
OSLO: Postboks 8131 Dep, Oslo 1 	 KONGSVINGER: Postboks 510, Stasjonssida, 2201 Kongsvinger
Tlf. (02) *41 38 20	 Tlf. (066) *14 988

WORKING PAPERS FROM THE CENTRAL BUREAU OF STATISTICS OF NORWAY

IO 78/33 	 29. December 1978

DATSY

PAST AND FUTURE

• by David Walker *

CONTENTS

Page

1 	 Introduction, Summary and Historical Background 1

2 MODIS III using Fortran/Assembly Compared with
MODIS IV using. DATSY 5

3 	 Strong Points in DATSY 6

4 Weak Points in DATSY 	 8

5 	 TROLL, TSP, APL and Simula 13

6 	 Interactive DATSY 	 17

7 Advantages and Disadvantages in Developing
• Software Locally 20

8 	 Who Owns DATSY? .. 21

9 	 DATSY Tries to Do Too Much 23

10 Suggestions for Improving or Replacing DATSY 	 27

Appendix: How to Improve the Solution of MSG using DATSY 33

This report is based on minutes written by

Frank Siljan for a seminar held at the

Central Bureau of Statistics in Oslo, on

September 26, 1978.

Not for further publication. This is a working paper and its content must not be
quoted without specific permission in each case. The views expressed in this paper
are not necessarily those of the Central Bureau of Statistics.

Ikke for offentliggjøring. Dette notat er et arbeidsdokument og kan siteres eller refereres bare etter spesiell
tillatelse i hvert enkelt tilfelle. Synspunkter og konklusjoner kan ikke uten videre tas som uttrykk for

Statistisk Sentralbyrås oppfatning.

1

1. Introduction, Summary and Historical Background

DATSY is a data manipulation language developed for

solving large economic models. Its historical background

is sketched later in this section.

This report owes much to contributions made by partici-

pants at the seminar "DATSY -- Past and Future" held at the

Central Bureau of Statistics in Oslo on September 26, 1978.

Those who attended were Olav Bjerkholt, Hans Petter Dahle,

Inger Henningsen, Anne Hustveit, Hanne Modahl, Frank Siljan,

Kjetil SOrlie and myself. Frank Siljan's minutes from this

seminar form the basis of the present report. I would like

to thank Olav Bjerkholt and the Central Bureau of Statistics

for inviting me to this seminar.

I decided to take this opportunity to collect the

opinions of people concerned both with using and maintaining

(or altering) DATSY. It should be obvious to those who

compare the minutes with this report that my own thoughts

have changed somewhat as a result of the seminar. Just

the same, I have taken this occasion as a good one to put

forward many opinions of my own, and any mistakes in this

report are my responsibility.

A great deal of effort went towards exchange of inform-

ation and experience in this seminar. I did not digest all

of it immediately and I doubt that anyone else did either.

There was not really enough time to discuss opinions about

future development. Hopefully this report will help here.

I owe my Norwegian readers an explanation for writing

this report in English. The seminar and minutes of course

used Norwegian. My earlier reports on DATSY were in

Norwegian.

There are two main reasons for writing in English.

First, visitors to the Central Bureau of Statistics can

usually read English well and this report may assist in

helping communication on the topics discussed. There is a

shortage of English-language material on DATSY. Also,

2

the people behind TROLL and APL should be informed in some

detail that there is a market for extended versions of

these systems with the additional feature of being able to

handle much larger quantities of data efficiently and

flexibly, as DATSY does already.

Summary

No clear message for the future can be obtained from

this report. It is too early for that. Several interesting

historical conclusions arise:

1) DATSY has facilitated an astonishingly high level of

reliability in the implementation of very large

economic models, as Anne Hustveit pointed out.

I think this is mainly due to the use of standard

commands on standard data structures.

2) Similarly, DATSY has facilitated rapid alterations in

such models without any fall in reliability being

noticeable.

3) 'Fewer distinct operations (commands) are needed than

was originally expected, but DATSY programs are much

longer than originally expected. The length is no

great disadvantage, since the logic is largely

sequential and the language has a subprogram structure.

4) The implementation of large economic models is divided

into a number of separate programs for practical

reasons. As Anne Hustveit pointed out, in some of

these programs DATSY'S entire available disk space of

4 million characters is fully utilized. This corres-

ponds to storage on line of 1 million numbers. (Note

further that zeroes are usually removed from matrices,

so that most of the data stored is meaningful, and

that automatic garbage collection is in use.)

5) Manipulation of sets of records is as important a

part of the language as matrix manipulation, and the

two are closely interrelated to increase reliability

and flexibility.

3

Salesmen should note that typical American products

for similar uses such as TROLL or APL were developed for

dealing with much smaller model implementations than DATSY

is now used for. DATSY's main strong point is that it is

a practical tool for implementing uncommonly large models

without the usual collapse of either reliability or

efficiency (see Sections 2 and 5).

Norwegian Government models for economic decision-

making involve much larger quantities of disaggregated

cross-sectional national accounting data than the equivalent

American models, as Olav Bjerkholt pointed out. Furthermore,

they have a much larger number of exogenous variables due to

the fact that they are used more extensively for decision-

making. The solution of equations occupies a tiny fraction

of the total machine use. More machine time goes for

example to reading in sets of records, or cross-checking

of various kinds aimed at revealing human, software or

hardware errors.

Historical Background

DATSY was developed by the Norwegian Computing Centre

in cooperation with the Central Bureau of Statistics, in

the years 1968-74. The foundations of the system were laid

in 1970, and several years development was needed after

this, to establish the set of commands which is now in use.

Parallel with this work, many extensions were made in the

original foundations. These extensions have resulted in

DATSY's ability to handle large quantities of data reliably

and with some degree of efficiency. The implementation

languages are Fortran and Assembly.

The original initiative for this project came from

experience with the large economic decision models MODIS II

and MODIS III, described in Section 2, in the years 1965-68.

During the planning years 1968-69 a number of alternative

formulations of DATSY were discussed at some length.

DATSY has now been in productive use in the Research

Division of the Central Bureau of Statistics for about seven

4

years. During this period enough experience has been

gained to warrant redesign. A list of DATSY's strengths

and weaknesses is needed to aid further discussion, and

I have tried to provide this in Sections 3 and 4.

At the Norwegian Computing Centre, Sverre Spurkland

was the leader of the DATSY project, and Eva Kristoffersen

and Helge Totland programmed most of the system routines.

