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1. INTRODUCTION

The aim of this paper is to study modelling in panel surveys with nonresponse. We
consider population models with a sequential conditional logistic model for the response
mechanism. Other types of models for nonresponse in panel surveys are discussed by Fay
(1986,1989), Stasny (1987) and Conaway (1993). Two prediction methods utilizing mean
imputation and an estimative approach are considered for estimating the population total.

Two applications are considered. The first one is estimation of the population rate of
participation in the 1989 Norwegian-Storting election, based on panel data from the 1985
and the 1989 elections. The second problem considered is estimation of car ownership in
Norwegian households in 1989 and 1990, with panel data from the Norwegian Consumer
Expenditure Survey. In latter case we estimate the proportion of ownership in both years.

2. THE ELECTION PANEL SURVEY

In sections 2 - 6, we shall study modelling in election panel surveys with nonresponse,
based on the panel data from the 1985 and 1989 elections. The data can be presented as
in the following table:

Here nr is short for nonresponse. Moreover, fl 	the number of persons belonging to
the indicated category.

The individuals in the population of eligible voters, V, are labelled 1 , ... , N. The panel
sample, s, is selected from V. Actually, s is drawn from the subpopulation of eligible voters
in 1985 and 1989. Since the true population proportion of voters in 1989 is known, we
have a way to evaluate various models. This comparison should hopefully give us some
indication on what may be appropriate models for similar problems in the future.



Let us introduce the following random variables for each person i:

if person nr.i votes in 1985, 0 otherwise

if person nr.i votes in 1989, 0 otherwise

=	 if person nr.i responds in 1985, 0 otherwise

R2i
	

if person nr.i responds in 1989, 0 otherwise

The panel consists of the following groups:

Srr

Srm
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Smrn

= { • :
=

i	 s

• E s

Es

E s

such that

such that

such that

such that
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1Z1i = 1 2i 7-7 11

= OR2j = 01

The persons that respond in the survey on both occasions are:

#(srr) = ii + n12 + n21 + n22

We shall estimate the voting proportion P in the population V in 1989, by making use
of the known voting proportion in 1985, pi = 0.838). The rate of voting in rr is given by:

+ n21

nil + n21 + ni2 n22

Usually in panel surveys, Pr, will overestimate the true P. In our case we have the
following panel data:

1985\1989 yes no nr totals

yes 743 36 188 967
no 49 20 26 88
nr 115 20 162 297

totals 900 76 376 1352

Here

Prr = 0.933

The true value in 1989 is :
P = 0.832

It seems likely that part of the bias is due to nonresponse, and we need a model for the
response mecanism. The next section presents one approach to modelling panel data.

Prr
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3. A LOGISTIC MODEL FOR PANEL SURVEYS

Given i, the variables Xi ,	 1 ,2i defined are clearly dependent. We know for in-
stance, that the probability of voting the second time depends on whether you voted the
first time. Let:

Pii = P(Yi = 11Xi = 1)

Pol = P(Yi = 1X = 0)

So PH is the conditional probability of voting on the second occasion for a person
given that this person did vote at the first occasion. An equivalent formulation is:

log( 1)(Yi 
P(Yi = OIX ) = 130 +ßX (1)

Where:
	Poi 	= log(	 )

(1 — Pol)

3	 log( Pii ( 1 — Poi.) 

P01( 1 - PH)
)

The advantage of the latter formulation is that 00 and Si can take values on the whole
real line. Possible boundary problems are therefore eliminated. In our case we expect /3 1

to be a positive constant, since 31 > O < > Pu > poi
The model is developed through parametrizing conditional probabilities. Formally we

expand the joint probability:

P(el'i = xi,Yi	 R2 = r2i

= P(X- xid) 1)(Yi = Yi,	 =	 R2i = r2 i1Xi

= P(X- = x) -P(ÿi = YilXi = xi)P(Rii = rl,12 2 r2 2 JX2 .= xi,	 = yi)
P(1 , 	x1)-13(Yi = yzIXz =	 = riIX2 = x 	Yi)-
P(R2i 	= xi, = yi)

