (h = 20) and large additive outlier at
the end of the sample period (ϕ = 0.08)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0876 0.0514 0.0421
Y2,t 0.0335 0.0416 0.0333
Y3,t 0.0630 0.0696 0.0622

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0927 0.0639 0.0522
Y2,t 0.0424 0.0533 0.0422
Y3,t 0.0819 0.0974 0.0797

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
0, h = 20, dt = 0 and ϕ = 0.08. Based on 10, 000 replications.

sample period.

As the final analysis of the benchmark comparative study, we evaluate quan-

titatively the strategy of extending the sample period such that an additional “nor-

mal” observation is taken into account in the estimation. This strategy was employed

with success in the empirical study and its validity was assessed from a theoretical

point of view in the previous section. The sample period for estimation is now ex-

tended to T + j = 101 for j = 1 (instead of j = 0 so far), and the forecasts are then
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Table 8: Forecasting performance of three CVAR models — with a “normal” obser-
vation (j = 1), short forecasting horizon (h = 8) and large additive outlier at the
end of the sample period (ϕ = 0.08)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0344 0.0361 0.0268
Y2,t 0.0259 0.0243 0.0225
Y3,t 0.0403 0.0401 0.0376

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0413 0.0571 0.0324
Y2,t 0.0325 0.0372 0.0265
Y3,t 0.0502 0.0551 0.0456

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
1, h = 8, dt = 0 and ϕ = 0.08. Based on 10, 000 replications.

Table 9: Forecasting performance of three CVAR models — with a “normal” obser-
vation (j = 1), long forecasting horizon (h = 20) and large additive outlier at the
end of the sample period (ϕ = 0.08)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0462 0.0440 0.0377
Y2,t 0.0365 0.0349 0.0333
Y3,t 0.0648 0.0636 0.0620

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0568 0.0625 0.0472
Y2,t 0.0473 0.0514 0.0420
Y3,t 0.0855 0.0884 0.0804

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
1, h = 20, dt = 0 and ϕ = 0.08. Based on 10, 000 replications.

calculated over T + j + h = 101 + h. We refer to this as having one “normal” ob-

servation (j = 1) prior to forecasting. Note that the start of dynamic forecasting is

pushed forward one quarter as a result of extending the sample period for estimation.

We continue to choose a relatively large value of the additive outliers (ϕ = 0.08) at

the end of the sample period. The RMSFEs in the cases of a short (h = 8) and long

(h = 20) forecasting horizon are recorded in Tables 8 and 9, respectively.

Overall, the RMSFEs when having one “normal” observation (j = 1) prior

to forecasting become smaller than those in Tables 6 and 7. It is particularly note-

worthy that the superiority of the AO model now appears more distinctive, quanti-

tatively showing that adding one “normal” observation at the end of the estimation

sample is a useful method for improving the forecasting performance of this model.

4.3 Presence of unmodelled level shifts

We have so far studied a class of benchmark cases where only a set of additive

outliers is present in the DGP, i.e. no level shifts take place, resulting in an ideal

situation where all the AO models employed encompass the underlying DGP. Since
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the additive-type breaks are well captured by the AO adjustment in the benchmark

study, it may seem natural that the AO models outperform the two other model

contenders. The potentials of AO models in forecasting capability are, however, not

necessarily limited to such a setting as in the benchmark study.

We therefore proceed to the study of cases where dt involves level shifts in

the process in such a manner that

(26) dt = 1t0≤t≤t1 , for t = 1, . . . , T + j + h,

where t0 = T −5 and t1 = T +3 are assigned here. Recall that the coefficient of dt is

ω = (−0.01, 0, 0)′. In other words, a window function dt = 1t0≤t≤t1 is introduced in

the DGP unrestrictedly and in such a manner that the range of its non-zero values

partially overlaps the series of additive outliers Dt = (1t=T−8, . . . , 1t=T )
′ and slightly

continues after it. As a result of this re-specification of the DGP, level shifts (going

down at t0 and moving back to the original level at t1+1) are allowed to occur in the

underlying process. It should be noted that the end point t1 is greater than T , so

that the level-shifting effects on the process continue even after the additive outliers

are removed. The seasonally adjusted consumption path shown in Figure 1 provides

the impetus for introducing the level shifts given by (26) to account for a plausible

shift in the slope of the underlying trend following the COVID-19 pandemic period.

