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PREFACE

Most of the theoretical contributions to models for handling combined cross-section/time-series

data are based on the assumption that complete time-series of equal length exist for all observation

units. This paper is concerned with the estimation of multi-equation models in situations where the

observation units "rotate" over time. The data then become incomplete cross-section/time-series data.

The situation with complete cross-section/time-series data emerges as a special case of this speci-

fication.

Econometric work with the Norwegian Surveys of Consumer Expenditure, which are based on rotating

panels, has been a main motivation for exploring these problems. The conclusions, however, have for

wider applicability.

A substantial part of the work reported in this paper was carried out during the author's visit
s	 i

to Institut National de la Statistique et des Etudes Economiques (INSEE), Paris, in the autumn 1980.

Central Bureau of Statistics, Oslo, 26 November 1981

Arne Øien



FORORD

Mesteparten av de teoretiske bidrag som har vært gitt til modeller for behandlingav kombinerte

tverrsnitts-tidsseriedata, bygger på den forutsetning at komplette og like lange tidsserier foreligger

for alle observasjonsenhetene. Denne rapporten behandler estimering av flerligningsmodeller i tilfelle

hvor utvalget av observasjonsenheter "roterer" fra periode til periode. Dette gir et datamateriale i

form av ufullstendige tverrsnitts-tidsseriedata. Situasjonen med komplette tverrsnitts-tidsseriedata

framtrer som et spesialtilfelle av denne spesifikasjonen.

økonometrisk arbeid med de norske forbruksundersøkelsene, som bygger på roterende utvalg, har

gitt støtet til å utforske disse problemene noe nærmere. Konklusjonene har imidlertid mer generell

gyldighet.

En vesentlig del av arbeidet som ligger til grunn for denne rapporten, ble utført under

forfatterens studieopphold ved Institut National de la Statistique et des Etudes Economiques (INSEE),

Paris, høsten 1980.

Statistisk Sentralbyrå, Oslo, 26. november 1981

Arne øien
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ABSTRACT

The paper is concerned with the specification and estimation of multi-equation models in

situations where the observation units "rotate" over time. The data then become incomplete cross-

section/time-series data. The situation with complete cross-section/time-series data and several

other practically interesting situations emerge as special cases of this specification. A procedure

for iterative Full Information Maximum Likelihood estimation is outlined. Most attention is devoted

to a disturbance components specification with individual components included and time specific

components omitted.
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1. INTRODUCTION

A conspicous feature of applied econometrics in recent years is the increasing trend in the

utilization of combined cross-section/time-series (CS/TS) data. This reflects primarily the increasing

availability of individual time series for empirical work, but also the growing theoretical insight in

models and methods for handling such data. 	 These include models with unobserved individual ef-

fects in general, and error components regression models in particular.

The well-known study of Balestra and Nerlove (1966), one of the first applications of error

components models in econometrics, was concerned with the situation where N observation units are ob-

served in T consecutive time periods. The stochastic disturbance in the regression equation considered

was decomposed in two additive and independent parts, the first is specific to the observation unit -

the individual component - while the second represents the combined effect of the observation unit and

the time period - the combined component. An extended three components model which treats the time

'dimension' and the individual 'dimension' symmetrically - by including a time (period) specific com-

ponent along with the individual and the combined ones - has been extensively discussed in several

subsequent articles, e.g. Wallace and Hussain (1969), Maddala (1971), Mazodier (1971), Nerlove (1971b),

and Mundlak (1978). In recent years, this three components, single equation regression model has been

further extended to multi-equation models formulated as a system of seemingly unrelated regressions, in

articles by Avery (1977) and Baltagi (1980).

A common feature of all the articles mentioned above ( and a lot of others) is the assumption

that the observation matrix is rectangular: the same N units are under observation in the same T suc-

cessive time periods. The data set constitutes complete cross-section/time-series data. This speci-

fication is in fact so firmly established in the literature that the term combined CS/TS data has

almost become synonymous with complete CS/TS data. Analytical and notational convenience may partly

account for this. Another reason may be the fact that in many practical applications of CS/TS data,

the observation units are some sorts of aggregates; in the Balestra-Nerlove (1966) study, for in-

stance, the units were the different states in the USA. In such cases, complete time-series are

readily available.

However, in the context of sampling surveys data from a population of genuine micro units,

e.g. households or firms, this may be a rather extreme and unrealistic specification. Occasionally,

the econometrician has access to socalled panel data (longitudional data), but owing to the serious

problems of non-response when repetitive and time-consuming reporting is involved, this will in prac-

tice often be the exception rather than the rule. For this reason, models based on incomplete CS/TS

data are well worth considering. The econometrician's philosophy should always be to construct

his model according to the data situation actually at hand, rather than forcing his data into the strait-

jacket of preconceived simplistic model schemes. If he follows the latter strategy- e.g. by throwing

away all individuals from which complete time series do not exist - he will usually waste a lot of

information.

Some aspects of the problem of specification and estimation of single equation error components

regression models from incomplete CS/TS data are discussed in Biørn (1981). The purpose of the present

paper is to generalize this approach to a multi-equation model, specifically, a model written in the

'seemingly unrelated regressions' format. This is,  formally, a mul ti -equation model in which all equa-

tions contain only one endogenous variable and with only predetermined variables occurring on the right

hand side of each equation.

Rotating panels are applied in practice by several statistical agencies. The Central Bureau of

Statistics of Norway, for instance, has followed this sort of sampling design for its household budget

surveys since the year 1975. (About 25 per cent of the respondents in one year are asked to report again

in the following year.) A main purpose is to reduce the degree of non-response. An econometric study

based on these data is documented in Biørn and Jansen (1982). This work has, however, motivated a

closer examination of the problems raised by incomplete CS/TS data in the context of multi-equation

models with error components. It is the main results of this more general approach which are reported

in the present paper. The conclusions are not confined to the field of micro consumer analysis, but



have, of course, far wider applicability.

The paper is organized as follows: Section 2 contains a brief general description of the model

and the sampling design. Section 3 deals with the structure of the disturbance covariance matrix. We

distinguish between the case where three disturbance components are included in all the equations and

the case where time specific components are omitted. The full three components model is shown to con-

tain all the models referred to above (and a lot of others) as special cases. Estimation procedures are

discussed in section 4. We first state the Full Information Maximum Likelihood (FIML) estimation

strategy in general terms for the full three components version of the model. Then we discuss more

closely an iterative FIML estimation procedure for the simpler two components specification. Finally,

in the concluding section 5, we attempt to place the work reported here in a wider context.

2. MODEL AND SAMPLING DESIGN

Consider a linear model with G equations, in the form of G 'seemingly unrelated regressions'.

Formally, this is a linear - simultaneous equations model in which each of the G endogenous variables is

included in one and only one of the G equations, and with only predetermined variables on the right-

hand side of each equation. 1) An example of this sort of model is a complete system of static consumer

demand functions, where the volume of consumption of each commodity group is expressed as a function

of income and prices (and possibly other exogenous variables). The observations on the variables are

assumed to be combined CS/TS data. The i'th equation of the model thus has the form

(2.1) yiht - x iht Ø i + e iht (i =1, .

Where f i is the (column) vector of coefficients in the i'th equation, y it is the value of the i'th en

endogenous variable, x. 	 is the (row) vector of exogenous (non-stochastic) 2 } variables in the i'th
iht

equation, and e iht is the corresponding disturbance. The subscripts h and t indicate the individual

(micro unit) and time period, respectively. At this stage, we assume that h and t can be any positive

integer, i.e., the model applies to all individuals in the population at all points of time.

We decompose eiht into three additive components, an individual component u ih , a time specific

component v it and a combined component (a remainder)

(2.2) 	 _ eiht = u ih + v it + w iht for all h and t, and i =1, ...., G.

All components have zero expectations:

(2.3) 	 E(uih) = E(
i t ) = E (w i ht ) for all h and t, and i =1, ...., G,

and their second order moments satisfy

) =
u

6 h k a i j '

E(v it v 
J
. s ) = 6ts a i

 J
. v ,

E (w i htw ' ks ) ' s hk6 ts a i ' w 'J 	 J

1) Cf. Zellner (1962) and Zellner and Huang (1962), for a general discussion of seemingly unrelated
regression models.
2) We assume that no lagged endogenous variables are included. For a discussion of problems caused by
the presence of such variables in single equation error components models, see Nerlove (1971 a).

w iht'
.

E(u ih u j
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(2.7)
	

E(uih vjs ) = E(u ihwjks ) - E(v it wjks ) = 0, for all h, k, t, s, and for i, j=1, ...., G.

where 6
hk =

 1 for k = h, and 0 for k * h; (5
ts 

= 1 for s = t, and 0 for s $ . These assumptions have the

following implications:

(i) Homoscedasticity of all disturbance components:

var (u ih ) = u

var (v it ) = a ii v

var (wih ) = a ii wt

for all i and h,

for all i and t,

for all i, h, and t.

(ii) Constant covariances between disturbance components relating to different equations,

but to the same individual or time period:

cov (u ih , ujh ) = a i j u 	for all i, j, and h,

cov (v it , vat ) = a i . v
J

for all i, j, and t,

cov(w
iht' wjht ) = aijw

	for all i, j, h, and t.

(iii) No correlation between disturbance components relating to different individuals and/or

periods.

These assumptions are straightforward generalizations of those in the single equation model con-

sidered in Biørn (1981) .

Assumptions (2.2) - (2.7) imply

(2.8)
E(eiht)= 0

(2.9)
E(eiht ejks

a iJ u+a^ v +a ,^ w
J 	 J

a ij u
aij v

0

for k=h, s=t,

for k=h, s*t,

for k*h, s=t,

for kph, sit.    

The individuals are selected according to the following sampling plan: Let all individuals

in the population be numbered consecutively, and let the sample in period 1 consist of individuals

1, 2, ..., N. 	 In period 2, individuals 1, 2, 	 m( 0 `m`` N) are replaced by individuals N+1

N+2, ..., N+m. This procedure - dropping the first m individuals from the sample selected in the

previous period and augmenting it by drawing m individuals from the population so that the sample

size remains the same - continues in all the following periods until period T. In general, the

sample in period t thus consists of the individuals with numbers (t-l)m+1, (t-l)m+2, 	 (t-1) m+N

(t=1, 2, ..., T). The total number of individuals observed is

(2.10) 	 H = (T - 1)m+N,

and the total number of observations is TN.

The special case with m=0, i.e. H=N, is the situation with completely overlapping samples

studied by Avery (1977) and Baltagi (1980). At the other extreme, m =•N, i.e. H = TN, corresponds

to a sampling design with non—overlapping samples; all individuals are observed only once. If
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0<m<N, we have a situation with rotating (partly overlapping) samples. In this intermediate situation,

the data set will include some individuals observed only once, another subset observed twice, and -

provided that 0<m<N/2 - still another subset observed three times, etc. If the 'rotation parameter' m

exceeds half the size of each sample, N/2 m<N, no individual is observed more than twice.

All sampling designs with 0<m<N thus have the common characteristic that the data set shows

variation both along the 'time dimension' and the 'individual dimension', without giving complete time

series of cross section data. To fix ideas, we have illustrated five typical cases in Figure 1 below
for N = 1 000 and T = 5. We let the horizontal axis indicate the number of the individual and let the

vertical axis represent the time period. Each asterisk represents N/4 = 250 observations. Case A il-

lustrates the standard situation with completely overlapping samples, case E represents the other

extreme situation with non-overlapping samples, whereas cases B, C, and D illustrate different designs

with rotating samples.



A. m=0, H=N

B.m = 1741, H= 2Ntime

10

	> individual 

individual
* * * *

* * * *

* ** *

* * * *

* * * *
time_ . C .m = H=3N 

	t>individual
* * * *

* * * *

* ***

* * * *

* * * *
	^ 	 3	time	 D.m = 	 H=4N

time E.m=N, H=5N  

	>individual

Figure 1. Five typical sampling designs. N=1 000, T=5. Each asterisk (*) represents 250 observations.



e i1T^

•
•

e i
:
HT^

= ( e il 	  . . eiT)

, 	 ...,- G),    

(3.1) e      

(i

(3.2) 	 E(eit ej is

(Qi • u + 6i •w ) I H + 6 i • v E H
J 	 J 	 J

a i j u I H

for s = t	 i

for s *

t , s = ^,
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3. THE DISTURBANCE COVARIANCE MATRIX

Before discussing estimation procedures, we need an analytical expression for the disturbance

covariance matrix of the TN observations in our data set. This immediately raises the question how to

arrange the GTN disturbances - TN disturbances from each of the G equations in the model - by equation

number (i), individual (h), and time period (t). For obvious reasons, this is a more critical problem

when working with incomplete cross-section/time-series data than it is in the more 'tidy' situation

where all time series are complete. No general principle can be recommended for all situations. Which

ordering of the disturbance vector will give the most tractable expression for the covariance matrix

depends essentially on whether time specific disturbance components are included or not. If such com-

ponents are present, the succession in time of the different observations ( i.e. the subscript t) is,

of course, crucial for the characterization of the covariance structure. If they are omitted, we are

free to arrange the observations in a different order.

We shall therefore divide the following discussion into two parts. First, in section 3.1, we

establish general formulae for the covariance matrix by employing a set of selection matrices to indi-

cate which individuals in the population are included in the sample in the different periods. Then, in

section 3.2, we examine more closely the case where time specific components are excluded. We show that,

with a suitable reordering of the observations, the disturbance covariance matrix assumes a simple block

diagonal form, which will be convenient for the ensuing discussion of estimation problems.