Following the same lines of thought as above, we assume:

log(P(Rli , (1) x,	 00)

P(Rli 01X,ÿ)

Iog P(R2i =	 Xi , Yi)	 (2) + 
ç 1

(2)R ii 0(22)xi 0(32)ÿi

P
(

	Xi, Yi)	 °

In the last two equations we have not included interaction terms.
The model (1)-(3) has introduced 9 parameters, which are not all identifiable. We need

to reduce the number of parameters to maximum 8. This can be done in several ways,
giving rise to different models.

(2)

(3)
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This amounts to assuming that the probability of response the first time, does not
depend on the voting behavior at the second election.

Model 2

In this model we keep the two first equations, and reduce the third one by setting
(2) = O. This means that the voting behavior in the first election does not affect the

probability of response the second time.

Model 3

(i) (21) = o

6 (22)	 o

This is the intersection of model 1 and model 2.

4. PARAMETER ESTIMATION - THE ELECTON PANEL SURVEY

First we consider estimation of the unknown parameters. The method of maximum
likelihood will be applied. The likelihood function is the probability of the data as a
function of the parameters. It is given by:

( 1), 0 (2) ) =

= ll P(Xi = xi n	 Yi n	 = 1 n R,2i = 1)
iEsr,

	ll P(Xi = x i n 7?„ii =	 R2i = 0)

jEsrm

X ri P(Yi = Yi n	 = 0 n R,2i = 1)
jEsmr

X ll 	 o n R2i = 0)
iesmm

The final expression of the likelihood in terms of /3
	

is given in appendix A.



log(L) is maximized numerically by using a NAG subroutine (E04JAF). To estimate
A	 A

the standard error s.e.) of the maximum likelihood estimates t)' = 0, 
(i)

 , 
(2)

 ), we

use parametric bootstrapping by simulating 1000 sets of data assuming (/3 , OW (2) ) =
A Am A (2)

(/3,	 (7) ). The estimated standard error of a given estimate, is then the empirical

standard deviation for this estimate. For example, consider 00 . Let ßo,  — • 0o,l000 be the
set of estimated values based on the simulated data. The estimated standard error is then
given by:

with

	_, 	 N
	/ 30 = 

.1) V >.--"?
	 and	 N =1000

i=1

/30 estimates E(â0 ) at 0 = Ô . From a simulation study, it seems that the m.i. estimates
are approximately unbiased. The m.l. estimates and the corresponding estimated s.e. ( in
parenthesis) are given in the table below.

TABLE I

Ml M2 M3

	1 30
	 0.766	 0.049	 0.292

(0.484) (0 .387) (0.286)

	

2.27	 2.48	 2.42
(0.346) (0.298) (0.286)

—0.377 —0.630 —0.403
(0.169) (0.281) (0.172)

	

2.12	 1.99	 2.17
(0.243) (0.352) (0.247)

0	 0.443	 0
o	 (0.475)	 0
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Ml M2 M3

—0.445 —1. 9 1 	—1.01
(2.264)	 (1.03)	 (0.357)

0 (12 )
	

1.369	 1.36	 1.45
(0.188) (0.197) (0.149)

0 (22)	 0.574	 0
	

O
(0.512)	 0
	

O
0 (32) —0.080	 1.40	 1.05

(2.495)	 (1.17)	 (0.446)

Pu
	 0.954	 0.926	 0.937

(0.021) (0.027) (0.014)
Poi	 0.678	 0.5125	 0.572

(0.104) (0.092) (0.068)

Based on s„, the estimates of PH and poi are given by:

743
Pli -7= 779 = 0.954	 and

49
Poi = 0.677poi — 69

5. ESTIMATION OF VOTING PARTICIPATION

We shall consider three methods, the estimative approach and two imputation estima-
tors.