At the Central Bureau of Statistics the project was led by

Erik Aurbakken and Olav Bjerkholt, whilst Eldar BOrsum,

Knut Kvisla, Pål Lynum and myself programmed most of the

commands. The design of many of the commands was established

in long discussions with Olav Bjerkholt, Inger Henningsen,

Anne Hustveit, Svein Longva and Odd Ystgård, who as users

had a strong influence on the development of the system.

Ola Jacobsen programmed the so-called "version generator"

which made it easier to install new commands in DATSY.

Lars Espen Aukrust laid the foundations for DATSY's extensive

user documentation. Many others too numerous to mention

made significant contributions at various stages.

Note

The remaining sections of this report can be read

independently 'except where specific cross-references are

made.

My suggestions for improving my '1975 solution of the

long term planning model MSG-3 using DATSY did not fit into

the seminar's time period, so I have added them in an appendix.

(They are now mainly relevant to the construction of a new

runtime system.)

Quite a lot has been written about DATSY, nearly all

of it in Norwegian. I have not referred to any of this

material here except the Handbook for Use of DATSY (in

Norwegian) published by the Central Bureau of Statistics,

but the reader should be aware that a lot of documentation

is available.

5

2. MODIS III Using Fortran/Assembly Compared with MODIS IV

Using DATSY

This section is based on Olav Bjerkholt's presentation

at the seminar, which is in turn based on his own experience

with these models.

The reasons why the Bureau wanted DATSY can be boiled

down to two difficulties which arose with MODIS III, which

was programmed efficiently using Fortran and Assembly

Language in 1967:

1) Addressing of Matrices

Matrices were denoted by names in MODIS III but had

to be referenced by a file number in the computer

program. This led to frequent human errors when

altering the model, due to its size and complexity.

These errors were often difficult to find, because

for instance many different matrices had the same

dimensions.

2) Addressing of Rows and.Columns Within Matrices

In MODIS III, rows and columns were denoted by sector

numbers, commodity numbers and so on. These were not

necessarily sequential. In the computer program,

absolute row and column numbers had to be used.

This led to extreme difficulties when rows or columns

were added or removed, since this usually affected

very many matrices and the change had to be made

separately for each matrix.

There were other problems as well, but the above two

are representative. These problems were solved by DATSY

with a corresponding vast increase in reliability and

flexibility in MODIS IV as compared with MODIS II and III.

MODIS IV is not only much larger than MODIS III but also

contains many more exogenous variables. MODIS IV became

fully operational in 1973, being delayed by reconstruction

of the national accounting system.

(As discussed in Section 5, the two problems mentioned

above were solved by other languages developed over the same

period or earlier, but these languages were unable to deal

with the same quantities of data as DATSY.)

6

3. Strong Points in DATSY

DATSY fulfils its main design goals -- clarity,

flexibility and reliability. It manages, but not with ease,

the large quantities of data which are required in the

implementation of a large economic decision model such

as MODIS. At present I do not know of any other system

which meets these criteria (see Section 5).

For detailed comparison, a checklist of strong points

may be helpful (this is followed in the next section by a

checklist of weak points):

1) Addressing of data objects by name, and addressing

of rows, columns, records etc by name (see Section 2).

2) Grouping of data objects by name (to avoid naming

explicitly several hundred data objects every time

they are moved).

3) Self-explanatory programs.

4) Ability to operate on single data objects for which

there is not enough room in core, in every case where

this might be relevant (it is not usually relevant

for a list of row names, for example). This also

keeps the total program size under 64K words (36-bit).

At the same time, unnecessary disk transfers during

the execution of a command are avoided (but see later).

5) Ability to hold a large total quantity of data

(1 million numbers in single precision) depending

on available hardware, split into several hundred

data objects.

6) Ability to set up complicated but useful standard data

structures in a user-oriented way, and to add extra

attributes to individual objects. All attributes of

a data object follow it everywhere automatically.

For example, lists of row and column names can be

attached to matrices as attributes. Excellent report-

generating features for displaying data structures.

7) Ability to execute tens of thousands of command

sentences in a single run, divided into a subprogram
structure with possibilities for loops and conditional
hops.

7

8) Good potential (but no experience) for later develop-

ment of a powerful user-oriented interactive system,

using the same set of commands but different system

routines (see also point 9 below).

9) The design philosophy is to stop the run at the slightest

hint of trouble, with good explanatory error messages

(in Norwegian). This philosophy has been carried

through very successfully. Both the interpreter and

the runtime system contain very many useful checks on

the program, data structures and commands. These checks

are made possible by the use of standard commands on

standard data structures. As noted earlier, a high

level of reliability in use has been the result, which

is much appreciated by the users.

10) It is possible to set up programs in DATSY in such a

way that alterations in matrix dimensions and similar

changes are made at only one point in the program,

to avoid inconsistency. This increases.reliability and

flexibility. Command sentences and declarations in

DATSY do not specify object dimensions. These are either

specified in the data section or are implied by the

commands themselves. Only the data is altered when

dimensions are altered (e.g. a sector is added to a

model). Allocation of space in core is dynamic. There

is automatic garbage collection.

11) DATSY is modular in the sense that it is easy to program

new commands in Fortran and add them to the system.

Ola Jacobsen's "version generator" makes this an easy

and reliable process.

12) Large quantities of data can be filed on tape (but in

a special format). Excellent report-generating

facilities are provided for this file system. Tape

labelling is used to increase reliability.

In summary, DATSY is a well-rounded system in which

reliability, flexibility and clarity have been pursued with

success.

4. Weak Points in DATSY

Whilst DATSY has fulfilled its main design goals of

reliability, flexibility and clarity as detailed earlier,

and has many significant strong points as outlined in the

previous section, the following weaknesses have unfortunately

become apparent during use. In spite of these weaknesses,

DATSY has been a success in its role as a language for

building large economic models.

1) Unnecessary disk transfers are made whenever a new

command sentence is to be executed. (This causes slow

progress through the machine when thousands of command

sentences, each involving small quantities of data, are

carried out as in MSG-3.) See the Appendix and strong

point number 4 in Section 3. This problem caught us by

surprise as we never expected to execute more than a

hundred or so command sentences in a single run, during

the planning stages of DATSY. Later it became apparent

that it was very desirable to be able to execute a much

larger number of command sentences, particularly in loops.