3.1. The general case. Formulation by means of selection matrices 

Let us start by considering the disturbance covariance matrix in the hypothetic case where indivi-

duals 1, 2, ..., H[= (T - 1)m + N] are observed in aZZ the T periods under consideration, i.e. the matrix

which corresponds to complete CS/TS data with a panel consisting of H individuals. Arrange all distur-

bances from the i'th equation of the model in the H x T matrix

its t'th column, e it , containing the disturbances in period t from all the H individuals. According to

the general specification of the variances and covariances, (2.9), we have

where I H is the H x H identity matrix and E H is the H x H matrix with all elements equal to one.

Defining the TH x 1 vector 3)

(3.3) e i = vec(e i ) =

e iT

/

(i = • . . , G 1 i

3) The operator 'vec' denotes vectorization, i.e. the stacking of all columns of a matrix into one long

vector, and® is the Kronecker product operator. A list of main properties of Kronecker products, some

of which will be utilized in the following, is given in Balestra (1975, section 2.1).
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eq. ( 3.2) can alternatively be - written as

( 3 • 4 ) 	 E(eieJ ) = aijw I T Qx I H + ai
J
v I TQ E H + aij uETQ I H .

The difference in notation apart, this equation is identical with eq. (26) in Avery (1977). (Recall that

Avery, following the single equation models of Wallace and Hussain (1969) and Nerlove (1971b), has

ordered the disturbances first by individual, second by period, whereas we have chosen the reverse order-

ing.)

The covariance matrix of the complete GTH x 1 disturbance vector that would result if all the H

individuals were observed in all the T periods,

^
^e '\rvec(e )

1• 1.

(3.5) 	 e = •

G2    vec   e )^ ^

G

can thus be written compactly as4

E(ee' ) = Ew © I T Q I H + E v Qx I T ® E H + E u 0 ET Q I H ,

	^ u 	  u

	

a l l 	 a
l G

	

. 	 .
•

	

.	 ._ 	 •
	u 	;u	^G1 	 aGG

Now, a subset, consisting of N of the H individuals in this hypothetical panel, are actually

selected. Define, in analogy with (3.1), the N x T matrix

(3.6)

where       

(3.7)  

i 1T

:
E i NT   

E i •

E i
:
NI  

= (E il E iT )	 (i = 1, ..., G) ,               

where E iht is the disturbance in eq. no i belonging to the h'th individual of those observed in the t'th

perioa. (Its population number is (t - 1)m + h.) The t'th column of this matrix, E it , contains the dis-

turbances in period t of all the individuals actually observed in this period. Obviously,

4) Cf. Avery (1977, eq. (27)) and Baltagi (1980, eq. (7)).



(3.9a) =I N

whereas non-overlapping samples

(3.9b) 	 Dt = (0 1 , t

(t = 	 , ..., T),

correspond to

01, T _ t) Q

IT6^ j u + Q i jw ) I N + 6 i j v E N

u
6 ij DtD s '

for s = t

= 1 s •

for s * t

.., G).
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! 	 1
i = 1, ..., G

Eiht - ei'(t- 1)m+h,t 	
h = 1, ..., N

t -- 1, ..., T

\ 	 ^

This relationship can be stated compactly in vector notation as

(3.8)
Ei t 	Dt e.

i = j, ..., G
t = 1, ..., T

^

where D t i s a sample design (selection) matrix of dimension N x H ( = N x [ (T 	 1) m + N ] ) defined as

follows:

' 

(3.9) 	 Dt - O 	(t - 1 m i ^ IN ' O NN , ( 	 )  	 ' ( T- t)m 	 ^

ONndenoting the N x n zero matrix. Element (h, k) of D is 1 if the k'th individual in the population

is the h'th individual in the sample in period t, and zero otherwise. In completely overlapping samples

(m = 0), we have in particular

t

Since D tDt ' = I N and Dt EH Dt  = E N for all t, irrespective of the sampling design, it follows

from (3.2) and (3.8) that

(3.10
E(E it 

E js _) = DtE(ei t e js ) Ds '

From this equation it is evident that a. u and aijw are not identifiable unless DtDS' * O N , N for at

least one s * t, which implies that at least two of the T samples overlap. If D tD s ' = ON , N for all

t and s * t, i.e. all samples are non-overlapping, only a.• v and o.. 0 + 6..w can be identified from

the data.

Defining the TN x 1 vector

(3.11)
-

E i = vec (E i ) = 	•
•

^ .E iT

(i = •

and the stacked TN x H selection matrix

(3.12) 	 D
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eq. (3.10) can alternatively be written in the form

(3.13) E(€€') = 6i J. w I T ® I N + 6i J. v I T ODE N + Qi 
J
.0 DD '    

(i,J=1, ..

The covariance matrix of the stacked GTN x 1 vector

(3.14) 	 E =

(vec (i 1 )
_ 

`vec (Er)

can then be written compactly as

(3.15) E(EE') = = Ew ®I T ®I N + E v a I T ® E N + u ® DD'.

This is the general expression for the disturbance covariance matrix in seemingly unrelated regressions

models based on combined cross-section/time-series data.

In the special case with completely overlapping samples, it follows from (3.9a) and (3.12) that

D = 1 T ®I N , where 1 T denotes the T x 1 vector with all elements equal to one. Then DD' = (1 T 1 T ') Q I N

= E T ® I N , and the covariance matrix becomes

(3.15a) 	 Q=S2C=Ew ®IT®IN+Ev®IT®EN+E®ET®IN,

the subscript C denoting 'complete'. Not surprisingly, we find that this expression is identical with

(3.6) with H set equal to N. At the other extreme, non-overlapping samples are characterized by D = I T ®

I N (cf. (3.9b) and (3.12)), which implies the following covariance matrix:

(3.15b) 	 = 	 = (Ew + 
ELI) 	 ITQIN + E v ©I T ©EN '

the subscript N denoting 'non-overlapping'. This expression is equivalent to (3.6) with H set equal

to N, Ew replaced by Ew + E u , and with the last term omitted.

3.2. The two components case: Time specific components excluded 

In the previous section, we gave a characterization of the covariance structure of the dis-

turbances in the general case where both the individual (u ih ), the time specific (v i t), and the remain-

der disturbance component(wiht) are included. This specification is theoretically attractive, not

least because of its symmetry. However, for practical applications of disturbance components models

in the context of genuine micro data, time specific effects are usually of far less importance than

individual ones. This reflects, inter alia, the fact that the number of individuals by far exceeds the

number of periods involved (e.g. T < 5 and N > 100). Then E u and Ew dominate over E v , and for prac-

tical purposes the latter may be ignored without essential loss.

In this section, we take a closer look at the covariance structure when Ev= 0G,G 	
Of course,

from (3.15) it then follows that

(3.16) 	 E(EE') = 	 = Ew ® I T ® I N + E u ODD' .

However, the ordering of the disturbances which leads to this expression for the covariance matrix does

not exploit the fact that when time specific effects are ignored, the actual succession in time of the

different observations is irrelevant. We can, without fear of ambiguity, drop the time subscript from
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the model specification and rearrange the disturbance vector. 5) This is what we shall do in this

section.

We arrange the individuals in groups according to the number of times each individual is under

observation and identify each individual by its number in the group to which it belongs. Let, in general,

H(p) denote the number of individuals in the p'th group, i.e. the number of individuals observed p times.

Let P denote the maximal number of replications. We arrange the H(1) observations from the individuals

observed only once in the first group, the H(2) individuals observed twice and the corresponding 2H(2)

observations in the second group, 	  the H(P) individuals observed P times and the corresponding

PH(P) observations in the P'th group. Obviously, we have 6)

E 	 H(p) = H = total number of individuals observed,
p=l

P
E p H(p) = TN = total number of observations.
p=1

To fix ideas, let us refer the values of P and H(p) corresponding to the five sampling designs

illustrated in Figure 1 above. We find

Case A: P = 5; H(1) = H(2) = H(3) = H(4) = 0, H(5) = N = 1`000.

Case B: P = 4; H(1) = H(2) = H(3) = H(4) = N = 500.^
Case C: P = 2; H(1) = = N= 1 000, H(2) = 2N = 2 000.
Case D: P= 2; H(1) = 3N = 3 000, H (2) = N = 1 000.

Case E: P = 1; H ( 1) = 5N = 5 _000.

In the following, we use (h, p) as a shorthand notation for the h'th individual of those observed

p times (h = 1 , ..., H(p); p = 1, ..., P) and defi ne

E i(h, p)q: disturbance in eq. no i relating to the g'th observation 
from individual (h, p)

G;	=	 p;	=	 H(p);	 =(i = 1, ..., G , q 	1, ..., p, h 	1, ..., H(P)^ p 	1, ..., P).

The p x 1 vector containing the disturbances in eq. no i relating to individual (h, p) is

(3.19 

(i = 1, ..., G)

(h = 1, ..., H(p))

(P = 1, ..., P).
E i

p

5) This may necessitate a redefinition of some of the structural variables in the model. When no

lagged endogenous variables are included, (cf. footnote 2), this reformulation is trivial.

6) It is not essential for this reformulation of the model that the sample size is the same, and equal

to N, in all the periods. The following formulae are equally valid in more general situations where

the sample size changes from period to period; only the sequence, H(1), ..., H(P) is of importance.



or alternatively in the stacked Gp x 1 vector

1

:1(h, p)
(3.22)

EG(h,
 P )
^

(h = 1, ..., H(p))

(p = 1, ..., P).
E (h,

 p) 
= vec (E(h, p ) )-

Since, when o ij v = 0 we have

E
 E

i h, p)q Ej(k, n)r l =

(cf. ((2.9) ), it follows that

16

for (k, n) = (h, p) and r = q

for (k, n) = (h, p) and r $ q

otherwise

(3.20) E[E 	 E '
i(h, p) 	 j (k, n

Q i .w I + a u i j ` E.p 	for (k, n) = (h , p)
J 	 P

Op, n 	 for (k, n) * (h, P)

(i = 1 , ..., G; j = 1, ..., G)

( h = 1, ..., H(p); k = 1, ..., H(n))
(p = 1, ..., P; n = 1, ..., P).

(3.21)

It is convenient to arrange all disturbances from individual (h, p) in the p x G matrix

E 1(h, 
p)1 .... EG(h, p)1

E (h, p) 
= 	 = (E1(h, p) 	  EG(h, P) )

E 1(h, P)p
.. 	 G(h, p)p

, ..., H(P))

^ 	 •••! P)s

(h =

(p

Eq. (3.20) can then be written as

SZp 	for k, n) = (h,
(3.23) 	 E [E 	 ^ p) E(k

^'
 n)1 =

OGp, Gn
	 for (k,n)$( 5

(h = 1, •.., H ( p ); k = 1, ...,

(p = 1, ..., P; n = 1, ..., P) ,

where Si p is the following Gp x Gp matrix:



.,
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(3.24 2 p =Ew (D I p +Eu© E CP = 1,

Let now E (p) denote the H(p)Gp x 1 vector containing all disturbances from the p'th group,

from all individuals observed p times:

C(1 ,P)
(3.25)

E C P) •

(H(P),P)
^ 	 _./

(

The covariance matrix of the complete disturbance vector

( 3 . 26 ) 	 E* =
•
E(p)

L/
P

of dimension E H(p)Gp x 1, i.e. GTN x 1 (cf. (3.18)), can be written compactly as
p=1

(3.27) 	 E(E*E*' ) = S^ =

where S2P is defined as in eq. (3.24).

Of course, eq, (3.27) expresses the same hypothesis regarding the second order moments of the

disturbances as eq. (3.16). The difference lies in the different ordering of observations to form the

vectors E (cf. eqs. (3.7), (3.8), (3.11), and (3.14))and E* (cf. eqs. (3.21), (3.22), (3.25), and (3.26)).

The ordering which leads to E * implies that the corresponding covariance matrix, 2* , assumes a block-
diagonal form: First the block 2 1 = Ew + E u is repeated H(1) times, then the block 52 2 = Ew ® L 2 + E L I ®

 is repeated H(2) times, the block c3 	 w Q 1 3 + E u 0 E 3 is repeated H(3) times, etc. Needless to say,

this will be an obvious virtue when it comes to estimation.

4. ESTIMATION

Following the organization of section 3, we shall also divide the discussion of estimation problems

into two separate parts. First, in section 4.1 , we outline a procedure for Full Information Maximum

Likelihood estimation on the basis of the general formulae for the disturbance vector Eand its covariance

matrix 2 in section 3.1. Then, in section 4.2, we turn to the reordered disturbance vector E* , as given
in section 3.2, and discuss in more detail a step-wise algorithm for estimating the two components model.

4.1. Outline of a procedure for FIML estimation in the general three components model 

Let y i denote the TN x 1 vector of observations on the endogenous variable in the i'th of the G re-

gression equations in (2.1), ordered in the same way as the disturbance vector E. (cf. (3.1), (3.8), and

(3.11)), and let X i be the corresponding matrix of observations on the exogenous variables. (We do not

refer the formal definitions of y i and X i since they are not needed in the following: y i ds formed by

an appropriate selection of the scalars yiht' and X i is constructed by an appropriate selection of the

row vectors xi ht') The i'th equation can then be written as
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(4.1) 	 yi = Xi Ø i + E i

Combining all equations in one system, we get

(4.2) 	 y= X Ø+E,

where E is defined as in (3.14) and

(i = 1, ..., G) 

^ a X l 0. 	 0

, X = 	 0 X2,. 	 0
.

0 o 	 ^ X  

Y = = 	 a2       

\G,/

Provided that the disturbances follow a multivariate normal distribution, the log-likelihood

function of y is

(4.3) L = L(y, X; $, S2) _ - GTN--2-- log (27) - 17 log 101  - l7 E 1 0-1 E,

where S2 is defined as in (3.15) , using E as a shorthand notation for y - X.