5.1 Estimative approach

We see that
E(Yi) = P(ÿ = = Pipii -I- (1 — )poi

This implies that, with P = E:v± i

E(ÿ) = P(ÿ  = P Pll ( — )Poi

Here, pi = 0.838.
One simple estimator is therefore given by: P = pii3n + — Pi »501.



5.2 Imputation

Our method of imputation is natural under a population model. Others that have used
this method include Greenlees et al. (1982) and Bjornstad Walsoe (1991).

Let t= ÿ , and P=t/N.
A general and common method for estimating t, when we have nonresponse, is by

imputation of the missing values in s.
Now, (with g	 sn:

—EYi+EYi+EYi+EYi+
	Srr 	 smr	 Srm	 smm

z E, yi is estimated by estimating

E(
	

322) = (N T)P(322 = 1 ) = (N n)(PiPii + (1 – pi)Poi)
6-§

Giving:
(N n).(Yi =1) = (N n)(pihi + (1 – )ol)

For i E s (s, U s mr ), the imputed values of Yi are:

E s rm 	ÿ
2k 	estimated P(yi =	 1, 1 '2i = 0)

and
E s m, rn 	estimated P(Yi =	 =O,12i = 0)

The imputation estimator of t is then:

	ii=EYi+EY,-FEY:
	 ÿk

 (N — n)(PiPii -I- – Pi)î3oi
srr	 smr
	

srm	 8mm

and the corresponding
ti

= —N

PI and Pe will give approximately the same results. In fact we always have the bound,

I Pi – Pe i <	 (see the appendix). In our case the maximal difference is less than 10'.
There is a third estimator, that utilizes the information present in the panel explicitly.

It is constructed the following way:
Assume that we have no nonresponse, i.e. s r,	 s. Then, from Thomsen (1981),the

optimal estimator is given by

= pifin + — piVoi

where
E s XiYi 

Pl i E s xi



and
Es(1 xoyi

	P01 = 	•E s (1 — xi )

With nonresponse we impute the unkown values in 5ii and Poi . More precisely:
Impute the following values:

E s rm 	y;.k = estimated P(ÿi =11Xi,R4i = O, R 2j=1)

E mr = estimated P(Xi = 1, R-2j 0)s

i E s n„ :	 Xi* = estimated P(Xi 	= 0,7Z2i 0)

i E s n, :	 (XiYi)* = estimated P(Xi 	= 11 = 7Z2i = 0)

Let P(-1.) indicate the estimated P(-1.). The imputation estimator based on P is then

PI = Pi/511,i +	 — )/501,/

Where
A

= —
B

with

=nii+

n13P(Yi = ijX = 1,lZ i i =-- 1 2i •=7-- C)+

n3 1 P(Xi = 1ÿ = 1,7Z 1 i = O , 7 2 i= 1)+

n,33 P(Xi 	1,	 =	 o,12i =

=(n 11 + n12) + n13+

n3iP(Xi =	 1,

7132P(Xi = 1	 = O, 7 1i =	 = )+

n33 15(Xi 11R4i =	 = 0)

C
/501,1 = —

D

where

D	 B

and

C =	 n13P(Yi =	 = 1, R2i =-- 0)

n23P(Yi = ijXj =-- O,17 1i = 1, 1 2i = 0)

+n33P(Yi = 11/Zii = O,lt 2 j= 0) —

and

and



The strength of this estimator is that we only impute for the missing values. The first
estimator uses only the estimated parameters to estimate P and implicitly also impute for
observed values.

Given a set of estimated parameters one can construct a panel A, by taking the expec-
tation values of the cells. If panel A equals the original panel, the fit is perfect, and we
say that the parameters reproduce the panel. When the parameters reproduce the panel,
then estimator i and estimator 3 are exactly equal. This is established in the appendix.

In models i and 2 we reproduce the panel, and model 3 nearly reproduces the panel. As a
consequence the three estimators P e , Pi and Pi will give estimates that are approximately
equal. Only the value of Pe is given below, for the different models. The estimator P
computed for s r, is denoted by P.