Since an unrestricted intercept in the CVAR process generates a linear trend via the

Granger-Johansen moving average representation, see e.g. Johansen (1996, Theorem

4.2) and Hansen (2005), it seems natural to approximate the plausible slope shift

with (26) in the DGP for the simulation study.

Despite this change in the DGP, all the estimated models are the same as

those in the benchmark study and thus fail to capture the level shifts. This corre-

sponds to a realistic situation where the mixture of the various underlying breaks

in the process renders it difficult for econometricians to identify all of the breaks

correctly when building their models. In other words, all the models are misspecified

to the underlying DGP, which is subject to undetected level shifts.

Figure 6 presents a set of sample paths of Y1,t as well as dynamic forecasts

and fitted values derived from the AO and IO models in the case of unmodelled level

shifts (dt = 1T−5≤t≤T+3) and no “normal” observations prior to forecasting (j = 0).

We set ϕ = 0.06 here to focus on the study of the undetected level shifts. In contrast

to Figure 5, the dynamic forecast path from the IO model aligns more closely with

the actual value path compared to the AO model, likely due to the level shifts in the
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Figure 6: Actual values of Y1,t as well as dynamic forecasts and fitted values from the
AO and IO models in the presence of unmodelled level shifts — without a “normal”
observation prior to forecasting

Actual 
Forecasts (AO model) 
Forecast error band (AO model) 
AO adjusted series 
Fitted (IO model) 
Forecasts (IO model) 
Forecast error band (IO model) 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

12.45

12.50

12.55

12.60

12.65

12.70

Actual 
Forecasts (AO model) 
Forecast error band (AO model) 
AO adjusted series 
Fitted (IO model) 
Forecasts (IO model) 
Forecast error band (IO model) 

Notes: The AO adjusted series, indicated by a class of dots, is calculated as X1,t =

Y1,t − θ̂1Dt. T = 100, j = 0, h = 8, dt = 1T−5≤t≤T+3, ϕ = 0.06 and k = 2. Based on a
single replication. The forecast error bands are 95 per cent confidence intervals.

DGP. The AO model has only partially adjusted for the overall breaks, which may

have negatively impacted its forecasting performance compared to the IO model.

Table 10 records a class of RMSFEs from the three models. As anticipated

from Figure 6, we observe that the RMSFEs of Y1,t based on the AO model are larger

than those based on the IO model. We are therefore justified in concluding that

the advantage of the IO model over the AO model is a general property to be noted

under the present DGP. Based on the overall arguments presented in this paper, we

predict that having one “normal” observation (j = 1) prior to forecasting will be

useful to effectively address this property. We will investigate the efficacy of this

adjustment in resolving the issues observed in Figure 6 and Table 10. Specifically,

we aim to evaluate whether this adjustment can serve as an effective method for

improving forecasts during breaks, as discussed by Castle et al. (2019). We continue

to use the term ‘a “normal” observation’ here, despite the presence of unmodelled

level shifts, on the grounds that the influential additive outliers have become zero

from T + 1 onwards.

39



Figure 7: Actual values of Y1,t as well as dynamic forecasts and fitted values from
the AO and IO models in the presence of unmodelled level shifts — with a “normal”
observation prior to forecasting

Actual 
Forecasts (AO model) 
Forecast error band (AO model) 
AO adjusted series 
Fitted (IO model) 
Forecasts (IO model) 
Forecast error band (IO model) 

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

12.45

12.50

12.55

12.60

12.65

12.70

Actual 
Forecasts (AO model) 
Forecast error band (AO model) 
AO adjusted series 
Fitted (IO model) 
Forecasts (IO model) 
Forecast error band (IO model) 

Notes: The AO adjusted series, indicated by a class of dots, is calculated as X1,t =

Y1,t − θ̂1Dt. T = 100, j = 1, h = 8, dt = 1T−5≤t≤T+3, ϕ = 0.06 and k = 2. Based on a
single replication. The forecast error bands are 95 per cent confidence intervals.