Formally, the problem of Full Information Maximum Likelihood (FIML) estimation of the complete

model can now be expressed as follows: Maximize L, or equivalently, minimize

(4.4) 	g = log I Q I + E'0-1 E,

where

S?, = Ew (D IT 	I N + E v ® I T ® E N + E u u DD'

with respect to a,Eu, Ev and Ew. In doing this, we pay regard to the definition of the stacked

selection matrix D, which describes the sampling design (cf. eqs. (3.9) and (3.12)).

Direct minimization of g may, however,.raise numerical problems and easily become prohibi-

tive in terms of computer costs. If certain regularity conditions are satisfied, FIML estimates

can in principle be attained - to a prescribed degree of approximation - by iteratively switching

between the following two subP roblems: 7)

(i) Minimize Q = E 'Q1-1E with respect to Ø, conditionally on  S^.

(ii)Minimize g = log 1 S2 I+ E' S2 E, where 	 = E 	I^, Q I  + v  I Ox  EN 	E Ox DD ' ,

w 	 .^ 	 N 	 v 	 T	 ^ 	 u
with respect to u' E v.' 	Ew, conditionally on Ø.

To start this algorithm, initial values have to be assigned to E u , E v and Ew . A convenient choice

may be to set E u = E v = 0 and let Ew be a diagonal matrix with the i'th element equal to the estimated

disturbance variance from a preliminary least squares regression on the i'th equation (i = 1, ..., G).

Solving subproblem (i) is equivalent to Aitken Generalized Least Squares (GLS) estimation of

Ø. The resulting estimator is

= (X'C 1 X) -1 X' C l y.GLS

It is well-known that this estimator is more efficient than the one obtained by running Ordinary

Least Squares (OLS) regression on each of the G equations (4.1) in all cases except the following two:
 8)

7) If this zig-zag procedure converges towards a unique solution, it will give the FIML estimates.
For a formal demonstration of this, see Oberhofer and Kmenta (1974).
8) Cf. Zellner (1962, p. 351) and Theil (1971, pp, 308 - 310). We implicitly assume that no cross-
equational constraints have been imposed on the coefficient vectors Ø l , ..., ØG . If such constraints

apply, OLS will be inefficient also in cases (a) and (b).

(4.5)
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All G equations contain exactly the same explanatory variables - i.e. X can be written
as X 	 I G Ox 7 - and c is a bloc-diagonal matrix of the form 0 = Q I TN.

No elements in the disturbance vector E are correlated, i.e. 	 can be written as c =

diag (
a11 aGG) ® ITN' 

Neither of these specifications will be valid in a disturbance components model with either individual

or time specific effects, or both, included. Thus, we can safely conclude that even the conditional

GLS estimator which solves subproblem (i) is more efficient than OLS. This conclusion holds even if

all equations contain exactly the same set of exogenous variable, i.e.

X = . .. = X = 7 (or X = I Q ^). 9)1 	 G 	G.

An expression for the inverse of the covariance matrix 0 is indispensible for solving sub-

problem (i) algebraically. Unfortunately, it is difficult to derive such an expression in the general

case considered here - mainly due to the presence of the stacked selection matrix D in the expression

for 0. 10) Moreover, c will usually be a matrix of considerable dimension. If N 	 100, T. 10, and

G = 5 - to take a realistic example - then sZ will be a 5 000 x 5 000 matrix. All who are familiar

with computer problems, know that the inversion of a matrix of this order is no trivial matter.

In two special cases, however, algebraic expressions for c 1 can be easily derived. These

are the cases with completely overlapping samples (m = 0, i.e. D = 1 T ® IN) and with non-overlapping

samples (m = N, i.e. D = IT Q I N ), cf. eqs. (3.15 a and b). By a slight reformulation, we find that
the corresponding expressions for the covariance matrices can be written as

(4.6)
ET 	EN

0C = Ew xQ (I T  - ,^--} Q) ( I N - ^--} + (Ew +
ET

u) C C )0(iI

E N
N )

E+ NE 	 I - ET 	E+ 	 NC w 	^)C^CT ^--)aN^ + TE + 
^ ^ )ØT-aN

ET 	EN
u 	 ^ v 	'

_ E N 	
EN

_ 	 +N 	 ( ^w 	 ^u) a IT a CIN T^) + (E + E + NE 	I T

respectively. Now, it is easy to show that both I N - E N/N and EN /N are idempotent matrices and that

E N E N 	E N 	E N

( I N 	 N ) N - Ø ( IN - 1T- 1
= O

N,N
,

and

(4.7)

regardless of the value of N. From this fact and familiar properties of Kronecker products
11

follows that
12)

_1 	 _l 	 ET 	 EN 	 - 1 	 ET 	 E N
s^ C 	= zw a (I T - T-)O( IN - 7-) + (^w + TE u ) 87---0 (I N + N )(4.8)

it then

r 	_ ET 	 EN 	 1 	
ET 	E N

+ (Ew  N z v) ®C I T 7—
)Qx 1l• + ( Ew + TE u + NE v ) Q TI O 1T.-,

9) A similar observation has been made by Avery (1977), for the seemingly unrelated regressions model
based on complete cross-section/time-series data . .
10) In a recent paper, Wansbeek and Kapteyn (1981) have addressed a similar problem for a single equation
model. Their formulae, however, turn out to be rather messy and do not invite attempts at generalization
to multi-equation models.
11) See e.g. Theil (1971, pp. 303 - 306).
12) Cf. also Baltagi (1980), eqs. (7), (11), and Lemma. A lucid treatment of the corresponding situation
in a single equation model is given in Mazodier (1971).
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and

(4.9)
-1 	 -1 	 E N 	 -1 	 E N
N = (Ew + E u ) ^ I T © (I N - 	 + (Ew + E u + NE v )x^IT Q N .

The problem of calculating the inverse of the covariance matrix is then reduced to the problem of

inverting the four GxG matrices

Ew ,

Ew + TE u ,

Ew + NE v ,

and 	 Ew + TE u + NE v ,

in the case with completely overlapping samples, and to the problem of inverting the two GxG matrices

E + Ew 	 u

and	 Ew + E u + NE v ,

in the case with non-overlapping samples. Inserting (4.8) and (4.9) into (4.5) , we obtain the condi-

tional GLS estimators of 	 which solve subproblem (i ) in these two special cases.

The solution to subproblem (ii) is even more complicated since the minimand g contains not

only the inverse of c, but also its determinant value, 101. Even in the special case with completely

overlapping samples (m = 0, D = 1T® I N ) it involves the solution of a highly non-linear equation

system.
13)

By pointing out this unsolved problem, we end our discussion of estimation procedures for the

general three components model. We now drop the time specific component; this will make things con-

siderably easier, as we shall see in the next section.

4.2. Iterative FIML estimation in the two components model

Let yi(h4P) denote the pxl vector containing the observations on the i'th endogenous variable

from individual (h,p), ordered in the same way as E i (h,p) (cf. eq. (3.19) ), and let X i (h,p) be the

corresponding matrix of observations on the exogenous variables. The i'th equation can then be written

as

(4.10) yi (h,p X i (h,P ) Ø i + Ei (hor) (i = 1, ..., G)

(h = 1, ..., H(p))

( P = 1, ..1., P).

Combining all G equations in one system, we have

13) This problem has been thoroughly discussed by Amemiya (1971 ) for the corresponding single equation
model. He shows, however, that simpler "analysis of variance estimates" exist, which are asymptotically
equivalent to the Maximum Likelihood estimates. See also Magnus (1978) and B ltagi (1980).



E* ' sZ* 1 E
P

= E Q p ,
p=1

H(p) 	_ 1
= Q P 	 h=1 

E', 
h,P) ^P 	

E(h^p
1

and

(4.14)

where

(4.15)
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(4.11) y(h ,p
= 

X (h,P)
Ø
 + E (h^P)

(h = 1, ..., H(P))

(P = 1, ...., P),

where E (h ,p is defined as in eg. (3.22) and 

/

yl(h,p)       

X (h,P)

1 (h, P ) '
.. - ........0

y(h ,p ) =      

• XG(h,p) yG(h,p)              

The log-likelihood function can be written in terms of E * and sZ (cf. ( 3.26) _and (3.27) ) as

follows:

(4.12) 	 _ = _ GTN log (
27 ) - 1 

log

From eqs. (3.23.) - (3.27) we find 

P

og I 	 = E H(p) log I s2
p=1 

(4.13)   

P
E H(p) log

p=1 
Ew QI p +E u QE 

H(p)
	= E	 E'
	h =1 	 (h,p)

+ E u 
Q E p ]

-1 E
^P

Inserting (4.13) and (4.14) in (4.12) yields

(4.16)

where

(4.17) 	 g = H(p) log 	 + Q 	 H(p) log Ew Ø I + 	 (,x)E' + Q
P 	 P 	 P 	 P 	 u 	 P 	 P

In the expression for Q p , cf. (4.15), we interpret E ( h ,p) as a shorthand for y (h , p) - X(h ,p) Ø.

Thus, the log-likelihood function is,  apart from an arbitrary constant, a sum of P terms, one

for each of the P groups  of individuals. The P 'th term, - 1 g p , represents those individuals which are-^ 

observed p times. This separability is, of course, due to the block-diagonal structure of n, which

reflects the omission of time specific disturbance components, and our particular way of ordering the

elements in the disturbance vector E*.

GTN
 log (2^r)- 1-5- 

P
—2-- E g

P
,

p=1 

= 1,
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P

In this simplified model, FIML estimation corresponds formally to minimizing g = E g  with

P= 1
respect to Ø, 

Eu
 and Ew , subject to (4.15) and (4.17). The 'iterative procedure for solving this

problem consists of the following two subproblems:

(i)

P
Minimize Q = E Q  with respect to Ø, conditionally on 2p (p = 1, ..., P) .

p=1

P
(ii) Minimize g = E g  with respect to Eu and 

Ew, conditional7y on Ø.
p=1

Let us consider these two subproblems in turn.

Subproblem jib: Minimization of 9 with respect to Ø
The matrix 2 p can be written as

= 	 ^ 	
E,

^p ^w O(I -

	

PPP 	 + ^w P •

By utilizing the fact that I p E p/p and E p/p are both idempotent for all positive integers p, we

easily find that its inverse i s 14 )

(4.18) ^ -1 = ^ -1 Q ( I - 	 ) + (Pz + z ) -1 
^

E 	 E

^
P 	 w 	 P 	 P 	 u 	 w 	 P

= 1 ,

Since (pE + E ) -1 is symmetric and non-singular, there exists a non-singular matrix S , of dimension
u 	 w 	 P

G x G, such that
15)

(4.19) (Pz u + zw)
 , =s 	

S P

Combining (4.18) and (4.19), while again using the fact that
-1 

can be factorized as follows:

- E
P
 /p and E

P
 /p are idempotent, we find that

(4.20)

where

(4.21)

S^ - 1 = F
P 	 P

E 	 E
F = SO 0 ( I - --^) + S Q --^
P 	 PP 	 PP

(p = 1, ..., P) ,

E

[Sp ^x I P J [I G (DI p -(I^ _ g 0-1 S p )^x p l

Then the quadratic form relating to the p'th group of individuals,

sum of squares

= 1, ..., P).

can be written as a

(4.22)
H(p)

= 	 ^Q p 	^ n
h=1 	(

h,p ) n( h,p ) (P = 1, •

where n (h,p) is the Gp x 1 vector of transformed disturbances

14) Confer the derivation of (4.8) - (4.9) from (4.6) - (4.7) above.
15) This factorization is not unique, but this is immaterial for the following application.
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r^ 	 = F E 	 (h 	 1, .., H(p))
(h ,P) 	 P 	 (h, P)

(p = 1, •••, P).

The algorithm for solving subproblem (i) thus boils down to

(a) Compute the matrices (pEu + E w ) -1 for p = 0, Z, ..., P, and perform the factorization (4.19)

(b) Compute F by means of (4.21) (p = 1, ..., P).
P

(C) Premultip ly the observation matrices y (h, p) 	X (71, p,  rom all individuals observed^  

p times by the matrix F (p = 1, ...., P).

P
(d) Minimize the overall sum of squares of the transformed disturbances, Q = E  Qp =

P H(p)

p
E-1 h=1 ^ ^ (h, p (h, p) with respect to $.

Subproblem (ii): Minimization of g with respect to Eu and Ew

In order to solve the second subproblem, we need expressions for the first derivatives of

l og j (p land Q with respect to E and E . We can obtain these rather easily by utilizing formulae for
P 	 u 

a log I Stp l

aE w
[I © (vec I ) 1 ] [S^ -1 Q I J [ I ^x (vec I )J,G 	 p 	 P 	G	 P

a l og l Q
p

I
 =
_ 	 _1

aE 	 [I G O (vec I)' J [S^ p ^ E P J [I G Q (vec I p )J
u

= 1, ..

By inserting (4.18), while noting that

(vecI p )' (I 0 I p ) (vec I p ) =

(vec I p )' (E
P
 Ox I p ) (vec Ip) = (vec Ip)' I p © E p )(vec I

	 = p,

(vec I n )' (E
P
 Ox Ep )(vec I p ) =

 2

these expressions can be simplified to

(4.23)

matrix derivatives developed in Balestra (1975, sections 5.2 and 5.3).
16)

From eq. (3.24) above and Balestra (1975, eq. (5.3.18)) it follows that

(4.24) ; a log SZ
aEw = ( - 1 . -1 + 	 E + E )

-1 ,
u 	 w

(4.25) 
=p E  

(P = 1 , ...., P).