2) The ability of DATSY to execute tens of thousands of

command sentences, the subprogram structure (i.e. the

macrosystem) and the loops and conditionals are ad hoc

additions to DATSY which should be properly integrated

in a new version of the language. For instance, a loop

is reinterpreted every time it is traversed. This does

not matter if the computations carried out on the data

are large and few in number, but if they are small and

many the reinterpretation takes too high a percentage

of the total machine resources used.

3) The definition of data structures is logically separate

from other aspects of the computations, but DATSY does

not yet allow data structuring to be separated from the

other operations in practice. Also, data structuring

in DATSY is batch-oriented, whereas this function could

well be carried out interactively, as an option. To be

carried out interactively, it would have to be separated

out from heavy computations in a separate run. A suitable

report generator would then be needed to follow up, which

DATSY already has. Interative alteration of data

structures is another obvious need. Batch mode

involves unnecessary delays here.

4) Input of data to create individual data objects is

also a logically separate phase which could be separated

out in practice, with savings due to not repeating the

expensive operation of 	 reading in large Quantities

of data. This activity can be divided between tiny

objects which are easily handled interactively and

large objects which cannot be handled interactively.

As it is, both data structuring and data input are

repeated unnecessarily in production runs.

5) There is a much used facility for filing a string of

data objects with all their attributes on magnetic

tape. Some of the advantages of this system are

listed in Section 3, point 12. With the benefit of

seven years hindsight we are now able to see that

although the system has given many benfits (including

efficient data management), it nevertheless suffers

from the following problems:

(i) A special file format is used, to yield tapes

which could be read by DATSY systems on any

other machine. However this feature is of little

practical use to the Bureau, and it meant giving

up easy communication with 	 system software

via standardized file formats, which has caused

some problems. DATSY's file system makes DATSY

a closed system. Since it involves a lot of

assembly language, it also makes DATSY machine-

dependent.

(ii) Slow progress of some DATSY programs through the

machine has caused operating problems due to the

method of assigning tape stations. (E.g. output

tapes have to be mounted at the beginning of the

run, but are only written on at the end.) Valiant

efforts by Eva Kristoffersen have improved the

situation as Anne Hustveit pointed out, but not

all the problems seem to be soluble.

10

(iii) Another difficulty with the tape-oriented file

system in a special format is that interactive

use is ruled out until a new file system has

been completed. Originally we felt that

interactive use would not be cost-effective in

the foreseeable future, due to the large quantities

of data and heavy computations involved in solving

MODIS. Hence this difficulty has arisen only

recently. A small data base project carried out

for a time by Ola Jacobsen would have solved this

problem, but was not carried right through due to

his resignation. Jacobsen's data base system

would have made it possible to bypass DATSY's

file system and thus move towards an interactive 4110
DATSY.

I think our goal of machine-independent tapes mentioned

under point (i) was a good one, but it is not worth

these other difficulties which arose later as a result

of our decision. I suggest radically different design

goals for DATSY's file system later on in this report

(Sections 9 and 10). At the same time an effort should

be made to retain the excellent report-generating

feature of the present file system in any new version

of DATSY.

6) As noted in Section 3, the runtime system has the very

desirable feature of checking many details of data
	

41)
movement and storage. However in some details this

went too far. Most of these checks should be retained

as a guard against both hardware and software errors.

However, some of them guard against software errors

in routines which are never altered. This raises the

overhead per command sentence (see the Appendix).

Ideally, testing of new commands should take place

interactively using a runtime system much like the

present one. In batch production however, I think a

new runtime system is needed with the assumption that

commands have already been tested fully. Machine errors

are surprisingly common in runs of this size, and need

to be guarded against as in the present version by

repeatedly checking the structure of data objects.

7
	

It is I think a weakness of the present version of DATSY

that no account has been taken of developing an

interactive DATSY, when the potential offered by

standardized commands and data structures is clear.

As noted earlier, originally we felt that interactive

use would not be cost-effective due to the large

quantities of data to be dealt with. With the passage

of time our evaluation has changed (see Section 6).

Many of the problems inherent in interactive development

and production runs are solved by DATSY's strong points.

See Section 3, points 1, 2, 3, 7 and 8 as well as the

general comments about clarity, flexibility and reliab-

ility. TSP on the other hand has fully utilized its

potential for using both batch and interactive runs

interchangeably.

8) The interpretation of DATSY programs takes too much

machine time. Some time was spent in the seminar

discussing why this is so. Historically the general

reason is that DATSY's interpreter assumed that the

total number of data objects, sentences and words of

text in any particular program would be much smaller

than it turned out to be in practice. This assumption

made it possible to add many desirable features, such

as checking for empty input objects in command sentences

which in turn save a lot of unnecessary machine time.

If the assumption had held then the interpreter would

have been efficient. If the so-called "combined

commands" programmed in Fortran had been useful, the

assumption would have held. In fact they took too long

to debug and were not used.

9) The present implementation of DATSY takes too much core

space for easy use in the daytime -- about 64K 36-bit

words. It is however much smaller than TSP would have

to be for solving large economic models, and can in

addition solve larger models than TSP. Of course, TSP

is two years older than DATSY. The version of TSP used

interactively in the Bureau is for econometric analysis

and not model solution.

12

10) It was suggested at the seminar that DATSY included

a number of features for which the Bureau had no use.

For instance, it is possible in DATSY to read in

matrices with row and column sums which are automatically

checked. For the Bureau it is usually preferable

and more reliable to read in matrices as sets of

records (where each record has three fields: row name,

column name and value). These can be compared

automatically with lists of. row and column names fed

in separately, and can be displayed more effectively.

Also, as Inger Henningsen pointed out at the seminar,

the feature of DATSY which allows extra words to be

included in command sentences is not used because it

seems to reduce clarity. Presumably this is because it •
leads to longer programs which take longer to read.

(An APL-like syntax might be preferable, as it would

allow more direct programming of complicated matrix

expressions.)

•

13

5. TROLL, TSP, APL and Simula

In writing this section particularly, I hope to be

corrected if the evaluation of any particular system is

wrong in any detail.

TROLL

Hans Petter Dahle pointed out at the seminar that he

had been working with Lorents Lorentsen to convert the long

term planning model MSG from DATSY to TROLL, which is

available in Oslo. Whilst TROLL has many attractive features,

not the least of which is that it is interactive, Dahle said

that he had just sat beside a VDU for a whole day waiting

while some of the data was fed into TROLL for use in MSG.