Table 10: Forecasting performance of three CVAR models in the presence of unmod-
elled level shifts — without a “normal” observation (j = 0), short forecasting horizon
(h = 8) and small additive outliers at the end of the sample period (ϕ = 0.06)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0559 0.0381 0.0487
Y2,t 0.0275 0.0279 0.0295
Y3,t 0.0381 0.0465 0.0372

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0553 0.0528 0.0570
Y2,t 0.0339 0.0392 0.0363
Y3,t 0.0478 0.0689 0.0460

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
0, h = 8, dt = 1T−5≤t≤T+3 and ϕ = 0.06. Based on 10, 000 replications.

Figure 7 is an updated version of Figure 6 when having one “normal” ob-

servation (j = 1) prior to forecasting. As a consequence of having one “normal”

observation (j = 1), the forecast path of Y1,t derived from the AO model is now

back on the right track, and the model appears to surpass the IO model in forecast

tracking. This is an encouraging finding, leading us to a detailed study of RMSFEs.

Table 11 reports a set of RMSFEs when there is a “normal” observation prior
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Table 11: Forecasting performance of three CVAR models in the presence of unmod-
elled level shifts — with a “normal” observation (j = 1), short forecasting horizon
(h = 8) and small additive outliers at the end of the sample period (ϕ = 0.06)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0311 0.0486 0.0302
Y2,t 0.0339 0.0293 0.0254
Y3,t 0.0390 0.0405 0.0381

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0383 0.0680 0.0362
Y2,t 0.0432 0.0445 0.0309
Y3,t 0.0483 0.0548 0.0471

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
1, h = 8, dt = 1T−5≤t≤T+3 and ϕ = 0.06. Based on 10, 000 replications.

Table 12: Forecasting performance of three CVAR models in the presence of unmod-
elled level shifts — without a “normal” observation (j = 0), long forecasting horizon
(h = 20) and small additive outliers at the end of the sample period (ϕ = 0.06)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0715 0.0456 0.0511
Y2,t 0.0393 0.0378 0.0415
Y3,t 0.0633 0.0711 0.0622

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0761 0.0622 0.0614
Y2,t 0.0510 0.0547 0.0533
Y3,t 0.0835 0.1022 0.0809

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
0, h = 20, dt = 1T−5≤t≤T+3 and ϕ = 0.06. Based on 10, 000 replications.

to forecasting. In line with Figure 7, the RMSFEs of Y1,t from the AO model are

smaller than those from the IO model. This is also true for the RMSFEs of Y2,t and

Y3,t. Accordingly, having one “normal” observation (j = 1) prior to forecasting works

well in this study. The same specific adaptation also leads to a range of successful

outcomes when the forecasting horizon is extended to h = 20. The RMSFEs in

this case are reported in Tables 12 and 13 for j = 0 and j = 1, respectively. A

comparison of these two tables indicates the usefulness of having one “normal”

observation (j = 1) in the context of long-range forecasting.

The statistical theory developed in Section 3, based on a class of simplifying

assumptions, has demonstrated the advantage of the AO model for out-of-sample

forecasting. The Monte Carlo experiments in this section have shown that the the-

oretical arguments hold true in the context of a quantitative comparative analysis

using generalised settings, including unmodelled level shifts. These simulation re-

sults lend weight to the practicality of the AO model as a reliable forecasting device.
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Table 13: Forecasting performance of three CVAR models in the presence of unmod-
elled level shifts — with a “normal” observation (j = 1), long forecasting horizon
(h = 20) and small additive outliers at the end of the sample period (ϕ = 0.06)