16) Confer also Chamberlain and Griliches (1975, appendix).



E

(I 	 - P )^ P) 	 P 	 P

^ 	 E
+ t r[ E t 	—^ E(h, P) P 	 (h,

E -1 ]
, p) w

pE + E ) -1 ].
u 	 w

E' 
	-1

(h, P) P 	(h, P ) 
= tr [

24

We have now two of the elements needed for calculating the first derivatives of g with respect

to the covariance matrices. Let us turn to the quadratic form Q p , as defined in (4.15). First, we

note that the part of Q which relates to individual (h, p) can be reformulated as
P

E' 	 52 -1 E 	 = (vec E
(h^( h, P) 	 P 	 (h, P) 

E
-1 	_

P))
^CE

w ^ ( I P 	 P ) (vecE(h, p))

+ (vec E (h, p)

Ep
OPEu + Ew  ^ P

(vec E(h, p) )'

by utilizing (3.22) and (4.18). Since the trace of a quadratic matrix of the form ABCD can be written

as 17)

tr (ABCD) = (vec A')' (D' Qx B) (vec C),

we can reformulate this equation as

Hence,

(4.26) Q = tr[(C -r )E -1 ] + trR (pE + E ) -l ]
P 	 P 	 P w 	 p u 	 w

(p = 1, ..

where C p and •p are G x G matrices defined as

(4.27

(4.28)

H(P) :^
= E 	 E'(h

h=1 	 ,

1 H(P)N

P 	 P h -_i	 (h' P)

s

EP E (h, P)  P ).

From eq. (4.26) above and Balestra (1975, eq. (5.2.19)) we derive

(4.29 -1 	 -1(C -)E^ 	 - (p2 + E ) 	 (p2 + E
w 	 p 	 p w 	 u 	 w 	p 	u	 w

—1

(4.30) GQP 	+	 -1 	+	
-1

= - 
GE 	 P(PE u 	 Ew ) 	 ^p (PEu 	Ew ) (P - 1 , ..., P).

The first order conditions for minimizing g with respect to the covariance matrices now follow

by inserting (4.24), (4.25), (4.29), and (4.30) in

(4.31)
	

P 	39	 P

	
[H(P) 

go i

EW 	p_1Wp_ 1
aEW 	aEW 	 = 0,

(4.32) = E â = E [H(p)
a log l Q

p ^ + ate. = o.aE ^ 	 p_^ aE u 	 p_1 	 aE u 	 aE u  

17) See Balestra (1975, p. 20) or Magnus (1978, eq. (4)).
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- CE 0 	 p=1 	 1 	 p^p 	 pu = 

P 	
=
	 E

E 	pH(p) 	P 1 	P - 1
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This gives a non-linear system of G(G+l) equations in the unknown variances/covariances a..w and a. u ,ij 	 J
and defines our first-order conditions for solving subproblem (ii).

The numerical solution of (4.31) - (4.32) may be intricate, even for low values of P and/or

G, and an iterative algorithm may be the only feasible approach. To obtain sensible initial values

of Ew and E  from which to start the iteration process, the following approach may be useful:

Assume, hypothetically, that our data consisted of observations from individuals observed p

times only. The equation system for solving subproblem (ii ) would then be

(4.33
p =
	 -
- H(p) ((P 	 1 ) E -1 + (PE + E ) -1 JaEw 	 w 	 u 	 w

- E -1
 (C - up) E-1-( PE +E ) -l ^ (pE +E )- = 0,w 	 p 	w	 u 	 w 	 p 	 u 	 w

(4.34) 3gn=
	 _H(P) P (PE + E ) -1 P(PE + E) - 1aE u 	u	 w 	 u 	 w PE u + Ew

-1

This system can be easily solved. Let its solution be E,(p) and E u (p). From (4.34) it follows direct-
ly that

P) + Ew(P) = H
g

 Pfi•

Inserting this into (4.33), we get

H(P) (P - 1 ) E,.,(P) 	 = E,.,(
	

- 7p ) Ew (P) 	 •

Hence,

(4.35)

(4.36)

-_ C P 	 P 	,
(p -1) H(p)

P ^p - C p

P (P _ 1) H(P)

These are the estimates of Ew and Eu that we would obtain by utilizing_ data from the p'th group of

individuals only. The corresponding estimator of the 'total' covariance matrix E = Eu + Ew is

C
(4.37) 	 E(P) = E u (P) + Ew (P) = HP

	•P (P)

Usually, (4.35) and (4.36) will give different 'estimates ' for different values of p. The

estimates which solve subproblem (ii) may be considered .as.:'compromise values' of Ew (p) and E u (p) for

p = 1, ..., P. These considerations suggest that an appropriately weighted average of the P group

specific estimates will be sensible initial values for an iterative solution of the complete equation

system (4.31) - (4.32). We may, for instance, use the number of observations on which each estimate

is based as weights. This would give the following initial values for E u and Ew for starting the

iteration process in subproblem (ii):

p=1

^ = 1 E
P 	

p -Ew 	^. ^ 
177—T

  p Cp ) .
p-1
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These values can be easily calculated once we have calculated the matrices C p and p from the distur-

bances obtained by solving subproblem (i), cf. eqs. (3.21), (4.27) and (4.28).

A closer look at the single equation case

To get a closer understanding of the 'anatomy' of this iterative algorithm, let us see what it

implies in the case where the model contains one equation only. When G = 1, we have, with simplified

notation,

(4.38) 	
. 	

E „ = a 2 	 2
= Pa ,

E = 6 2 = (1 -p) 62 ,
w	 w

where a2 = 6 
u 
2 + a

w 
2 is the total disturbance variance and p = au

2
/a

2 is the part of this total which

is due to individual variations. Alternatively, p can be interpreted as the coefficient of correlation

between two disturbances from the same individual.

Subproblem (i)

When G = 1, the S's, as defined in eq. (4.19), are scalars given by

- S O = 6 =
w a VI p

S= 1 	= 	1 
P 	,^pQ2+ Q 2 	Q ✓ 1 + (p-1)p

u 	 w

( p =

The expressions for the transformation matrices, (4.21), then become

(4.39)

where

(4.40)

1 	 ^F =   [I - (1 - ap )
Q✓ 1- p 	

p 	
p

1
l - p 

ap =
1 + (p - 1)p

( p = 1 , ..., P

(p = 1, . ...,

All the matrices F contain S - = a-1 (1 - p) 	 as a common scalar factor, which is irrelevant
P 	0

for solving subproblem (i), so we may equally well use Fp/SO = I  - (1 	 a - ) E p/p as transformationP
matrices. Premultiplying the original disturbance vectors E(h, 

P)
 by these matrices to form the sum of

squares to be minimized then implies the following:
18)

Multiply the observations from individuals observed only once by 1 - (1 - a 1) = a1 _ (1 p) ,

subtract from the observations of all individuals observed p times (p = 2, 3, ..., P) a fraction
1 - a -= 1 - [ (1 - p)/(1 + (p - 2)p)] of the corresponding individual average, 19) and

P
minimize the resulting sum of squares of disturbances.

We note that 1- ap , the fraction of the individual average to be subtracted, is an increasing function

of p, the individual share in the total variance. It is also an increasing function of p, the number

of replications. Or stated otherwise: The stronger the disturbances from the same individual are

correlated and the larger the number of times each individual is observed, the larger fraction of the

individual average should be subtracted to give the transformed disturbances. Table 1 reports the

value of 1 - a for selected values of these two parameters.

18) The same algorithm is stated, without proof, in Biørn (1981, p. 229).
19) Recall that prernultiplying a p x 1 vector by E -

p
/p implies to replace all its elements by

their average value.

1
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Table 1. The transformation parameter 1 - ap = 1 - 	1	 p 
l +(p -1)p

p

0 	 0.01 	 0.1 	 0.2 	 0.5 	 0.8 	 0.9 	 0.999

1 	 0 	 0.0050 	 0.0513 	 0.1056 	 0.2929 	 0.5528 	 0.6838 	 0.9684

2 	 0 	 0.0100 	 0.0955 	 0.1835 	 0.4226 	 0.6667 	 0.7706 	 0.9776

3 	 0 	 0.0148 	 0.1340 	 0.2441 	 0.5000 	 0.7226 	 0.8110 	 0.9817

4 	 0 	 0.0196 	 0.1679 	 0.2929 	 0.5528 	 0.7575 	 0.8356 	 0.9842

5 	 0	 0.0243 	 0.1982 	 0.3333 	 0.5918 	 0.7818 	 0.8526 	 0.9859

10 	 0 	 0.0470 	 0.3118 	 0.4655 	 0.6985 	 0.8438 	 0.8952 	 0.9900

20 	 0 	 0.0879 	 0.4429 	 0.5918 	 0.7818 	 0.8889 	 0.9257 	 0.9929

100 	 0	 0.2947 	 0.7127 	 0.8039 	 0.9005 	 0.9501 	 0.9667 	 0.9968

. 	 0	 1 	 1 	 1 	 1 	 1 	 1 	 1

Subproblem (i i )
-------

When G = 1, eqs. (4.24), (4.25), (4.29), and (4.30) can be simplified to

al oglSZo I 	 _ p-1 	1
	 ,

a6

	

2
	 å + 

pQ2+cs2	w 	 u ww 

aQ

a6 
2 	
Q 	 P 	 P
	 (Pau 	

2 ,2 P
P  = -. 1 	 - -^) -. 	1 	 ^ ^

w 	 w 	 u w

A
P 

aQ
2

P 

(PQu 2 + Qw 2 )

Cp .

Inserting these expressions into the first-order conditions for subproblem (ii), (4.31)-(4.32),

while substituting (4.38), we obtain after some rearranging

P 	2	 -1
(4.41) 	 E {Q (1-p) 	 H(p)(p-1

P= 1
- p )" Z (0 -"C )}

P

P 	 2 	-1
+ E {Q [ 1+ (P- 1)p]

	
H(p) - [ 1 +(P-1 )p

P= 1

2^ }=0,
P

  E {Q 2 [l+ _ 1 p].-1 H 	 P - (1+(P- 1)0 -2 ^ } = O.(4.42) 	 (P 	 )	 (P) P 
Pp=1



28

A procedure for solving these two non-linear equations, and hence subproblem (ii), may for

instance be: first, express a2 as a function of p by utilizing (4.42):

P 	 2 _
E [1+(p-1)p] 	 p C P

(4.43) Q2 = P =1  
P 	- 1E [1+(p-1)p] pH(p)

p=1

second, insert this expression in (4.41), and solve the resulting equation with respect to p'by means

of a grid search procedure, and third, insert the solution in (4.43). Given the complexity of our

problem, this is a remarkably simple estimation procedure.

5. CONCLUSION

Conbined.cross-section/time-series data constitute a very wide class of data structures, and

both from a theoretical and, in particular, from a practical point of view the standard model which

assumes complete time series to exist for all the observation units is a very restrictive one. In

this paper, we have tried to widen the scope a bit by adopting a specification which allows for in-

complete time series and which is applicable both in a multi-equation and a single equation context.

Of course, the estimation problem becomes more cumbersome in this case than for the simpler models

usually discussed in the literature. When the panel of individuals rotates, it is, in particular, the

possible presence of time specific disturbance components which contributes to the complexity. This

is the price we have to pay to make the model applicable to a wide class of practically important data

structures.

If time specific components are omitted - which is realistic in many situations - the esti-

mation problem may be simplified substantially, and an iterative algorithm for FIML estimation can be

fairly easily implemented on a computer. This algorithm is particularly transparent in the single

equation case - indeed it is surprisingly simple - but it is applicable also to linear multi-equation

models, although it may involve a lot of programming work and a considerable amount of computer time.

Some practical experiences should be gained before we can decide how well it will work.

The model specification studied in this paper includes several models discussed in the

literature as special cases. To put our approach i n perspective, let us give a few examples:

Three components specification : Eu, Ev, Ew unrestricted

G > 1, m = 0: Avery (1977) (Only GLS), Baltagi (1980).

G = 1, m = 0: Wal lace-Hussain (1969), Nerlove (1971b), Mazodi er (1971 ) (Only GLS), Amemiya (1971).

G = 1, 0 < m < N: Wansbeek-Kapteyn (1981).

Two components specification: E v = 0, E u and Ew unrestricted

G > 1, m = 0
20) : Chamberlain-Griliches (1975, appendix), Balestra (1975, Ch. 6).

G = 1, m = 020) : Bal estra-Nerl ove (1966) .

G = 1, m = N/2
21) : Biørn (1981).

20) Or equivalenty: G >- 1, H(T) = N, H(p) = 0 for p 	 T.
21) Or equivalenty: G = 1, H(1) = N, H(2) = (T-1)N/2, H(p) = 0 for p > 2.
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One component specification: Ev = E u = 0; Ew unrestricted

G > 1, m > 0: Conventional 'Seemingly Unrelated Regressions' model; Zellner (1962) .

G = 1, m > 0: Standard linear regression model.

Our approach does not, however, include the models discussed in recent years in connection

with the socalled "selectivity 	 "self-selection 	 roblem. 22 }
y bias" (or self-selection bias") 	 We have implicitly

disregarded the possibility that the panel may be subjected to a systematically changing degree of

non-response by assuming that the sampling design is determined prior to and independent from the

individual decisions represented by the structural equations of the model.

22) See e.g. Hausman and Wise (1977), Griliches, Hall, and Hausman 1978) , and Maddala (1978).
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PREFACE

Most of the theoretical contributions to models for handling combined cross-section/time-series

data are based on the assumption that complete time-series of equal length exist for all observation

units. This paper is concerned with the estimation of multi-equation models in situations where the

observation units "rotate" over time. The data then become incomplete cross-section/time-series data.