This points very much in the direction I suspected, namely

that TROLL has not yet been developed to the stage where it

can handle easily economic models of the large size used by

the Norwegian Government. If TROLL cannot handle MSG easily

then MODIS will present further problems as it is a much

larger model than MSG.

Since the seminar it has become clear that in spite of

the difficulties experienced feeding in data, which are

partly due to TROLL's implementation in Oslo on a small

machine, TROLL is nevertheless a useful tool for solving MSG,

partly because it is interactive and partly because it

solves equations efficiently. Because the interactive

feature is so desirable, a much aggregated version of MODIS

will be implemented by the Research Division in the Bureau

using TROLL in the near future. However the main version

of MODIS will remain too large for TROLL unless TROLL is

developed so that it can handle larger quantities of data

efficiently and flexibly.

Such development seems to me to be a real possibility.

It is desirable because it enables solution of economic

models which are integrated with detailed cross-sectional

accounting data.

14

TSP

TSP (Time Series Processor) was a forerunner of TROLL,

and is available much more cheaply than TROLL. It includes

equation-solving routines originally aimed at solving the

Brookings model in the U.S.A. These are sophisticated.

Large core space (say about 200K words) seems to have been

an assumption of the programmer, and individual data objects

as well as the segmented program have to fit into the

available core space. Large numbers of data objects are

however accommodated on disk. The language is easy to use,

is available at the Central Bureau of Statistics, and has

good user documentation.

TSP has the desirable feature that it can be used

interchangeably either interactively or in batch. Operating

conventions (e.g. maximum program size in daytime) can

restrict this however.

TSP's main disadvantages compared with DATSY are that

it cannot deal with individual data objects which do not fit

into the available core space, that it cannot attach

attributes to data objects to the same extent, and that

it is heavily oriented towards econometric analysis

based on time series analysis rather than detailed cross-

sectional national accounting data.

Olav Bjerkholt pointed out that MODIS IV is different

from corresponding models in other countries in that it has

a large national accounting system attached to it. He

added that this is probably the reason why other countries

have not constructed languages with the same goals as

DATSY, and the same ability to handle large quantities

of data.

15

APL

Dahle also commented on APL, and pointed out that

the file system connected to this language could not handle

the data processing problems involved in solving MSG and

MODIS, as it was too small. It is difficult to transfer

data from APL to standard system files (a difficulty shared

by DATSY). It seems likely that APL was not designed for

the quantities of data involved in MSG or MODIS, although

I suspect that the basic concepts of the language provide

an excellent basis for development in this direction.

As with DATSY, the APL user formulates many problems

directly in terms of matrix operations and similar.

Surprisingly compact formulations result from intelligent

combination of commands, in both systems. The syntax of

APL is entirely different from DATSY's syntax.

APL lacks two features of DATSY in addition to its

apparent inability to handle large quantities of data.

First, it cannot handle sets of records including both

numbers and text, to the best of my knowledge. This makes

it difficult to deal with large matrices in a flexible way

(see Section 4, point 10). Second, its functions must be

monadic or dyadic. This is an essential part of its

powerful syntax at present. Many useful standard operations

available in DATSY are ruled out by this limitation in APL.

A powerful feature of APL is its ability to allow the

user to program and modify macros, via the interpretation

of data as program. DATSY has this feature in its macro

system.

Due to its elegant and simple structure, I believe APL

could be extended to meet all the objections above. It is one

of the two main languages available with microcomputers and

is widely used by econometricians.

APL and TROLL seem to be available only interactively.

For model runs taking an hour of elapsed time this is

inappropriate. However APL opens possibilities for parallel

processing in matrix operations which may meet this objection,

in time.

16

Simula

Simula comes into a different category from the above

languages. Simula is a completely general programming

language with wide approval among computer scientists across

the world. Many describe it as the best programming language

for general use. One may ask why it was not used for

modelbuilding in the Bureau, when it was developed at the

Norwegian Computing Centre.

I believe that had we evaluated the available

languages in 1970-71 instead of earlier, Simula would have

been chosen. Prior to this, its support and maintenance

group was struggling to keep up with the rapid spread of

Simula. Prior to about 1970, Simula was rumoured to have

too many bugs to make it the basis of very large programming

projects. Also, earlier versions did not have the

efficiency of later versions, or so it was rumoured.

The situation since 1970 has been very different.

Many reliable versions of Simula are available (remember

that most Fortran compilers contain bugs still), and

efficiency is reasonable considering the likelihood of

obtaining shorter, clearer and more reliable programs than

with Fortran. Dahle mentioned a figure of 30% slower

running time than similar Fortran programs. DATSY spends

vastly more than this overhead to achieve flexibility and

reliability.

In particular, the ability of Simula to encourage

intelligent formulation of problems could be expected to

improve the programming of difficult problems, both as

regards efficiency and clarity.

The ability of Simula to define and use procedures

and data structures allows users to build up a library of

simple commands, structures and data objects, perhaps

identical to those available in DATSY. Simula can be used

either as a so-called high level language such as Fortran,

or a very high level language such as DATSY (these terms

refer to the distance from machine language). Its

complexities can be hidden from the user.

It would be possible with Simula either to use the

library of procedures directly within Simula, or to process

a DATSY program.

It may appear that I recommend re-implementing DATSY

using Simula instead of Fortran/Assembly as the implementation

language. Defining DATSY as the user documentation in the

Handbook for Use of DATSY, this is a reasonable interpretation.

One would not however use Simula as if it were Fortran

to create tables of data representing data objects, when

the definition and representation of such objects is

inherent in Simula and can be utilized directly.

Such an implementation would have to be supervised

closely by someone who was capable of utilizing all the

features of Simula, since these are not immediately

apparent.

A major difficulty for the Central Bureau of Statistics

is that Simula is not available on the machine allotted for

the Bureau's use. Remote access to an IBM or Cyber machine

would solve this problem.

6. Interactive DATSY

DATSY is at present batch-oriented. On the other hand,

the basic concepts of DATSY give it strong potential as an

interactive language. In particular this follows from its

strong points I, 2, 3, 7 and 8 in Section 3.

Further reasons for regarding DATSY as a good basis

for interactive development are as follows:

1) There is a reliable and extensive library of commands

already in operation which could be used directly

in an interactive runtime system.