5.3 Estimates (P=0.832)

In parentheses, the estimated s.e. are given.

M1 M2 M3

Pe 	0.911	 0.858	 0.880
(0.034) (0.034) (0.019)

Pe = 0.909

6. DISCUSSION - THE ELECTION PANEL SURVEY

Comparing Pe. to P, we see that model 1 does not work. It does not correct for the bias
due to nonresponse, that we know is present. Let us consider the modeling aspects for the
distribution of 7-Z1i given Xi and ÿ. Using the m.l. estimates from Table I, we find the
following estimates (s.e):

M1
	

M2	 M3

	

P(7 4i = 11Xi = 1,y  =
	 0.854 (0.015) 0.858 (0.015) 0.856 (0.015)

	

-f) (1 -1 == 11Xi = 1,y =	 0.854 (0.015) 0.795 (0.071) 0.856 (0.015)
= 1 Ix = 0 , ÿ =1) 0.402 (0.041) 0.453 (0.080) 0.396 (0.041)

	= 0 , y =	 0.402 (0.041) 0.347 (0.065) 0.396 (0.041)



We see. by comparing model 1 and model 3, that assuming 0 2(2) =O in addition to

(/) (21) = 0 has little effect on these conditional response probabilities. Comparing these to
model 2 indicates that 1 may depend slightly on ÿ, even when Xi is known. It has the
effect of lowering the response probability for those who did not participate in the 1989
election.

Using the m.l. estimates, we can do the same for R,2i given Xi, yi , and R.

M1	 M2	 M3
P(R,2 i = ij1 i j = 1, X. = 1, )2. = 1) 0.806 (0.021) 0.825 (0.023) 0.817 (0.017)
P(7?,2i	 1 IRi = 1, X- = 0,Y 	 1) 0.704 (0.096) 0.825 (0.023) 0.817 (0.017)
P(R,2i	 1 IRi = 1, X,  1, ÿ 	o) 0.807 (0.176) 0.539 (0.115) 0.603 (0.084)
P(R,2 i	 ij1 i j = 1, X. = 0,ÿ 	0) 0.706 (0.131) 0.539 (0.115) 0.603 (0.084)
P(R2i = 11R4i = 0, X.	 1, Y 	1) 0.514 (0.043) 0.547 (0.060) 0.553 (0.042)

=-	 = 0, X. = o, y.	 1) 0.378 (0.123) 0.547 (0.060) 0.553 (0.042)
P(7?,2 i =ijR i j = 0, X. =- 1,ÿ  = 0) 0.517 (0.238) 0.230 (0.095) 0.264 (0.072)
P(R,2i = 1 IRi = 0,	 = O, )' . = 0) 0.380 (0.184) 0.230 (0.095) 0.264 (0.072)

From model 1 it seems clear that the behaviour in the 1985 election influences the re-
sponse behaviour in 1989 election (when we have controlled for 1985 responseinonresponse)
more than the voting behaviour in the 1989 elections. This is rather surprising.

One important aspect when comparing Pe under different models, is that the subpopu-
lation of new voters is not sampled in the panel survey. It is well known that the voting
participation among young voters is smaller than the population rate. Furthermore, among
the young voters there is a lower rate of voting in the nonresponse group (See Thomsen
and Siring (1983)).

Hence, we cannot expect Pe to adjust fully for the bias in the sample.
It seems that Pe under model 2 does as well as could be expected.
This can be amplified by looking at the estimated voting rates in the subpopulations of

respondents and nonrespondents for the two elections. We find:

M1 M2 M3

P(Xi = 1 lRi =	 0.917 0.917 0.918
i'(Xi	 = 0) 0.568 0.568 0.561
P(yi 	ii i = 1) 0.922 0.922 0.922

P(Yi = 111?-2i = 0) 0.882 0.695 0.770

(Note that the rate of voting of the nonrespondents seems to increase with time. This
is what one would expect since the persons in the survey are four years older the second
time.)