The situation with complete cross-section/time-series data emerges as a special case of this speci-

fication.

Econometric work with the Norwegian Surveys of Consumer Expenditure, which are based on rotating

panels, has been a main motivation for exploring these problems. The conclusions, however, have for

wider applicability.

A substantial part of the work reported in this paper was carried out during the author's visit
s	 i

to Institut National de la Statistique et des Etudes Economiques (INSEE), Paris, in the autumn 1980.

Central Bureau of Statistics, Oslo, 26 November 1981

Arne Øien



FORORD

Mesteparten av de teoretiske bidrag som har vært gitt til modeller for behandlingav kombinerte

tverrsnitts-tidsseriedata, bygger på den forutsetning at komplette og like lange tidsserier foreligger

for alle observasjonsenhetene. Denne rapporten behandler estimering av flerligningsmodeller i tilfelle

hvor utvalget av observasjonsenheter "roterer" fra periode til periode. Dette gir et datamateriale i

form av ufullstendige tverrsnitts-tidsseriedata. Situasjonen med komplette tverrsnitts-tidsseriedata

framtrer som et spesialtilfelle av denne spesifikasjonen.

økonometrisk arbeid med de norske forbruksundersøkelsene, som bygger på roterende utvalg, har

gitt støtet til å utforske disse problemene noe nærmere. Konklusjonene har imidlertid mer generell

gyldighet.

En vesentlig del av arbeidet som ligger til grunn for denne rapporten, ble utført under

forfatterens studieopphold ved Institut National de la Statistique et des Etudes Economiques (INSEE),

Paris, høsten 1980.

Statistisk Sentralbyrå, Oslo, 26. november 1981

Arne øien
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ABSTRACT

The paper is concerned with the specification and estimation of multi-equation models in

situations where the observation units "rotate" over time. The data then become incomplete cross-

section/time-series data. The situation with complete cross-section/time-series data and several

other practically interesting situations emerge as special cases of this specification. A procedure

for iterative Full Information Maximum Likelihood estimation is outlined. Most attention is devoted

to a disturbance components specification with individual components included and time specific

components omitted.
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1. INTRODUCTION

A conspicous feature of applied econometrics in recent years is the increasing trend in the

utilization of combined cross-section/time-series (CS/TS) data. This reflects primarily the increasing

availability of individual time series for empirical work, but also the growing theoretical insight in

models and methods for handling such data. 	 These include models with unobserved individual ef-

fects in general, and error components regression models in particular.

The well-known study of Balestra and Nerlove (1966), one of the first applications of error

components models in econometrics, was concerned with the situation where N observation units are ob-

served in T consecutive time periods. The stochastic disturbance in the regression equation considered

was decomposed in two additive and independent parts, the first is specific to the observation unit -

the individual component - while the second represents the combined effect of the observation unit and

the time period - the combined component. An extended three components model which treats the time

'dimension' and the individual 'dimension' symmetrically - by including a time (period) specific com-

ponent along with the individual and the combined ones - has been extensively discussed in several

subsequent articles, e.g. Wallace and Hussain (1969), Maddala (1971), Mazodier (1971), Nerlove (1971b),

and Mundlak (1978). In recent years, this three components, single equation regression model has been

further extended to multi-equation models formulated as a system of seemingly unrelated regressions, in

articles by Avery (1977) and Baltagi (1980).

A common feature of all the articles mentioned above ( and a lot of others) is the assumption

that the observation matrix is rectangular: the same N units are under observation in the same T suc-

cessive time periods. The data set constitutes complete cross-section/time-series data. This speci-

fication is in fact so firmly established in the literature that the term combined CS/TS data has

almost become synonymous with complete CS/TS data. Analytical and notational convenience may partly

account for this. Another reason may be the fact that in many practical applications of CS/TS data,

the observation units are some sorts of aggregates; in the Balestra-Nerlove (1966) study, for in-

stance, the units were the different states in the USA. In such cases, complete time-series are

readily available.

However, in the context of sampling surveys data from a population of genuine micro units,

e.g. households or firms, this may be a rather extreme and unrealistic specification. Occasionally,

the econometrician has access to socalled panel data (longitudional data), but owing to the serious

problems of non-response when repetitive and time-consuming reporting is involved, this will in prac-

tice often be the exception rather than the rule. For this reason, models based on incomplete CS/TS

data are well worth considering. The econometrician's philosophy should always be to construct

his model according to the data situation actually at hand, rather than forcing his data into the strait-

jacket of preconceived simplistic model schemes. If he follows the latter strategy- e.g. by throwing

away all individuals from which complete time series do not exist - he will usually waste a lot of

information.

Some aspects of the problem of specification and estimation of single equation error components

regression models from incomplete CS/TS data are discussed in Biørn (1981). The purpose of the present

paper is to generalize this approach to a multi-equation model, specifically, a model written in the

'seemingly unrelated regressions' format. This is,  formally, a multi-equation model in which all equa-

tions contain only one endogenous variable and with only predetermined variables occurring on the right

hand side of each equation.

Rotating panels are applied in practice by several statistical agencies. The Central Bureau of

Statistics of Norway, for instance, has followed this sort of sampling design for its household budget

surveys since the year 1975. (About 25 per cent of the respondents in one year are asked to report again

in the following year.) A main purpose is to reduce the degree of non-response. An econometric study

based on these data is documented in Biørn and Jansen (1982). This work has, however, motivated a

closer examination of the problems raised by incomplete CS/TS data in the context of multi-equation

models with error components. It is the main results of this more general approach which are reported

in the present paper. The conclusions are not confined to the field of micro consumer analysis, but



have, of course, far wider applicability.

The paper is organized as follows: Section 2 contains a brief general description of the model

and the sampling design. Section 3 deals with the structure of the disturbance covariance matrix. We

distinguish between the case where three disturbance components are included in all the equations and

the case where time specific components are omitted. The full three components model is shown to con-

tain all the models referred to above (and a lot of others) as special cases. Estimation procedures are

discussed in section 4. We first state the Full Information Maximum Likelihood (FIML) estimation

strategy in general terms for the full three components version of the model. Then we discuss more

closely an iterative FIML estimation procedure for the simpler two components specification. Finally,

in the concluding section 5, we attempt to place the work reported here in a wider context.

2. MODEL AND SAMPLING DESIGN

Consider a linear model with G equations, in the form of G 'seemingly unrelated regressions'.

Formally, this is a linear - simultaneous equations model in which each of the G endogenous variables is

included in one and only one of the G equations, and with only predetermined variables on the right-

hand side of each equation. 1) An example of this sort of model is a complete system of static consumer

demand functions, where the volume of consumption of each commodity group is expressed as a function

of income and prices (and possibly other exogenous variables). The observations on the variables are

assumed to be combined CS/TS data. The i'th equation of the model thus has the form

(2.1) yiht - x iht Ø i + e iht (i =1, .

Where f i is the (column) vector of coefficients in the i'th equation, y it is the value of the i'th en

endogenous variable, x. 	 is the (row) vector of exogenous (non-stochastic) 2 } variables in the i'th
iht

equation, and e iht is the corresponding disturbance. The subscripts h and t indicate the individual

(micro unit) and time period, respectively. At this stage, we assume that h and t can be any positive

integer, i.e., the model applies to all individuals in the population at all points of time.

We decompose eiht into three additive components, an individual component u ih , a time specific

component v it and a combined component (a remainder)

(2.2) 	 _ eiht = u ih + v it + w iht for all h and t, and i =1, ...., G.

All components have zero expectations:

(2.3) 	 E(uih) = E(
i t ) = E (w i ht ) for all h and t, and i =1, ...., G,

and their second order moments satisfy

) =
u

6 h k a i j '

E(v it v 
J
. s ) = 6ts a i

 J
. v ,

E (w i htw ' ks ) ' s hk6 ts a i ' w 'J 	 J

1) Cf. Zellner (1962) and Zellner and Huang (1962), for a general discussion of seemingly unrelated
regression models.
2) We assume that no lagged endogenous variables are included. For a discussion of problems caused by
the presence of such variables in single equation error components models, see Nerlove (1971 a).

w iht'
.

E(u ih u j
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(2.7)
	

E(uih vjs ) = E(u ihwjks ) - E(v it wjks ) = 0, for all h, k, t, s, and for 
i, j=1, ...., G.

where 6hk = 1 for k = h, and 0 for k * h; (5 ts = 1 for s = t, and 0 for s $ . These assumptions have the

following implications:

(i) Homoscedasticity of all disturbance components:

var (u ih ) =
u

var (v it ) = aii v

var (wih ) = a ii wt

for all i and h,

for all i and t,

for all i, h, and t.

(ii) Constant covariances between disturbance components relating to different equations,

but to the same individual or time period:

cov (u ih , ujh ) = a i j u 	for all i, j, and h,

cov (v it , vat ) = a i . v
J

for all i, j, and t,

cov(w
iht' wjht ) = 

aij
w
	for all i, j, h, and t.

(iii) No correlation between disturbance components relating to different individuals and/or

periods.

These assumptions are straightforward generalizations of those in the single equation model con-

sidered in Biørn (1981) .

Assumptions (2.2) - (2.7) imply

(2.8)
E(eiht)= 0

(2.9)
E(eiht ejks

a iJ u+ a^ v + a ^ w
J 	 J

a ij u
aij v

0

for k=h, s=t,

for k=h, s*t,

for k*h, s=t,

for kph, sit.    

The individuals are selected according to the following sampling plan: Let all individuals

in the population be numbered consecutively, and let the sample in period 1 consist of individuals

1, 2, ..., N. 	 In period 2, individuals 1, 2, 	 m( 0 `m`` N) are replaced by individuals N+1

N+2, ..., N+m. This procedure - dropping the first m individuals from the sample selected in the

previous period and augmenting it by drawing m individuals from the population so that the sample

size remains the same - continues in all the following periods until period T. In general, the

sample in period t thus consists of the individuals with numbers (t-l)m+1, (t-l)m+2, 	 (t-1) m+N

(t=1, 2, ..., T). The total number of individuals observed is

(2.10) 	 H = (T - 1)m+N,

and the total number of observations is TN.

The special case with m=0, i.e. H=N, is the situation with completely overlapping samples

studied by Avery (1977) and Baltagi (1980). At the other extreme, m =•N, i.e. H = TN, corresponds

to a sampling design with non—overlapping samples; all individuals are observed only once. If
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0<m<N, we have a situation with rotating (partly overlapping) samples. In this intermediate situation,

the data set will include some individuals observed only once, another subset observed twice, and -

provided that 0<m<N/2 - still another subset observed three times, etc. If the 'rotation parameter' m

exceeds half the size of each sample, N/2 m<N, no individual is observed more than twice.

All sampling designs with 0<m<N thus have the common characteristic that the data set shows

variation both along the 'time dimension' and the 'individual dimension', without giving complete time

series of cross section data. To fix ideas, we have illustrated five typical cases in Figure 1 below
for N = 1 000 and T = 5. We let the horizontal axis indicate the number of the individual and let the

vertical axis represent the time period. Each asterisk represents N/4 = 250 observations. Case A il-

lustrates the standard situation with completely overlapping samples, case E represents the other

extreme situation with non-overlapping samples, whereas cases B, C, and D illustrate different designs

with rotating samples.



A. m=0, H=N

B.m = 1741, H= 2Ntime
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	> individual 

individual
* * * *

* * * *

* ** *

* * * *

* * * *
time_ . C .m = H=3N 

	t>individual
* * * *

* * * *

* ***

* * * *

* * * *
	^ 	 3	time	 D.m = 	 H=4N

time E.m=N, H=5N  

	>individual

Figure 1. Five typical sampling designs. N=1 000, T=5. Each asterisk (*) represents 250 observations.



e i1T^

•
•

e i
:
HT^

= ( e il 	  . . eiT)

, 	 ...,- G),    

(3.1) e      

(i

(3.2) 	 E(eit ej is

(Qi • u + 6i •w ) I H + 6 i • v E H
J 	 J 	 J

a i j u I H

for s = t	 i

for s *

t , s = ^,
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3. THE DISTURBANCE COVARIANCE MATRIX

Before discussing estimation procedures, we need an analytical expression for the disturbance

covariance matrix of the TN observations in our data set. This immediately raises the question how to

arrange the GTN disturbances - TN disturbances from each of the G equations in the model - by equation

number (i), individual (h), and time period (t). For obvious reasons, this is a more critical problem

when working with incomplete cross-section/time-series data than it is in the more 'tidy' situation

where all time series are complete. No general principle can be recommended for all situations. Which

ordering of the disturbance vector will give the most tractable expression for the covariance matrix

depends essentially on whether time specific disturbance components are included or not. If such com-

ponents are present, the succession in time of the different observations ( i.e. the subscript t) is,

of course, crucial for the characterization of the covariance structure. If they are omitted, we are

free to arrange the observations in a different order.

We shall therefore divide the following discussion into two parts. First, in section 3.1, we

establish general formulae for the covariance matrix by employing a set of selection matrices to indi-

cate which individuals in the population are included in the sample in the different periods. Then, in

section 3.2, we examine more closely the case where time specific components are excluded. We show that,

with a suitable reordering of the observations, the disturbance covariance matrix assumes a simple block

diagonal form, which will be convenient for the ensuing discussion of estimation problems.