18

2) This library of commands appears to be unique in

that when relevant it assumes consistently that

there will not always be room in core for any

individual data object. Hence the core size of an

interactive DATSY could be quite small, say 24K to 30K

36-bit words, without giving up the ability to carry

out trivial operations such as matrix addition on large

data objects.

3) Many members of the Research Division in the Bureau

know very thoroughly the commands relevant to their

own work.

4) Similarly, they are already conversant with a large

collection of structured data objects which they use

in their work.

These points could be summarized by the statement that

the Research Division is now in a position to make effective

and efficient use of an interactive DATSY, as a result of

seven years experience and development.

Even DATSY programs involving large quantities of data

and large single data objects usually contain many sentences

which cost little in execution and might well be debugged

interactively. It is particularly noticeable in MODIS that

a small proportion of sentences takes most machine time.

However, production runs involving heavy use of machine

resources are ideal material for batch runs.

There seem to me to be six main uses for an interactive

DATSY:

1) Debugging programs including quite heavy use of

machine resources.

2) Defining data structures.

3) Production runs using small quantities of machine

time, and from which results are in urgent demand.

4) Editing and manipulation of relatively small quantities

of data.

5) Display of relatively small quantities of data.

6) Debugging new commands.

Points 1, 2 and 3 require easy communication between

batch runs and interactive runs. This has implications

19

for DATSY's filing system. It would have to be disk-oriented

rather than tape-oriented as at present, in any case.

The justification for an interactive DATSY rests on

these uses and the comparisons with TROLL, APL and TSP in

Section 5. Point 3 speaks for itself. The other points

above increase the productivity of the users by eliminating

delays. They may also save considerable quantities of

machine resources for the following reasons:

(a) Debugging could be arranged so as to avoid re-running

programs with errors. It is only really necessary

to back up to the point where the most recent error

was found. (This depends again on DATSY's filing

system.)

(b) Activities such as 2, 4 and 5 above could be carried

out much more efficiently by small, totally separate

programs which use little core space. (Again,

DATSY's filing system would need to take account of

this.)

The fact that production runs of MODIS are best run

in batch mode is fully accepted. No one wants to sit doing

nothing at a VDU for an hour while MODIS runs. However this

is no reason why the development of such models should be

limited to batch runs.

An interactive DATSY might specialize initially on a

subset of the six uses mentioned above, for instance points
2, 4 and 5. Point 1 is the most demanding and could perhaps

be omitted at first. Separate programs communicating through
a common filing system would simplify development of an
interactive DATSY.

An interactive DATSY would have to be designed to fit
into the core space available in daytime for interactive
use, as a prime objective.

It would be very desirable for DATSY's filing system
to be based on permanent disk files used in such a way as
to allow the user to stop a run in the middle, and start
again later from the same point.

20

. Advanta es and Disadvantages in Develo in Software

Locally

This fundamental question needs a section to itself.

Why, it may be asked, should one develop software such as

DATSY in Norway when in principle it could be bought from

elsewhere?

The brief evaluation given earlier of TROLL, TSP, APL

and Simula indicates that the ideal finished product cannot

be bought elsewhere, although this may be possible in the

future.

In particular it needs to be pointed out that MODIS is

unusual in its size, function and methods of use (see

Sections 1 and 2). The main advantage in developing software

locally occurs when local needs are different from those

found elsewhere, as they are in Norway at present.

Another advantage of developing software locally is

that correction of bugs in the software is usually faster

if it has been programmed locally. This can be important.

On the other hand, it is usually cheaper to purchase

a finished product. Also, the purchased product may be

superior to a particular local product.

By using Simula the Bureau would have the best of both

possibilities, since Simula has a high reputation, is used

nearly everywhere, and local support and maintenance is

available. On the other hand, the procedures and data

structures required by the Research Division in the Bureau

would need to be programmed, as they are not delivered with

the standard Simula system. Also, Simula is not currently

available on the machine used by the Bureau. This could

be solved by remote access to other large machines in Oslo.

21

8. Who Owns DATSY?

By DATSY, I mean the system routines programmed, debugged

and supported by the Norwegian Computing Centre, and the

subprograms for individual commands programmed by the Central

Bureau of Statistics. DATSY in this wide sense cannot be

owned purely by the Centre or the Bureau. The same applies

to DATSY interpreted as the contents of the Handbook for

Use of DATSY, i.e. the basic concepts of DATSY including

the commands.

Thus for instance, when I added the MACRO system to

DATSY in 1974 I asked for and obtained approval from the

Norwegian Computing Centre, since they appear to have some

claim to ownership.

A new version of DATSY would be ripe for possible

marketing, in my opinion. However this may not be practical

in the circumstances. The advantages of marketing are that

other users would probably discover bugs, saving the Bureau

considerable difficulty, and that development costs might

be covered in advance by a suitable contract, or afterwards

by sale or hire agreements.

There are several difficulties in the way of marketing

a new version of DATSY. One difficulty is that it may well

be very much bound to the Honeywell-Bull H6000 Series machine

like the present version. Another difficulty is that

personnel are probably not available to offer maintenance

and support. A third difficulty is the relatively small

number of similar organizations which might use DATSY,

especially since DATSY appears somewhat specialized towards

very large economic modelbuilding at present. A fourth

difficulty is that the user documentation and error messages

are at present in Norwegian.

22

These difficulties can all be overcome, by using extra

resources. This increases the risk unless other institutions

can be persuaded to cooperate from the beginning. Since

the Bureau has good contacts with most of the possible

participants in a cooperative project (I am thinking here

mainly of Statistical Offices in other countries), it has

much better possibilities than the Norwegian Computing

Centre for finding participants.

It would be natural, I think, for the Bureau to retain

ownership of routines programmed by the Bureau, and to

avoid paying for ownership rights to new system routines

programmed outside the Bureau, since it has no practical

use for ownership rights unless it wants to market DATSY

itself. All the Bureau needs is the right to use DATSY.

If new system routines are programmed in the Bureau,

marketing through an agent would create the same difficulties

of a practical nature as if the Bureau marketed the routines

directly. This is because marketing would create a need

for support and maintenance by the Bureau which could

probably not be provided. Cooperation with other institutions

as an alternative to marketing might be advantageous if

agreement could be reached to share the burden of support

and maintenance. I think an agreement of this type should

be very clear about the need to respond quickly to documented

reports of bugs. 	 4111
I may appear to be very pessimistic regarding bugs.