The only substantial diffence in the estimates lies in the estimates of P(ÿi = 1 1R-2i = 0 ).
It seems clear that model 3 and especially model 1 overestimate the voting participation in



the 89 election among nonrespondents. This can be seen by comparing P()), 1.17Z2 , = 0)
to P(Xi 	= 0).

It is rather surprising that model 2 is seemingly much more appropriate than model 1.

Model 1 seems at first glance more intuitive, since in model 2 the response behaviour in
1985 is assumed to depend on the voting behaviour four years later.

Clearly, however, we must include the combined voting behaviour for (1985,1989), when
we are modelling the response behaviour in 1985. This does not seem necessary for the
response behaviour in 1989.

7. THE CONSUMER EXPENDITURE PANEL SURVEY

In the last two paragraphs we are going to study modelling in panels with nonresponse
from the Norwegian Consumer Expenditure Survey. The units are here households instead
of persons as in the election example. We shall estimate the percentage of households that
own a car. A household is said to own a car if at least one of the persons in the household
owns a car.

As in section 2 the panel data can be represented by the following table:

1989 \ 1990 yes no nr totals

yes
no
nr

nil
n21
n31

ni2

n22
n32

ni3
n23

n33

ni*
n2*
n3*

totals n*i n*2 n*3 n

Here, nr is short for nonresponse and n ii is the number of households belonging to the
indicated category. The sample s is drawn from the subset of households that are registered
as households in 1989 and 1990. Let us introduce the following random variables for each
household i:

if household nr.i owns a car in 1989, 0 otherwise

if household nr.i owns a car in 1990, 0 otherwise

if household nr.i responds in 1989, 0 otherwise

if household nr.i responds in 1990, 0 otherwise

The data are:
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1989\1990 yes no nr totals

yes 133 1 69 196
no 3 30 16 49
nr 28 10 142 180

totals 164 41 220 425

We apply the same notation for the different strata of respondents and nonrespondents
as in section 2. The proportion of ownership in 1990 in s„ is given by:

Prr
nu n21

= 0.814
nil + n21 + ni2 + n22

Looking at the marginals give 0.80 both years. This seems to indicate that there might
be a bias due to nonresponse. We apply the same kind of model as used for the election
panel. Unlike our first example, the true percentage the first year is not known. One
solution to this problem is to estimate p i as well. Looking at the three models M1 to M3,
we see that letting p i be a parameter as well, gives us two 9 parameter models (1141 and
M2) and one 8 parameter model (M3). As noted before the maximal number of identifiable
parameter is 8. We will therefore only use model M3 in the following. In order to separate
this new model, with p i free, from the earlier ones, we designate it by M4.

The likelihood function is of the same form, though the estimation is different since pi
is a parameter as well.

The m.l. estimates and the corresponding estimated s.e. in parenthesis) are given in
the table below.

Oo —2.319
(0.496)

(2)
01	 2.075

(0.188) 

7.19
(0.346)

—0.0699
(0.169)

(2) o

5.178
(2.495)

(?5 (1 1 )
0.500

(0.243)  

o
o

Pil 	0.992
(< 0.001)

00(2) 	 —1.356
	

Pol	 0.090
(2.264)
	

(0.061)
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Based on s„, the estimates of Pil and Poi are given by:

= 	
133	 3

0.993	 and
134	 Poi —

33 
= 0.09

In section 4 we introduced three estimators, the first one was: Pe Afin + — /51 Vol
Note that we have indicated that in this case we estimate p l . Estimator 2 and estimator I
differ by less than 10 -3 . (The number of households are approximately 1.9 . 106 .) It turns
out that the estimated parameters nearly reproduces the panel, giving that estimator 3
and estimator 1 are approximately equal.