3.1. The general case. Formulation by means of selection matrices 

Let us start by considering the disturbance covariance matrix in the hypothetic case where indivi-

duals 1, 2, ..., H[= (T - 1)m + N] are observed in aZZ the T periods under consideration, i.e. the matrix

which corresponds to complete CS/TS data with a panel consisting of H individuals. Arrange all distur-

bances from the i'th equation of the model in the H x T matrix

its t'th column, e it , containing the disturbances in period t from all the H individuals. According to

the general specification of the variances and covariances, (2.9), we have

where I H is the H x H identity matrix and E H is the H x H matrix with all elements equal to one.

Defining the TH x 1 vector 3)

(3.3) e i = vec(e i ) =

e iT

/

(i = • . . , G 1 i

3) The operator 'vec' denotes vectorization, i.e. the stacking of all columns of a matrix into one long

vector, and® is the Kronecker product operator. A list of main properties of Kronecker products, some

of which will be utilized in the following, is given in Balestra (1975, section 2.1).



^ v 	 ;a11 	 1

E v

v

a1G

	 'w
aGG

w

12

eq. ( 3.2) can alternatively be - written as

( 3 • 4 ) 	 E(eieJ ) = aijw I T Qx I H + ai
J
v I TQ E H + aij uETQ I H .

The difference in notation apart, this equation is identical with eq. (26) in Avery (1977). (Recall that

Avery, following the single equation models of Wallace and Hussain (1969) and Nerlove (1971b), has

ordered the disturbances first by individual, second by period, whereas we have chosen the reverse order-

ing.)

The covariance matrix of the complete GTH x 1 disturbance vector that would result if all the H

individuals were observed in all the T periods,

^
^e '\rvec(e )

1• 1.

(3.5) 	 e = •

G2    vec   e )^ ^

G

can thus be written compactly as4

E(ee' ) = E vi® I T Q I H + E v Qx I T ® E H + E u 0 ET Q I H ,

	^ u 	  u

	

a l l 	 a
l G

	

. 	 .
•

	

.	 ._ 	 •
	u 	;u	^G1 	 aGG

Now, a subset, consisting of N of the H individuals in this hypothetical panel, are actually

selected. Define, in analogy with (3.1), the N x T matrix

(3.6)

where       

(3.7)  

i 1T

:
E i NT   

E i •

E i
:
NI  

= (E il E iT )	 (i = 1, ..., G) ,               

where E iht is the disturbance in eq. no i belonging to the h'th individual of those observed in the t'th

perioa. (Its population number is (t - 1)m + h.) The t'th column of this matrix, E it , contains the dis-

turbances in period t of all the individuals actually observed in this period. Obviously,

4) Cf. Avery (1977, eq. (27)) and Baltagi (1980, eq. (7)).



(3.9a) =I N

whereas non-overlapping samples

(3.9b) 	 Dt = (0 1 , t

(t = 	 , ..., T),

correspond to

01, T _ t) Q

IT6^ j u + Q i jw ) I N + 6 i j v E N

u
6 ij DtD s '

for s = t

= 1 s •

for s * t

.., G).
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! 	 1
i = 1, ..., G

Eiht - ei'(t- 1)m+h,t 	
h = 1, ..., N

t -- 1, ..., T

\ 	 ^

This relationship can be stated compactly in vector notation as

(3.8)
Ei t 	Dt e.

i = j, ..., G
t = 1, ..., T

^

where D t i s a sample design (selection) matrix of dimension N x H ( = N x [ (T 	 1) m + N ] ) defined as

follows:

' 

(3.9) 	 Dt - O 	(t - 1 m i ^ IN ' O NN , ( 	 )  	 ' ( T- t)m 	 ^

ONndenoting the N x n zero matrix. Element (h, k) of D is 1 if the k'th individual in the population

is the h'th individual in the sample in period t, and zero otherwise. In completely overlapping samples

(m = 0), we have in particular

t

Since D tDt ' = I N and Dt EH Dt  = E N for all t, irrespective of the sampling design, it follows

from (3.2) and (3.8) that

(3.10
E(E it 

E js _) = DtE(ei t e js ) Ds '

From this equation it is evident that a. u and aijw are not identifiable unless DtDS' * O N , N for at

least one s * t, which implies that at least two of the T samples overlap. If D tD s ' = ON , N for all

t and s * t, i.e. all samples are non-overlapping, only a.• v and o.. 0 + 6..w can be identified from

the data.

Defining the TN x 1 vector

(3.11)
-

E i = vec (E i ) = 	•
•

^ .E iT

(i = •

and the stacked TN x H selection matrix

(3.12) 	 D
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eq. (3.10) can alternatively be written in the form

(3.13) E(€€') = 6i J. w I T ® I N + 6i J. v I T ODE N + Qi 
J
.0 DD '    

(i,J=1, ..

The covariance matrix of the stacked GTN x 1 vector

(3.14) 	 E =

(vec (i 1 )
_ 

`vec (Er)

can then be written compactly as

(3.15) E(EE') = = Ew ®I T ®I N + E v a I T ® E N + u ® DD'.

This is the general expression for the disturbance covariance matrix in seemingly unrelated regressions

models based on combined cross-section/time-series data.

In the special case with completely overlapping samples, it follows from (3.9a) and (3.12) that

D = 1 T ®I N , where 1 T denotes the T x 1 vector with all elements equal to one. Then DD' = (1 T 1 T ') Q I N

= E T ® I N , and the covariance matrix becomes

(3.15a) 	 Q=S2C=Ew ®IT®IN+Ev®IT®EN+E®ET®IN,

the subscript C denoting 'complete'. Not surprisingly, we find that this expression is identical with

(3.6) with H set equal to N. At the other extreme, non-overlapping samples are characterized by D = I T ®

I N (cf. (3.9b) and (3.12)), which implies the following covariance matrix:

(3.15b) 	 = 	 = (Ew + 
ELI) 	 ITQIN + E v ©I T ©EN '

the subscript N denoting 'non-overlapping'. This expression is equivalent to (3.6) with H set equal

to N, Ew replaced by Ew + E u , and with the last term omitted.

3.2. The two components case: Time specific components excluded 

In the previous section, we gave a characterization of the covariance structure of the dis-

turbances in the general case where both the individual (u ih ), the time specific (v i t), and the remain-

der disturbance component(wiht) are included. This specification is theoretically attractive, not

least because of its symmetry. However, for practical applications of disturbance components models

in the context of genuine micro data, time specific effects are usually of far less importance than

individual ones. This reflects, inter alia, the fact that the number of individuals by far exceeds the

number of periods involved (e.g. T < 5 and N > 100). Then E u and Ew dominate over E v , and for prac-

tical purposes the latter may be ignored without essential loss.

In this section, we take a closer look at the covariance structure when Ev= 0G,G 	
Of course,

from (3.15) it then follows that

(3.16) 	 E(EE') = 	 = Ew ® I T ® I N + E u ODD' .

However, the ordering of the disturbances which leads to this expression for the covariance matrix does

not exploit the fact that when time specific effects are ignored, the actual succession in time of the

different observations is irrelevant. We can, without fear of ambiguity, drop the time subscript from
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the model specification and rearrange the disturbance vector. 5) This is what we shall do in this

section.

We arrange the individuals in groups according to the number of times each individual is under

observation and identify each individual by its number in the group to which it belongs. Let, in general,

H(p) denote the number of individuals in the p'th group, i.e. the number of individuals observed p times.

Let P denote the maximal number of replications. We arrange the H(1) observations from the individuals

observed only once in the first group, the H(2) individuals observed twice and the corresponding 2H(2)

observations in the second group, 	  the H(P) individuals observed P times and the corresponding

PH(P) observations in the P'th group. Obviously, we have 6)

E 	 H(p) = H = total number of individuals observed,
p=l

P
E p H(p) = TN = total number of observations.
p=1

To fix ideas, let us refer the values of P and H(p) corresponding to the five sampling designs

illustrated in Figure 1 above. We find

Case A: P = 5; H(1) = H(2) = H(3) = H(4) = 0, H(5) = N = 1`000.

Case B: P = 4; H(1) = H(2) = H(3) = H(4) = N = 500.^
Case C: P = 2; H(1) = = N= 1 000, H(2) = 2N = 2 000.
Case D: P= 2; H(1) = 3N = 3 000, H (2) = N = 1 000.

Case E: P = 1; H ( 1) = 5N = 5 _000.

In the following, we use (h, p) as a shorthand notation for the h'th individual of those observed

p times (h = 1 , ..., H(p); p = 1, ..., P) and defi ne

E i(h, p)q: disturbance in eq. no i relating to the g'th observation 
from individual (h, p)

G;	=	 p;	=	 H(p);	 =(i = 1, ..., G , q 	1, ..., p, h 	1, ..., H(P)^ p 	1, ..., P).

The p x 1 vector containing the disturbances in eq. no i relating to individual (h, p) is

(3.19 

(i = 1, ..., G)

(h = 1, ..., H(p))

(P = 1, ..., P).
E i

p

5) This may necessitate a redefinition of some of the structural variables in the model. When no

lagged endogenous variables are included, (cf. footnote 2), this reformulation is trivial.

6) It is not essential for this reformulation of the model that the sample size is the same, and equal

to N, in all the periods. The following formulae are equally valid in more general situations where

the sample size changes from period to period; only the sequence, H(1), ..., H(P) is of importance.



or alternatively in the stacked Gp x 1 vector

1

:1(h, p)
(3.22)

EG(h,
 P )
^

(h = 1, ..., H(p))

(p = 1, ..., P).
E (h,

 p) 
= vec (E(h, p ) )-

Since, when o ij v = 0 we have

E
 E

i h, p)q Ej(k, n)r l =

(cf. ((2.9) ), it follows that

16

for (k, n) = (h, p) and r = q

for (k, n) = (h, p) and r $ q

otherwise

(3.20) E[E 	 E '
i(h, p) 	 j (k, n

Q i .w I + a u i j ` E.p 	for (k, n) = (h , p)
J 	 P

Op, n 	 for (k, n) * (h, P)

(i = 1 , ..., G; j = 1, ..., G)

( h = 1, ..., H(p); k = 1, ..., H(n))
(p = 1, ..., P; n = 1, ..., P).

(3.21)

It is convenient to arrange all disturbances from individual (h, p) in the p x G matrix

E 1(h, 
p)1 .... EG(h, p)1

E (h, p) 
= 	 = (E1(h, p) 	  EG(h, P) )

E 1(h, P)p
.. 	 G(h, p)p

, ..., H(P))

^ 	 •••! P)s

(h =

(p

Eq. (3.20) can then be written as

SZp 	for k, n) = (h,
(3.23) 	 E [E 	 ^ p) E(k

^'
 n)1 =

OGp, Gn
	 for (k,n)$( 5

(h = 1, •.., H ( p ); k = 1, ...,

(p = 1, ..., P; n = 1, ..., P) ,

where Si p is the following Gp x Gp matrix:
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(3.24 2 p =Ew (D I p +Eu© E CP = 1,

Let now E (p) denote the H(p)Gp x 1 vector containing all disturbances from the p'th group,
from all individuals observed p times:

C(1 ,P)
(3.25)

E C P) •

(H(P),P)
^ 	 _./

(

The covariance matrix of the complete disturbance vector

( 3 . 26 ) 	 E* =
•
E(p)

L/
P

of dimension E H(p)Gp x 1, i.e. GTN x 1 (cf. (3.18)), can be written compactly as
p=1

(3.27) 	 E(E*E*' ) = S^ =

where S2P is defined as in eq. (3.24).

Of course, eq, (3.27) expresses the same hypothesis regarding the second order moments of the

disturbances as eq. (3.16). The difference lies in the different ordering of observations to form the

vectors E (cf. eqs. (3.7), (3.8), (3.11), and (3.14))and E* (cf. eqs. (3.21), (3.22), (3.25), and (3.26)).

The ordering which leads to E * implies that the corresponding covariance matrix, 2* , assumes a block-
diagonal form: First the block 2 1 = Ew + E u is repeated H(1) times, then the block 52 2 = Ew ® L 2 + E L I ®

 is repeated H(2) times, the block c3 	 w Q 1 3 + E u 0 E 3 is repeated H(3) times, etc. Needless to say,

this will be an obvious virtue when it comes to estimation.

4. ESTIMATION

Following the organization of section 3, we shall also divide the discussion of estimation problems

into two separate parts. First, in section 4.1 , we outline a procedure for Full Information Maximum

Likelihood estimation on the basis of the general formulae for the disturbance vector Eand its covariance

matrix 2 in section 3.1. Then, in section 4.2, we turn to the reordered disturbance vector E* , as given
in section 3.2, and discuss in more detail a step-wise algorithm for estimating the two components model.

4.1. Outline of a procedure for FIML estimation in the general three components model 

Let y i denote the TN x 1 vector of observations on the endogenous variable in the i'th of the G re-

gression equations in (2.1), ordered in the same way as the disturbance vector E. (cf. (3.1), (3.8), and

(3.11)), and let X i be the corresponding matrix of observations on the exogenous variables. (We do not

refer the formal definitions of y i and X i since they are not needed in the following: y. is formed by

an appropriate selection of the scalars yiht' and x. is constructed by an appropriate selection of the

row vectors xi ht ') The i'th equation can then be written as
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(4.1) 	 yi = Xi Ø i + E i

Combining all equations in one system, we get

(4.2) 	 y= X Ø+E,

where E is defined as in (3.14) and

(i = 1, ..., G) 

^ a X l 0. 	 0

, X = 	 0 X2,. 	 0
.

0 o 	 ^ X  

Y = = 	 a2       

\G,/

Provided that the disturbances follow a multivariate normal distribution, the log-likelihood

function of y is

(4.3) L = L(y, X; $, S2) _ - GTN--2-- log (27) - 17 log 101  - l7 E 1 0-1 E,

where S2 is defined as in (3.15) , using E as a shorthand notation for y - X.