Yet any cooperation will probably stand or fall on this point.

The frequency of bugs found in a new large-scale software

product by a new user typically follows a cascade

(falling) curve. Another user getting hold of a completed

and apparently debugged product often finds a new sequence

of bugs due to different patterns of use, again in a cascade

pattern. Bugs are rarely finally eradicated from any large

software system. Support and maintenance must be a permanent

ongoing arrangement. This is as true of Fortran as it is of

DATSY -- very few systems are immune to this problem.

23

9. DATSY Tries to Do Too Much

We have now reached the stage in this report where

DATSY's future is pushed into the foreground, and DATSY's

past becomes less interesting except as valuable experience.

One lesson which is apparent is that DATSY tries to do

too much. This shows itself in two ways:

(a) DATSY combines in a single program and in a single

run, operations which could be carried out more

conveniently by separate programs in separate runs.

I believe DATSY should be divided into several

independent systems. However, alterations to the

existing version of DATSY should be kept to the

minimum possible. I am most concerned that a new

version of DATSY should be programmed as separate

programs communicating through a permanent file

system.

(b) DATSY tries to do some things which are done . more

efficiently and easily by standard software available

on nearly all machines.

These two opinions are discussed below. Point (a) above
is discussed first.

DATSY carries out the following operations:

I) Data structuring for new data objects, and display

of these structures.

2) Data input for new objects.

3) Data input for old objects.

4) Interpretation of the program including cross-checking

and display.

5) Running the program.

6) Storage of selected data objects.

7) Associated report generation.

All of these points could be tackled relatively easily

by separate programs, run as seven runs not always in the

sequence shown, provided these runs used a standardized file

system for data objects (together with their attributes).

There seems no reason why the file system should not also

24

store the program, as with the macrosystem in DATSY. Usually,

not all points need be run (for example, production involves

points 2, 3, 5, 6 and 7 only).

Each program could be the responsibility of a particular

programmer, since it would be manageable in size and

separate from the others. There is an increase in

reliability to be gained from this decentralization, for

the following reasons:

(i) System software will protect independent programs

from overwriting each other in core.

(ii) Smaller programs are easier to test and debug.

(iii) Separate programs can be tested earlier and in ways

which are not possible if they are always linked to
	 •

one another.

(iv) It is more reliable to focus responsibility on single

programmers than on a group. Short programs can

also be studied by other programmers more easily,

if the usual programmer is not available.

(v) Smaller programs place smaller demands on system

software, e.g. collectors (link editors).

We come now to point (b) above.

The main role for existing standard system software

in carrying out the seven functions for DATSY listed under (a)

above is in the storage of data. At present, interpretation anli,

execution are specialized tasks requiring special programs.

Data structuring is a specialized task at present also,

since the new data base systems are probably not adequate

yet for the purpose of economic modelbuilding.

However, points 3 and 6 above, namely data input and

storage, leave much scope for existing system software.

To begin with, many machines have a filing system which

stores data according to name and subnames so that absolute

addressing of data objects is a thing of the past. But

attributes do not usually follow automatically. Even so,

extensive use of a standard filing system would greatly

simplify the programming of a new filing system for DATSY.

25

(Since most machines have filing systems with names and

subnames at least, DATSY concepts would still be machine-

independent.)

Second, extensive use of a standard file system should

reduce the core size of any future DATSY and make it less

machine-dependent by reducing the quantity of assembly language

programming.

Third, most machines have efficient and easy methods

for copying standard disk files onto tape and keeping track

of them there. Since DATSY copies all tapes to disk before

using them, it would be natural to use this software, which

is usually highly developed.

Fourth, movements are being made in the computer industry

towards tape interchangeability between different types of

machine. Non-standard files will probably be left out of

any such development. Hence, machine independence will in

the long run depend most likely on the use of standard system

file structures.

I believe that DATSY should have no responsibility for

tapes as such, and that it should be disk-oriented. Copying

of disk files to tape can be left to system software. Also,

I believe that the disk files should be in a standard format

and utilize the naming features of the machine's file system.

Far from making DATSY machine-dependent, this would make it

easier to move DATSY to a new machine, since DATSY would

contain much less assembly language than it does at present.

Obviously, tape will continue to be used extensively

with DATSY for some years to come. DATSY already operates

• on the basis of transfers between disk and tape, and good

system software usually exists for saving disk files and

restoring them later.

MULTICS

Some machines have available advanced control languages

which set up files and execute programs in a self-explanatory

26

and user-oriented way. MULTICS, developed at MIT around

1967, is available commercially through Honeywell and fills

this role. Such a control language allows a more decentralized

run-time system for DATSY in which individual sentences

result in separate runs, without the user beina aware of this

That is, each sentence starts a completely independent job or

task in the machine which can run in parallel with others

under a time-sharing system, and which is protected from the

others. A new DATSY could make extensive use of the features

available in MULTICS.

By splitting DATSY runs into many separate tasks as

indicated above, reliability is increased since they cannot

interfere with each other. The tasks would probably have

to communicate with each other via disk, although hopefully

they could share a limited area of core. New DATSY commands

could then be kept isolated from existing ones during testing,

so that they could not spoil the operation of other parts of

the calculation. Software errors would be much easier to

detect and hardware errors would do less damage than at

present.

Communication between commands would be via standard

data structures which could be interrogated and altered

from a terminal if necessary. Error detection would be made

easier by this possibility.

MULTICS offers many further advantages, one of which

is parallel processing in the following sense. A DATSY

program could be split into groups of sentences instead of

single sentences, organized in such a way that some groups

of sentences could be computed in parallel whilst others

had to be computed in sequence. By creating (hidden from

the user) separate tasks or jobs for the groups which could

be run in parallel, these could be run simultaneously under

the time-sharing system. Hence, the progress of a large

DATSY run through the machine in elapsed time would be

considerably reduced.

At the same time, general machine throughput is improved

by splitting up large jobs into smaller jobs, particularly

if the smaller jobs use less core space as well as less

computing time.

27

10. Suggestions for Improving or Replacing DATSY

At the seminar I suggested that there is no reason to

go on using a system simply because it was expensive in its

development phase. Also, I advanced the idea that the easiest

way to improve or replace DATSY was to split it into separate

programs first (see Section 9, point (a)). Quite a lot of

discussion resulted. My point of view is set out in the

previous sections, so I will concentrate here on the

discussion during the seminar, followed by a new concrete

suggestion.