The estimates of p i and P are:

.751 = 0.761 (0 .021)

Pe 	0.777 (0.051)

8. DISCUSSION

In this case we have no true values to compare with. The only evaluation we can do is to
judge if the various estimates are plausible or not. We see that model 4 reduces the repon-
dent percentage by 3.9 the first year and 2.3 the second year. That the true percentages
are significantly less than the percentages among respondents seem likely. The estimated
parameters give rise to estimates of a number of different conditional probabilities. Con-
sider:

P(Rii	 1 ( Xi -= 1) 0.603 (0.053)
= 0) 0.490 (0.097)

Using the m.l. estimates, we can do the same thing for R2i given Xi, ÿi, and Rii•

P(7 2 i	 11/Z 1 i	 ÿi = 1) 0.684 (0.035)
P(R2	 iIRiz = i, Yz	 0) 0.672 (0.089)
P(72i	 1 IRi = 0,	 = 1) 0.213 (0.045)
P(R2 i	 iJlij ----.-- 0, ÿi	 0) 0.205 (0.035)

Note that the response behavior the first year strongly influences the response probability
the second year, while the state of ownership has little effect. Pe is 1.6% units higher than

13



pi. This could be a trend, though it is probably not. More likely it is a panel effect. The
persons in the household are one year older the second year. The probability of owning a
car is likely to increase with age.

We can compute estimates of the conditional probabilities of belonging to a household
that owns a car, given response and nonresponse:

M4

P(Xi	 = 1) 0.800
P(Xi = ljR, i i = 0) 0.708
P(ÿi = 1 1R-2i = 1) 0.800
f3(y,	 117Z2i = 0) 0.755

We observe that the model reproduces the observed marginals, and estimate the unobserved
probabilities to be significantly less. Note also that the probability of owning a car increases
in the subpopulation of nonrespondents.

We could use M4 in the election panel survey data. The estimated rate of participation
is then around 0.91 both years. Evidently M4 does not work in this case. One important
difference in the two panels is that the last panel involves an approximately absorbing state,
ownership of cars, whereas the election panel lack a state with this feature. Obviously, a
nearly absorbing state gives more information about the different conditional probabilities
involved. This is probably the reason for the better results with M4 in the case of car
ownership.
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P =
tI

 -v-

1	 N n

!PI Pel =	 1-7—,-„1 A— Pel
fl

7.

Appendix

LEMMA 1. 
P	pe 	7\771

	„ rn 	, 73 ,72 322k.PROOF: Let A = E sr ,
Since

mr 

II =	 ( N —	 + (1 — Vol

and

we get

Rearranging

LEMMA 2. Assume that the parameters estimated reproduce the panel. Then estimator
is equal to estimator 3.

PROOF: For convenience we introduce the following notation:

P(Y, — a, ÿi b, R. 1 j — c, TZ2i — d) — P(a, b, c, d)

and
P(a, b  c, —)	 P (a, b, c 0) + P(a, b, c, 1)	 etc.

Let (a, b, c, d) be the estimated P (a, b, c, d). Similar for P(a, b, c, —),.. etc.
Since estimator 1 and estimator 3 are different only in the way the transition probabilities

P IA and poi are estimated, it would be sufficient to show that they are estimated equal.
Due to symmetry it is enough to show p- 11,1 =hi. In our notation:

P 
== 

Furthermore:
A

Pill = -13

where

P(1,1.1,0)
A =nii r11.3 	

+P(1, —, 1, 0) 

P(1, 1, 0, 1) 	 P(1, 1, 0, 0)

n31 	4- n33P(—, 1, 0, 1) 	 P(—, —, 0, 0)

15



and

B =(7711 + n12) + n 1
3 +n31 PP((-111',00',11))

p(1, —, 0, 0) P(1,0,0,1)

n32	
+ n33p(._ 	P(	 0, 0 )

Since the parameters reproduce the panel, we have:

n13(1,1,1, 1) =n ii

ni) (0, 1, 1, 1) = n2i

nP(—, 1, 0, = n3i

ni)(1,0, 1,1) = ni2

riP(0, 0,1, 1) = n22

nP( — , 0, 0, 1)	 n32

nP(1, —, 1, 0) = n13

ni)(0, —, 1, 0) = n23

rii3 ( — , — , 0, 0) = n33

Replacing the ni 's in A and B with the corresponding P's gives us immediately that:

P(1,1.