Formally, the problem of Full Information Maximum Likelihood (FIML) estimation of the complete

model can now be expressed as follows: Maximize L, or equivalently, minimize

(4.4) 	g = log I Q I + E'0-1 E,

where

S?, = Ew (D IT 	I N + E v ® I T ® E N + E u u DD'

with respect to a,Eu, Ev and Ew. In doing this, we pay regard to the definition of the stacked

selection matrix D, which describes the sampling design (cf. eqs. (3.9) and (3.12)).

Direct minimization of g may, however,.raise numerical problems and easily become prohibi-

tive in terms of computer costs. If certain regularity conditions are satisfied, FIML estimates

can in principle be attained - to a prescribed degree of approximation - by iteratively switching

between the following two subP roblems: 7)

(i) Minimize Q = E 'Q1-1E with respect to Ø, conditionally on  S^.

(ii)Minimize g = log 1 S2 I+ E' S2 E, where 	 = E 	I^, Q I  + v  I Ox  E
N

	E Ox DD ' ,

w 
I

T N 	 v 	 T 	 ^ 	 u
with respect to u' E

v.'
	Ew, conditionally on Ø.

To start this algorithm, initial values have to be assigned to E u , E v and Ew . A convenient choice

may be to set E u = E v = 0 and let Ew be a diagonal matrix with the i'th element equal to the estimated

disturbance variance from a preliminary least squares regression on the i'th equation (i = 1, ..., G).

Solving subproblem (i) is equivalent to Aitken Generalized Least Squares (GLS) estimation of

Ø. The resulting estimator is

= (X'C 1 X) -1 X' C l y.GLS

It is well-known that this estimator is more efficient than the one obtained by running Ordinary

Least Squares (OLS) regression on each of the G equations (4.1) in all cases except the following two:
 8)

7) If this zig-zag procedure converges towards a unique solution, it will give the FIML estimates.
For a formal demonstration of this, see Oberhofer and Kmenta (1974).
8) Cf. Zellner (1962, p. 351) and Theil (1971, pp, 308 - 310). We implicitly assume that no cross-
equational constraints have been imposed on the coefficient vectors Ø l , ..., ØG . If such constraints

apply, OLS will be inefficient also in cases (a) and (b).

(4.5)
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All G equations contain exactly the same explanatory variables - i.e. X can be written
as X 	 I G Ox 7 - and c is a bloc-diagonal matrix of the form 0 = EC) I

TN .

No elements in the disturbance vector E are correlated, i.e. 	 can be written as c =

diag (
a11 a GG ) ® I TN• 

Neither of these specifications will be valid in a disturbance components model with either individual

or time specific effects, or both, included. Thus, we can safely conclude that even the conditional

GLS estimator which solves subproblem (i) is more efficient than OLS. This conclusion holds even if

all equations contain exactly the same set of exogenous variable, i.e.

X = . .. = X = 7 (or X = I Q ^). 9)1 	 G 	G.

An expression for the inverse of the covariance matrix 0 is indispensible for solving sub-

problem (i) algebraically. Unfortunately, it is difficult to derive such an expression in the general

case considered here - mainly due to the presence of the stacked selection matrix D in the expression

for 0. 10) Moreover, c will usually be a matrix of considerable dimension. If N 	 100, T. 10, and

G = 5 - to take a realistic example - then sZ will be a 5 000 x 5 000 matrix. All who are familiar

with computer problems, know that the inversion of a matrix of this order is no trivial matter.

In two special cases, however, algebraic expressions for c 1 can be easily derived. These

are the cases with completely overlapping samples (m = 0, i.e. D = 1 T ® IN) and with non-overlapping

samples (m = N, i.e. D = IT Q I N ), cf. eqs. (3.15 a and b). By a slight reformulation, we find that
the corresponding expressions for the covariance matrices can be written as

(4.6)
ET 	EN

0C = Ew xQ (I T  - ,^--} Q) ( I N - ^--} + (Ew +
ET

u) C C )0(iI

E N
N )

E+ NE 	 I - ET 	E+ 	 NC w 	^)C^CT ^--)aN^ + TE + 
^ ^ )ØT-aN

ET 	EN
u 	 ^ v 	'

_ E N 	
EN

_ 	 +N 	 ( ^w 	 ^u) a I T 	 N Ta (I ^ ) w 	 u 	 v+ (E + E + NE} 	 I T

respectively. Now, it is easy to show that both I N - E N/N and EN /N are idempotent matrices and that

E N E N 	E N 	E N

( I N 	 N ) N - Ø (IN - 1T- 1
= O

N,N
,

and

(4.7)

regardless of the value of N. From this fact and familiar properties of Kronecker products

follows that
12)

_1 	 _l 	 ET 	 EN 	 - 1 	 ET 	 E N
s^ C 	= zw a (I T - T-)O( IN - 7-) + (^w + TE u ) 87---0 (I N + N )(4.8)

it then

r 	_ ET 	 EN 	 1 	
ET 	E N

+ (Ew  N z v) ®C I T 7—
)Qx 1l• + ( Ew + TE u + NE v ) Q TI O 1T.-,

9) A similar observation has been made by Avery (1977), for the seemingly unrelated regressions model
based on complete cross-section/time-series data . .
10) In a recent paper, Wansbeek and Kapteyn (1981) have addressed a similar problem for a single equation
model. Their formulae, however, turn out to be rather messy and do not invite attempts at generalization
to multi-equation models.
11) See e.g. Theil (1971, pp. 303 - 306).
12) Cf. also Baltagi (1980), eqs. (7), (11), and Lemma. A lucid treatment of the corresponding situation
in a single equation model is given in Mazodier (1971).
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and

(4.9)
-1 	 -1 	 E N 	 -1 	 E N
N = (Ew + E u ) ^ I T © (I N - 	 + (Ew + E u + NE v )x^IT Q N .

The problem of calculating the inverse of the covariance matrix is then reduced to the problem of

inverting the four GxG matrices

Ew ,

Ew + TE u ,

Ew + NE v ,

and 	 Ew + TE u + NE v ,

in the case with completely overlapping samples, and to the problem of inverting the two GxG matrices

E + Ew 	 u

and	 Ew + E u + NE v ,

in the case with non-overlapping samples. Inserting (4.8) and (4.9) into (4.5) , we obtain the condi-

tional GLS estimators of 	 which solve subproblem (i ) in these two special cases.

The solution to subproblem (ii) is even more complicated since the minimand g contains not

only the inverse of c, but also its determinant value, 101. Even in the special case with completely

overlapping samples (m = 0, D = 1T® I N ) it involves the solution of a highly non-linear equation

system.
13)

By pointing out this unsolved problem, we end our discussion of estimation procedures for the

general three components model. We now drop the time specific component; this will make things con-

siderably easier, as we shall see in the next section.

4.2. Iterative FIML estimation in the two components model

Let yi(h4P) denote the pxl vector containing the observations on the i'th endogenous variable

from individual (h,p), ordered in the same way as E i (h,p) (cf. eq. (3.19) ), and let X i (h,p) be the

corresponding matrix of observations on the exogenous variables. The i'th equation can then be written

as

(4.10) yi (h,p X i (h,P ) Ø i + Ei (hor) (i = 1, ..., G)

(h = 1, ..., H(p))

( P = 1, ..1., P).

Combining all G equations in one system, we have

13) This problem has been thoroughly discussed by Amemiya (1971 ) for the corresponding single equation
model. He shows, however, that simpler "analysis of variance estimates" exist, which are asymptotically
equivalent to the Maximum Likelihood estimates. See also Magnus (1978) and B ltagi (1980).



E* ' sZ* 1 E
P

= E Q p ,
p=1

H(p) 	_ 1
= Q P 	 h=1 

E', 
h,P) ^P 	

E(h^p
1

and

(4.14)

where

(4.15)
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(4.11) y(h ,p
= 

X (h,P)
Ø
 + E (h^P)

(h = 1, ..., H(P))

(P = 1, ...., P),

where E (h ,p is defined as in eq. (3.22) and 

/

yl(h,p)       

X (h,P)

1 (h, P ) '
.. - ........0

y(h ,p ) =      

• XG(h,p) yG(h,p)              

The log-likelihood function can be written in terms of E * and sZ (cf. ( 3.26) _and (3.27) ) as

follows:

(4.12) 	 _ = _ GTN log (
27 ) - 1 

log

From eqs. (3.23.) - (3.27) we find 

P

og I 	 = E H(p) log I s2
p=1 

(4.13)   

P
E H(p) log

p=1 
Ew QI p +E u QE 

H(p)
	= E	 E'
	h =1 	 (h,p)

+ E u 
Q E p ]

-1 E
^P

Inserting (4.13) and (4.14) in (4.12) yields

(4.16)

where

(4.17) 	 g = H(p) log 	 + Q 	 H(p) log Ew Ø I + 	 (,x)E' + Q
P 	 P 	 P 	 P 	 u 	 P 	 P

In the expression for Q p , cf. (4.15), we interpret E ( h ,p) as a shorthand for y (h , p) - X(h ,p) Ø.

Thus, the log-likelihood function is,  apart from an arbitrary constant, a sum of P terms, one

for each of the P groups  of individuals. The P 'th term, - 1 g p , represents those individuals which are-^ 

observed p times. This separability is, of course, due to the block-diagonal structure of n, which

reflects the omission of time specific disturbance components, and our particular way of ordering the

elements in the disturbance vector E*.

GTN
 log (2^r)- 1-5- 

P
—2-- E g

P
,

p=1 

= 1,
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P

In this simplified model, FIML estimation corresponds formally to minimizing g = E g  with

P= 1
respect to Ø, 

Eu
 and Ew , subject to (4.15) and (4.17). The 'iterative procedure for solving this

problem consists of the following two subproblems:

(i)

P
Minimize Q = E Q  with respect to Ø, conditionally on 2p (p = 1, ..., P) .

p=1

P
(ii) Minimize g = E g  with respect to Eu and 

Ew, conditional7y on Ø.
p=1

Let us consider these two subproblems in turn.

Subproblem jib: Minimization of 9 with respect to Ø
The matrix 2 p can be written as

= 	 ^ 	
E,

^p ^w O(I -

	

PPP 	 + ^w P •

By utilizing the fact that I p E p/p and E p/p are both idempotent for all positive integers p, we

easily find that its inverse i s 14 )

(4.18) ^ -1 = ^ -1 Q ( I - 	 ) + (Pz + z ) -1 
^

E 	 E

^
P 	 w 	 P 	 P 	 u 	 w 	 P

= 1 ,

Since (pE + E ) -1 is symmetric and non-singular, there exists a non-singular matrix S , of dimension
u 	 w 	 P

G x G, such that
15)

(4.19) (Pz u + zw)
 , =s 	

S P

Combining (4.18) and (4.19), while again using the fact that
-1 

can be factorized as follows:

- E
P
 /p and E

P
 /p are idempotent, we find that

(4.20)

where

(4.21)

S^ - 1 = F
P 	 P

E 	 E
F = SO 0 ( I - --^) + S Q --^
P 	 PP 	 PP

(p = 1, ..., P) ,

E

[Sp ^x I P J [I G (DI p -(I^ _ g 0-1 S p )^x p l

Then the quadratic form relating to the p'th group of individuals,

sum of squares

= 1, ..., P).

can be written as a

(4.22)
H(p)

= 	 ^Q p 	^ n
h=1 	(

h,p ) n( h,p ) (P = 1, •

where n (h,p) is the Gp x 1 vector of transformed disturbances

14) Confer the derivation of (4.8) - (4.9) from (4.6) - (4.7) above.
15) This factorization is not unique, but this is immaterial for the following application.
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r^ 	 = F E 	 (h 	 1, .., H(p))
(h ,P) 	 P 	 (h, P)

(p = 1, •••, P).

The algorithm for solving subproblem (i) thus boils down to

(a) Compute the matrices (pEu + E w ) -1 for p = 0, Z, ..., P, and perform the factorization (4.19)

(b) Compute F by means of (4.21) (p = 1, ..., P).
P

(C) Premultip ly the observation matrices y (h, p) 	X (71, p,  rom all individuals observed^  

p times by the matrix F (p = 1, ...., P).

P
(d) Minimize the overall sum of squares of the transformed disturbances, Q = E  Qp =

P H(p)

p
E-1 h=1 ^ ^ (h, p (h, p) with respect to $.

Subproblem (ii): Minimization of g with respect to Eu and Ew

In order to solve the second subproblem, we need expressions for the first derivatives of

l og j (p land Q with respect to E and E . We can obtain these rather easily by utilizing formulae for
P 	 u 

a log I Stp l

aE w
[I © (vec I ) 1 ] [S^ -1 Q I J [ I ^x (vec I )J,G 	 p 	 P 	G	 P

a l og l Q
p

I
 =
_ 	 _1

aE 	 [I G O (vec I)' J [S^ p ^ E P J [I G Q (vec I p )J
u

= 1, ..

By inserting (4.18), while noting that

(vecI p )' (I 0 I p ) (vec I p ) =

(vec I p )' (E
P
 Ox I p ) (vec Ip) = (vec Ip)' I p © E p )(vec I

	 = p,

(vec I n )' (E
P
 Ox Ep )(vec I p ) =

 2

these expressions can be simplified to

(4.23)

matrix derivatives developed in Balestra (1975, sections 5.2 and 5.3).
16)

From eq. (3.24) above and Balestra (1975, eq. (5.3.18)) it follows that

(4.24) ; a log SZ
aEw = ( - 1 . -1 + 	 E + E )

-1 ,
u 	 w

(4.25) 
=p E  

(P = 1 , ...., P).