The discussion showed that in particular Hans Fetter

Dahle was less willing to split up the existing version of

DATSY than I would have been in his place. This is perhaps

natural, as I have the benefit of having "operated" (in the

medical sense) on DATSY earlier. Since the seminar I have

come to the conclusion that Dahle is right to the extent that

further "operations" on DATSY should be avoided if possible.

My concrete suggestions for altering the existing program now

involve only the programming of new commands, using techniques

which should be clear from Ola Jacobsen's "data base" system.

Dahle appeared to be interested in replacing DATSY

completely, and rejected my opinion that DATSY should first

be split up. His reason was that it would take too much

time to split up. I agreed that splitting up DATSY was

difficult. Against this I argued that it would be easier

to replace DATSY if it were first split up. I greatly admired

Dahleis understanding of the problems involved in "operating"

on DATSY, and his willingness to replace DATSY. At the same

time I felt that Dahle underestimated the size of DATSY and

the effort involved in replacing the whole system at one bite.

This exchange of opinions is less relevant than previously

in view of the following new suggestion: Instead of splitting

up DATSY, I suggest that a new command be programmed to

extract all data objects from DATSY and transfer them to a

new file system. This file system would have to be developed

first. A new runtime system could then be developed

independently and separately from the existing DATSY.

28

This suggestion and its further ramifications are

sketched below. It is meant as an input to further discussion
and for this reason is not given in full detail.

The new runtime system would communicate with the old
DATSY by receiving data and program through the new file
system, but it would run as a separate program. It would
not send any data to DATSY, and the results of its runs
would be kept in the new file system. DATSY's runtime

system would continue to be used until the point of time when
the new runtime system was found to be superior. It would

then fall out of use but remain as an option, for a time.
The economic models and the way in which they are programmed

could remain unaltered if desired.	 •
In case for some reason it became essential to move

data back from the new file system into the old DATSY, the new

file system should have a facility for writing data out in

Hollerith so that the old DATSY can read it. This should

however be largely unnecessary. The file system should in

any case have this feature in order to communicate with other

software, although there are naturally better means in

particular cases. Data should only be fed back into the

old DATSY via Hollerith as an emergency measure since this

process is inefficient.

The benefits gained from the new file system can be

summarized as follows: First, small errors in model developmeA10

runs could be corrected interactively, in a way which would speed

up development and reduce development costs. Second, further

development of the runtime system is made possible in an

operational environment without disturbing the rest of DATSY,

which means that a new runtime system could be finished much

earlier than if DATSY was replaced all at once. Third, the

possibility of interrogating data objects interactively

immediately before, during and after the runtime phase makes

it much easier to detect and correct software errors. Fourth,

all interactive use of the set of DATSY commands seems blocked

unless a new file system is made operational. All

the benefits of interactive processing can be made available

as an option during the runtime phase.

NEW FILE

SYSTEM

USER

SYSTEM STANDARD

TAPE FILES

29

How would the results of production runs using the new

runtime system be input to later production runs? The simple

answer is that they would not usually be input to the old

DATSY system. But, it is easy to input them to the new

runtime system. The structure of these data objects is

already clear, and all that is needed to use them in the

new runtime system is command sentences which the new

runtime system could interpret without any help from the

old system. Possibilities for "compiling" DATSY programs

exist which could be developed in this new environment.

Later runs can use (mixed together) data objects

transferred from the old DATSY system, and data objects

produced by the new runtime system. Thus the input of new

data from outside the machine still occurs via the old DATSY

program, as a first stage in development. Later, of course,

this function can be taken over by new programs as well,

with continued use of the old DATSY available as an option

quite compatible with the new system.

This first stage of development is illustrated below.

In this diagram the arrows represent transfer of data objects.

The old DATSY runtime system is used purely to transfer data

objects to the new file system via the new command suggested

above.

OLD DATSY -- 	 OLD DATSY

Data Structuring 	 Runtime System

and Data Input

	I

NEW RUNTIME

SYSTEM

Runtime System

OLD DATSYOLD DATSY --

Data Structuring

and Data Input

C

NEW DATA

STRUCTURING

PROGRAM

NEW FILE

SYSTEM
A

NEW DATA

INPUT PROGRAM

FOR BATCH

E

NEW INTERACTIVE

DISPLAY, INPUT

& EDITING PROGRAM

	 I

CONVERTED

USER

SYSTEM STANDARD

TAPE FILES

NEW RUNTIME

SYSTEM

30

The avantages to be obtained from a new runtime system

follow from the criticisms of DATSY in Sections 4 and 6.

Later, or parallel with the first stage of development

sketched above, separate programs for defining data structures

and for input of large and small objects could be added.

Then all of the old DATSY would probably fall out of use.

But there is no reason why it should not remain possible

to continue to use the old system for these functions if

desired. In short, I would hope to see a competitive

relationship between the old and new systems

as well as continued reliable operation.

The diagram above would then change as follows at the
end of this second stage of development:

A

CONSERVATIVE

USER

B

31

Programs would be defined as data structures using box F.

They would be input as data objects using boxes G and/or H,

and run from the filing system D where they would be stored.

As before, arrows represent transfer of data objects in the

above diagram. The system makes no fundamental distinction

between program and data. In this way it is similar to APL.

Programs are alphanumeric lists, as macroprograms are in

DATSY. There seems to be no reason to make them a special

class of data object, since the user who tries to execute a

list which does not contain a program will receive adequate

error messages.

The new programs for defining data structures and input

of data could be written in any suitable language. The new

runtime system would probably be in Fortran, to make it easy

to call existing Fortran subroutines implementing the various

commands.

The proposal put forward here really shifts the debate

to the issue of a new file system. Easy conversion of stored

data from the old system to the new one is assured by this

proposal.

note from the minutes of the seminar that Dahle argued

against my suggestion that the machine's standard file system

should be utilized in a new version of DATSY, since he

believed that DATSY would no longer be machine-independent.

He did say something like this, but I am sure he realizes

that DATSY as a whole is not at all machine-independent except

in its basic concepts and in the kind of magnetic tape it

writes. (See my arguments in Section 4, point 5.) Also,

believe the goal of writing machine-independent tapes is

better pursued via standard system file formats.

argue that on the contrary, utilizing the machine's

standard file system will reduce the quantity of assembly

language in DATSY and thus make it much less machine-dependent.