(i) short lag length (k = 2)
NC IO AO

Y1,t 0.0446 0.0511 0.0396
Y2,t 0.0450 0.0411 0.0365
Y3,t 0.0635 0.0640 0.0626

(ii) long lag length (k = 4)
NC IO AO

Y1,t 0.0542 0.0686 0.0501
Y2,t 0.0592 0.0618 0.0470
Y3,t 0.0841 0.0888 0.0825

Notes: Figures are root mean squared forecast errors (RMSFEs). T = 100, j =
1, h = 20, dt = 1T−5≤t≤T+3 and ϕ = 0.06. Based on 10, 000 replications.

5 Conclusions

In this paper, we have presented key findings that offer notable improvements to fore-

casting following extreme events, such as pandemics. Specifically, we have demon-

strated that additive outlier (AO) corrections outperform both innovational out-

lier (IO) corrections and no outlier corrections within the CVAR framework when

macroeconomic variables rapidly return to their initial trajectories following tran-

sient extreme observations.

Using data from the COVID-19 pandemic, we empirically have shown that

CVAR models incorporating AO corrections yield more accurate forecasts of post-

pandemic Norwegian household consumption than those incorporating IO correc-

tions or no outlier adjustments. The forecasting superiority of the AO corrections

is especially pronounced when the estimation sample includes a “normal” observa-

tion following the extreme observations in-sample. Furthermore, we have developed

a theoretical framework that explains the superior forecasting performance of AO

corrections when the extreme observations are short-lived. Through simplifying as-

sumptions of a short lag length, a limited number of extreme observations and no

out-of-sample structural breaks, we have demonstrated that while CVAR models

with IO and no outlier corrections produce biased forecasts, the model with AO

corrections provides unbiased forecasts with potentially lower forecast uncertainty.

Notably, forecast uncertainty may diminish further when the model conditions on a

”normal” observation following the extreme observations. Our Monte Carlo simula-

tions, conducted under more general settings involving longer lag lengths, a higher

number of extreme observations and structural breaks during the forecasting period,

support the robustness of the theoretical findings.

The accurate forecasting of macroeconomic variables is critical for the effec-
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tive implementation of fiscal and monetary policies. Therefore, incorporating AO

corrections into CVAR models is crucial when rapid normalisation of macroeconomic

variables is expected following extreme observations. Failure to account for such cor-

rections could lead to policy recommendations that inadvertently exacerbate, rather

than mitigate, business cycle fluctuations.
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Appendices

A Data definitions and sources

The seasonally unadjusted data used for estimation and forecasting purposes (ct, yt

and wt) are taken from the databank of the KVARTS model of Statistics Norway and

the seasonally unadjusted and adjusted data used for descriptive purposes (csat , ysat ,

St and S
sa
t ) are taken from the quarterly national and non-financial sector accounts

in the Statbank of Statistics Norway. The data were downloaded in September 2024

and are available from the authors upon request. Details about data definitions and

sources are listed below.

Seasonally unadjusted data

ct The log of household real consumption of goods and services excluding housing

(fixed 2021 prices). Housing consumption is, as in Boug et al. (2021), excluded

because the imputed value of housing consumption is closely related to the

imputed value of housing income by construction in the national accounts.

Source: The databank of the KVARTS model of Statistics Norway.

yt The log of household real disposable income excluding equity dividends (fixed

2021 prices), defined as household nominal disposable income excluding equity

dividends deflated by the price deflator for household consumption of goods

and services excluding housing (2021 = 1). Equity dividends are, as in Boug

et al. (2021), excluded due to some years during the sample period where tax-

increases announced in advance implied substantial tax related fluctuations in

this income component, which are likely to be less motivating for consumption

than other income sources. Source: The databank of the KVARTS model of

Statistics Norway.

wt The log of household real net wealth (fixed 2021 prices), defined as house-

hold nominal net wealth, the sum of net financial wealth and housing wealth,

deflated by the price deflator for household consumption of goods and ser-

vices excluding housing (2021 = 1). See Boug et al. (2021) for further details.