16) Confer also Chamberlain and Griliches (1975, appendix).



E

(I 	 - P )^ P) 	 P 	 P

^ 	 E
+ t r[ E t 	—^ E(h, P) P 	 (h,

E -1 ]
, p) w

pE + E ) -1 ].
u 	 w

E' 
	-1

(h, P) P 	(h, P ) 
= tr [
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We have now two of the elements needed for calculating the first derivatives of g with respect

to the covariance matrices. Let us turn to the quadratic form Q p , as defined in (4.15). First, we

note that the part of Q which relates to individual (h, p) can be reformulated as
P

E' 	 52 -1 E 	 = (vec E
(h^( h, P) 	 P 	 (h, P) 

E
-1 	_

P))
^CE

w ^ ( I P 	 P ) (vecE(h, p))

+ (vec E (h, p)

Ep
OPEu + Ew  ^ P

(vec E(h, p) )'

by utilizing (3.22) and (4.18). Since the trace of a quadratic matrix of the form ABCD can be written

as 17)

tr (ABCD) = (vec A')' (D' Qx B) (vec C),

we can reformulate this equation as

Hence,

(4.26) Q = tr[(C -r )E -1 ] + trR (pE + E ) -l ]
P 	 P 	 P w 	 p u 	 w

(p = 1, ..

where C p and •p are G x G matrices defined as

(4.27

(4.28)

H(P) :^
= E 	 E'(h

h=1 	 ,

1 H(P)N

P 	 P h -_ i	(h' P)

s

EP E (h, P)  P ).

From eq. (4.26) above and Balestra (1975, eq. (5.2.19)) we derive

(4.29 -1 	 -1(C -)E^ 	 - (p2 + E ) 	 (p2 + E
w 	 p 	 p w 	 u 	 w 	p 	u	 w

—1

(4.30) GQP 	+	 -1 	+	
-1

= - 
GE 	 P(PE u 	 Ew ) 	 ^p (PEu 	Ew ) (P - 1 , ..., P).

The first order conditions for minimizing g with respect to the covariance matrices now follow

by inserting (4.24), (4.25), (4.29), and (4.30) in

(4.31)
	

P 	39	 P

	
[H(P) 

go i

EW 	p_1Wp_ 1
aEW 	aEW 	 = 0,

(4.32) = E â = E [H(p)
a log l Q

p ^ + ate. = o.aE ^ 	 p_^ aE u 	 p_1 	 aE u 	 aE u  

17) See Balestra (1975, p. 20) or Magnus (1978, eq. (4)).



E CPH(P) E ^ (P)̂ 	 P 	
- C

E
 0 	 p=1 	 1 	 p^p 	 pu = 

P 	
=
	 E

E 	pH(p) 	P 1 	P - 1
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This gives a non-linear system of G(G+l) equations in the unknown variances/covariances a..w and a. u ,ij 	 J
and defines our first-order conditions for solving subproblem (ii).

The numerical solution of (4.31) - (4.32) may be intricate, even for low values of P and/or

G, and an iterative algorithm may be the only feasible approach. To obtain sensible initial values

of Ew and E  from which to start the iteration process, the following approach may be useful:

Assume, hypothetically, that our data consisted of observations from individuals observed p

times only. The equation system for solving subproblem (ii ) would then be

(4.33
p =
	 -
- H(p) ((P 	 1 ) E -1 + (PE + E ) -1 JaEw 	 w 	 u 	 w

- E -1
 (C - up) E-1-( PE +E ) -l ^ (pE +E )- = 0,w 	 p 	w	 u 	 w 	 p 	 u 	 w

(4.34) 3gn=
	 _H(P) P (PE + E ) -1 P(PE + E) - 1aE u 	u	 w 	 u 	 w PE u + Ew

-1

This system can be easily solved. Let its solution be E,(p) and E u (p). From (4.34) it follows direct-
ly that

P) + Ew(P) = H
g

 Pfi•

Inserting this into (4.33), we get

H(P) (P - 1 ) E,.,(P) 	 = E,.,(
	

- 7p ) Ew (P) 	 •

Hence,

(4.35)

(4.36)

-_ C P 	 P 	,
(p -1) H(p)

P ^p - C p

P (P _ 1) H(P)

These are the estimates of Ew and Eu that we would obtain by utilizing_ data from the p'th group of

individuals only. The corresponding estimator of the 'total' covariance matrix E = Eu + Ew is

C
(4.37) 	 E(P) = E u (P) + Ew (P) = HP

	•P (P)

Usually, (4.35) and (4.36) will give different 'estimates ' for different values of p. The

estimates which solve subproblem (ii) may be considered .as.:'compromise values' of Ew (p) and E u (p) for

p = 1, ..., P. These considerations suggest that an appropriately weighted average of the P group

specific estimates will be sensible initial values for an iterative solution of the complete equation

system (4.31) - (4.32). We may, for instance, use the number of observations on which each estimate

is based as weights. This would give the following initial values for E u and Ew for starting the

iteration process in subproblem (ii):

p=1

^ = 1 E
P 	

p -Ew 	^. ^ 
177—T

  p Cp ) .
p-1
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These values can be easily calculated once we have calculated the matrices C p and p from the distur-

bances obtained by solving subproblem (i), cf. eqs. (3.21), (4.27) and (4.28).

A closer look at the single equation case

To get a closer understanding of the 'anatomy' of this iterative algorithm, let us see what it

implies in the case where the model contains one equation only. When G = 1, we have, with simplified

notation,

(4.38) 	
. 	

E „ = a 2 	 2
= Pa ,

E = 6 2 = (1-p)62 ,
w	 w

where a2 = 6 
u 
2 + a

w 
2 is the total disturbance variance and p = au

2
/a

2 is the part of this total which

is due to individual variations. Alternatively, p can be interpreted as the coefficient of correlation

between two disturbances from the same individual.

Subproblem (i)

When G = 1, the S's, as defined in eq. (4.19), are scalars given by

- S O = 6 =
w a VI p

S= 1 	= 	1 
P 	,^pQ2+ Q 2 	Q ✓ 1 + (p-1)p

u 	 w

( p =

The expressions for the transformation matrices, (4.21), then become

(4.39)

where

(4.40)

1 	 ^F =   [I - (1 - ap )
Q✓ 1- p 	

p 	
p

1
l - p 

ap =
1 + (p - 1)p

( p = 1 , ..., P

(p = 1, . ...,

All the matrices F contain S - = a-1 (1 - p) 	 as a common scalar factor, which is irrelevant
P 	0

for solving subproblem (i), so we may equally well use Fp/SO = I  - (1 	 a - ) E p/p as transformationP
matrices. Premultiplying the original disturbance vectors E(h, 

P)
 by these matrices to form the sum of

squares to be minimized then implies the following:
18)

Multiply the observations from individuals observed only once by 1 - (1 - a 1) = a1 _ (1 p) ,

subtract from the observations of all individuals observed p times (p = 2, 3, ..., P) a fraction
1 - a -= 1 - [ (1 - p)/(1 + (p - 2)p)] of the corresponding individual average, 19) and

P
minimize the resulting sum of squares of disturbances.

We note that 1- ap , the fraction of the individual average to be subtracted, is an increasing function

of p, the individual share in the total variance. It is also an increasing function of p, the number

of replications. Or stated otherwise: The stronger the disturbances from the same individual are

correlated and the larger the number of times each individual is observed, the larger fraction of the

individual average should be subtracted to give the transformed disturbances. Table 1 reports the

value of 1 - a for selected values of these two parameters.

18) The same algorithm is stated, without proof, in Biørn (1981, p. 229).
19) Recall that prernultiplying a p x 1 vector by E -

p
/p implies to replace all its elements by

their average value.

1
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Table 1. The transformation parameter 1 - ap = 1 - 	1	 p 
l +(p -1)p

p

0 	 0.01 	 0.1 	 0.2 	 0.5 	 0.8 	 0.9 	 0.999

1 	 0 	 0.0050 	 0.0513 	 0.1056 	 0.2929 	 0.5528 	 0.6838 	 0.9684

2 	 0 	 0.0100 	 0.0955 	 0.1835 	 0.4226 	 0.6667 	 0.7706 	 0.9776

3 	 0 	 0.0148 	 0.1340 	 0.2441 	 0.5000 	 0.7226 	 0.8110 	 0.9817

4 	 0 	 0.0196 	 0.1679 	 0.2929 	 0.5528 	 0.7575 	 0.8356 	 0.9842

5 	 0	 0.0243 	 0.1982 	 0.3333 	 0.5918 	 0.7818 	 0.8526 	 0.9859

10 	 0 	 0.0470 	 0.3118 	 0.4655 	 0.6985 	 0.8438 	 0.8952 	 0.9900

20 	 0 	 0.0879 	 0.4429 	 0.5918 	 0.7818 	 0.8889 	 0.9257 	 0.9929

100 	 0	 0.2947 	 0.7127 	 0.8039 	 0.9005 	 0.9501 	 0.9667 	 0.9968

. 	 0	 1 	 1 	 1 	 1 	 1 	 1 	 1

Subproblem (i i )
-------

When G = 1, eqs. (4.24), (4.25), (4.29), and (4.30) can be simplified to

al oglSZo I 	 _ p-1 	1
	 ,

a6

	

2
	 å + 

pQ2+cs2	w 	 u ww 

aQ

a6 
2 	
Q 	 P 	 P 	 (pQ 2+Q 2 , 2 P

P  = -. 1 	 - -^) - . 	1 	 ^ ^

w 	 w 	 u w

A
P 

aQ
2

P 

(PQu 2 + Qw 2 )

Cp .

Inserting these expressions into the first-order conditions for subproblem (ii), (4.31)-(4.32),

while substituting (4.38), we obtain after some rearranging

P 	2	 -1
(4.41) 	 E {Q (1-p) 	 H(p)(p-1

P= 1
- p )" Z (0 -"C )}

P

P 	 2 	-1
+ E {Q [ 1+ (P- 1)p]

	
H(p) - [ 1 +(P-1 )p

P= 1

2^ }=0,

P

  E {Q 2 [l+ _ 1 p].-1 H 	 P - (1+(P- 1)0 -2 ^ } = O.(4.42) 	 (P 	 )	 (P) P 
Pp=1
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A procedure for solving these two non-linear equations, and hence subproblem (ii), may for

instance be: first, express a2 as a function of p by utilizing (4.42):

P 	 2 _
E [1 + (p- 1)p]	 p C P

(4.43) Q2 = P =1  
P 	- 1E [1+(p-1 )p] pH(p)

p=1

second, insert this expression in (4.41), and solve the resulting equation with respect to p'by means

of a grid search procedure, and third, insert the solution in (4.43). Given the complexity of our

problem, this is a remarkably simple estimation procedure.

5. CONCLUSION

Conbined.cross-section/time-series data constitute a very wide class of data structures, and

both from a theoretical and, in particular, from a practical point of view the standard model which

assumes complete time series to exist for all the observation units is a very restrictive one. In

this paper, we have tried to widen the scope a bit by adopting a specification which allows for in-

complete time series and which is applicable both in a multi-equation and a single equation context.

Of course, the estimation problem becomes more cumbersome in this case than for the simpler models

usually discussed in the literature. When the panel of individuals rotates, it is, in particular, the

possible presence of time specific disturbance components which contributes to the complexity. This

is the price we have to pay to make the model applicable to a wide class of practically important data

structures.

If time specific components are omitted - which is realistic in many situations - the esti-

mation problem may be simplified substantially, and an iterative algorithm for FIML estimation can be

fairly easily implemented on a computer. This algorithm is particularly transparent in the single

equation case - indeed it is surprisingly simple - but it is applicable also to linear multi-equation

models, although it may involve a lot of programming work and a considerable amount of computer time.

Some practical experiences should be gained before we can decide how well it will work.

The model specification studied in this paper includes several models discussed in the

literature as special cases. To put our approach i n perspective, let us give a few examples:

Three components specification : Eu, Ev, Ew unrestricted

G > 1, m = 0: Avery (1977) (Only GLS), Baltagi (1980).

G = 1, m = 0: Wal lace-Hussain (1969) , Nerlove (1971b) , Mazodi er (1971 ) ( On ly GLS), Amemiya (1971).

G = 1, 0 < m < N: Wansbeek-Kapteyn (1981).

Two components specification: E v = 0, E u and Ew unrestricted

G > 1, m = 0
20) : Chamberlain-Griliches (1975, appendix), Balestra (1975, Ch. 6).

G = 1, m = 020) : Bal estra-Nerl ove (1966) .

G = 1, m = N/2
21) : Biørn (1981).

20) Or equivalenty: G >- 1, H(T) = N, H(p) = 0 for p 	 T.
21) Or equivalenty: G = 1, H(1) = N, H(2) = (T-1)N/2, H(p) = 0 for p > 2.
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One component specification: Ev = E u = 0; Ew unrestricted

G > 1, m > 0: Conventional 'Seemingly Unrelated Regressions' model; Zellner (1962) .

G = 1, m > 0: Standard linear regression model.

Our approach does not, however, include the models discussed in recent years in connection

with the socalled "selectivity 	 "self-selection 	 roblem. 22 }
y bias" (or self-selection bias") 	 We have implicitly

disregarded the possibility that the panel may be subjected to a systematically changing degree of

non-response by assuming that the sampling design is determined prior to and independent from the

individual decisions represented by the structural equations of the model.

22) See e.g. Hausman and Wise (1977), Griliches, Hall, and Hausman 1978) , and Maddala (1978).
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