P(1,
	 ----- PIA

The logarithm of the likelihood function is given on the following page:
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log(L)

exp(01 + 02) 	*
nii*/0g(P1 * 1 + exP(01. +

exp( o(11) + 41) 
+ expk + ))

exp(0 (12) + 0 (22) 	0(32) ± 4) (4

(1 -I- exp(0(12) + 0 (22) + 0 (32) + 6(42))) )

-Fn12*10g(pi *

+n 21 *log((1

exp(4 ) + 0(21))	 exp(0(12)	 0 (22) 0 (32) )

(1 + exP(131 + 02)) * (1 d- exp(0 (1 1) 	0 (21) )) * (1 -F exp(0 (12) 	O (2
) + 0 (32) )) )

pl) *	 exp(Si)
	exp(0(11))	 exp(ov) + 0 (22) + 0 (42))

(1 + exp(01)) 	 + exp(011) )) * ( 1 + exp(0 (12) + 0 (22) + 0 (42) )) )

exP(0(11)) 	* 	exP(OV) 
pi) * 	(1 -I- exp([3 1 )) * ( 1 -F exp(0 (1 1) )) (1 + exp(0 (12)

(1)
d-n13 40g (pi * 	exP(31 4- 02)

•

	exp9 i + 02 	*

+n22 *log((1

(1 -I- exP(Oi + 02)) (1 + exp(0 (1 1) 	0 1) ))
0(32)	 (42))(1 + exp(0 (12) 42)

1 	 exP((b(il) 0 (21) )
Pi * 

(1 + exp(01 + 132)) (1 + exp(0 (1 1) -F 41) )) (1 -I- exp(0 (12) +. 0 ( 2 ) + 0(3 )))

+ 77234, 10g0 — Pi')
exp(fii)	 exp(0(11))

(1 - Pi

1 - 1- exP(00) * ( 1 -1- exp(0 (1 1 ))	 (1 -1- exp(0 (12) _4_ 4)(22)
	 +

exp(0 (1 1) ) 	1

exP(131)) * ( 1 + exP(0 (11) )) * ( 1 + exP(
(
2) -+- OV ) )) )

+ n3i*log(pi * 	exP01 4- 132) 	* 	 1	 exp(0(12)	 2)+ 0(3  + (/) (42 )

(1 + exp(01 +	 (1. +- exp(OV) 0 (21) )) (1 + exp(0 (12) + 0 (32) + 0 (42)	 )+

(1 	* 	exP( 31)

(1 + exP(ß )) (1 + exP(0 )))

exp(0(1.2) + 0 (42) )

+ exP(0
(

2) + 0 (42) )) )

+ n3240g(Pi *
1 	 exP(0(12) + 0 (32)) 	4_

1 + exp(01. + 02 )) * (1 + exp(0 (11) + 0 (21) )) * (1 + exp(0(12)	 0(32 ))) '

*
*

1 + exp0	 exp(0 (1 )))

exP(0 (1 2) ) 

(1 + exp(0 (12) ))

	exp(/3 i + 02)H-n 33 *log(p i *
	(1 + exP(01 -I- 	)) (1 + exp(0 (1 1) 	0 (21) ))

Pi * 	

	

(1 + exP(13]. + 132)) 	 (1 -I- exp(0 (11) + 0 (2 ))

	exp(01)	 1

1

(1 — pi)

(

1 + exp(42) 4- 0 (32)

1

(1 + ex/J(0V ) + 0 (32) )) +
1

(1 + exp(13 (1 + exp(0 (11) )) (1 d- exp(c/12)
2

+
2

))

)) * (1 -4- eXp(0 (11) )) * (1 + exp(0 (12) )) ) 
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