Source: The databank of the KVARTS model of Statistics Norway.

St The household savings ratio excluding equity dividends (per cent). Source:

The quarterly non-financial sector accounts in the Statbank of Statistics Nor-

way, Table 11020.
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We follow Eitrheim et al. (2002), Jansen (2013) and Boug et al. (2021) and work with

non-per capita consumption, income and wealth in the empirical example because

Ct/Nt = (Yt/Nt)
(1−βy) · (Wt/Nt)

βy , where Nt denotes the population, is equivalent to

ct = (1−βy)yt+βywt in the case of homogeneity between consumption, income and

wealth. As shown in Section 2.2, the homogeneity restriction is indeed supported

by the data.

Seasonally adjusted data

csat The log of household real consumption of goods and services excluding housing

(fixed 2021 prices). Source: The quarterly national accounts in the Statbank

of Statistics Norway, Table 09173.

ysat The log of household real disposable income excluding equity dividends (fixed

2021 prices). Source: The quarterly non-financial sector accounts in the Stat-

bank of Statistics Norway, Table 11020.

Ssa
t The household savings ratio excluding equity dividends (per cent). Source:

The quarterly non-financial sector accounts in the Statbank of Statistics Nor-

way, Table 11020.

B The CVAR model covering the global financial crisis

The CVAR model in (1), covering the global financial crisis, is specified as

∆Yt = α

(
β

γ

)′(
Yt−1

t× SDt

)
+

k−1∑
i=1

Γi∆Yt−i + µ∗SDt +
k∑

i=1

δiIDt−i

+ψCSt + εt,

where SDt = (SD1,t, SD2,t)
′, SD1,t = 1t≤2008q3 and SD2,t = 1t≥2010q2 denote step

dummies which equal one for, respectively, the sub-periods before and after the

global financial crises, zero otherwise, and IDt = (1t=2008q4, 1t=2009q1, . . . , 1t=2010q1)
′

denote impulse dummies which equal one for single quarters in the period of the

global financial crises, zero otherwise. Accordingly, (1) allows for separate deter-

ministic trends (a broken deterministic trend) for the sub-periods before and after

the global financial crisis. The associated parameters are γ = (γ′1, γ
′
2)

′, µ∗ = (µ1, µ2)

and δi for i = 1, . . . , k. Also, (1) includes ψ which contains the three parameters of

centred seasonal dummies CSt.
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The benchmark cointegration analysis considers a deterministic specification

in which SDt, IDt and CSt enter as unrestricted terms in (1) and t × SDt enters

as a restricted term in the cointegration space. We find, assuming r = 1, that the

restriction γ2 = 0 is not rejected since χ2(1) = 2.14 (p-value = 0.14), implying that

there is no deterministic trend in the cointegrating vector after the global financial

crisis. The joint hypothesis of βy + βw = 1 and γ2 = 0 is also not rejected since

χ2(2) = 2.26 (p-value = 0.32).

Since γ2 = 0, we can ignore tSD2,t in (1). In addition, we can ignore both

SD1,t and IDt for observations after the global financial crises as SD1,t = 0 and

IDt = 06×1 for t > 2010q1. We therefore use µ = µ2 in (1).

C Results in Section 3

In Section 3, the following lemma is applied to compare forecast accuracy between

the three models:

Lemma 1 If A is non-singular, then it follows that S is positive definite if and only

if ASA′ is positive definite.

Proof. Proof that S is positive definite implies that ASA′ is positive definite

when A is non-singular: S is positive definite implies that x′Sx > 0 for all non-zero

x. Then y′(ASA′)y > 0 for y′ = x′A−1 and x spans the entire space.

Proof that ASA′ is positive definite implies that S is positive definite when A

is non-singular: ASA′ is positive definite implies that x′ASA′x > 0 for all non-zero

x. Then y′Sy > 0 for y = A′x and y spans the entire space.
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