Nearly all machines have file systems with names and subnames

which are named directly in executive request instructions.

Why not let Fortran write system standard format binary files?

Most machines allow the user sufficient control of these files

through Fortran via special system routines. These routines

usually have equivalents on other machines.

32

I think DATSY should have its own file system with

extra features, based on the machine's standard file system.

The desirable features of attributes, object definitions and

descriptions which follow each object should be implemented.

They might well be linked logically to their objects rather

than physically. Then they could be kept physically separate

in a dictionary file as at present. However it might be

simpler and equally effective to store the attributes, definit-

ions and descriptions physically together with the data itself

for each object. Of course some attributes and descriptions

refer by name to other data objects and these other data

objects would be stored physically separate like any other

object.

There are many choices which remain open here. It does

not matter for my proposal whether each data object has its

own file, - -)r. whether groups of them are stored as a single

file as in Jacobsen's data base system. I originally viewed

this data base system as a possible new file system for DATSY.

Since it was not carried through due to Jacobsen's resignation

it would probably be easier to start afresh with a completely

new file system, but this is not certain.

As Frank Siljan pointed out,'it would be desirable to

keep an eye on the core space required by any new DATSY and

to make this flexible to give faster turn-around for small

runs. I would like to see the entire data buffer for the

runtime system vary dynamically in size so that small runs

automatically took very little core space.

The documentation produced by the Norwegian Computing

Centre contains a thorough discussion of many points of

design which are still relevant to new versions or replacements

of DATSY.

33

Appendix. How to Improve the Solution of MSG-3 Using DATSY

Background

The suggestions which I put forward below are a little

late, since MSG is now being converted to TROLL rather than

DATSY. Nevertheless, I decided to include them here since

they throw some light on DATSY's solution of MSG-3, and

because they indicate how an experimental interactive runtime

system for DATSY could be set up using existing commands

from DATSY. However, such an experimental runtime system

would not be possible until a new file system for DATSY is

operational.

The suggestions made here are not really relevant to the

solution of MODIS by DATSY, since they are meant to solve the

problem of DATSY's high overhead resource cost per command

sentence, which is unimportant in the solution of MODIS.

In the solution of MODIS, large data objects are involved so

that DATSY's overhead per command sentence of 80 milliseconds

CPU time on the H6060 is only a tiny proportion of the total

CPU time.

In MSG-3 as solved by DATSY from 1975 to 1978, there are

many more command sentences executed than in MODIS, often in

loops. Each command sentence often operates on very small

data objects (such as a 2 x 2 matrix) although some larger

data objects are also involved. Thus repeated references

to disk are undesirable and serve merely to increase the

CPU time and elapsed time needed to solve MSG-3. The present

version of DATSY copies the results of every command sentence

to disk and obtains its input from disk. Also, as discussed

in Section 4, point 6, DATSY's overhead cost per command

sentence is high because some unnecessary checks are

carried out by the runtime system, which should really be

restricted to debugging runs and omitted in production runs.

The suggestions below bypass both these problems by

showing how to set up miniature runtime systems within

commands, which are for data objects small enough to

remain in core. Several commands are combined into a

single command so that the overhead per sentence due to DATSY

34

is spread over several command sentences. Also, the elapsed

time is reduced considerably by eliminating unnecessary

disk transfers.

Any new runtime system for DATSY should take note of

the problem solved by the suggestions below. It should of

course be solved within the basic design of the runtime

system rather than by ad hoc additions as suggested here.

The same comment applies to the MACRO system within DATSY.

However, since DATSY is large and operational, ad hoc

additions are sometimes justified.

A general conclusion which emerges is that DATSY's new

file system should not update the disk after every command

sentence. It is necessary here to choose a suitable trade-off •
point between the elapsed time delay caused by excessive disk

transfers, and the desirability of keeping the disk as up

to date as possible (to help debugging among other things).

Perhaps it would make sense to update the disk when either

(a) there is a shortage of core space after automatic

garbage collection, or

(b) a certain quantity of CPU time is registered, such as

half a minute.

Point (b) removes the necessity to repeat long calculations

leading to an error when debugging, which is expensive when

developing a model such as MODIS.

It would make sense for the quantity of CPU time mentioned5
in point (b) above to be under the user's control, so that

it could be reduced for interactive debugging and increased

for production runs. This would reduce costs.

The SuHestion

I have not spelled out this suggestion in detail, because

it is no longer relevant to the solution of MSG as noted

earlier. Hence it is not intended to be taken as a blueprint,

and merely serves to focus attention on problems which a

new runtime system should solve, almost certainly in a different

way.

35

It is easy to combine subroutines from existing commands
to make new commands. To reduce interrupts due to excessive
disk transfers and bypass a number of runtime tests it is
possible to write new so-called "command" and "test"

routines which refer via a new "work" routine to a string of

existing "work" routines (these three types of routine are
standard within DATSY). By setting parameters correctly (see

the relevant documentation by Helge Totland) it is then

possible to force data objects to remain in core during

execution of the new command. The system routine SID is

called once only, to execute the new "work" routine which is

really a miniature runtime system in itself.

DATSY has a mechanism for combining commands by Fortran

programming which was little used, because it took so long

to debug the results. This was the method of "higher order"

commands, that is, a hierarchical combination of commands.

Attractive as it seemed at first, I think this method is to

be avoided as it does not reduce overheads noticeably although

it does provide facilities for forcing objects to remain in

core.

What I suggest here is simpler. It involves creating

a new first order command from the "work" routines of existing

first order commands. The method is as follows:

First, using an editor, take the "work" routines to be

combined and rename them systematically. Then, using a global

exchange instruction in the editor, change all IUR-routine

references to IOR . E.g.

CALL IURW3(

becomes

CALL IORW3(

(Of course some other combination of letters could be used

consistently.)

IDIMA, IDIMB and similar entry point names referred to

in the "work" routines should be altered systematically as

well. This only concerns the "work" routines and not the

"test" routines.

36

The new "work" routines for the new combined directive

and now finished (after recompilation) except for the new

miniature runtime system, which will also appear as a "work"

routine. The intention is that instead of calling the usual

IUR-routines the new "work" routines will call new IOR-routines

which use core exclusively and not disk. The new IOR-routines

should also neglect many checks carried out in the old ones.

I assume here that the "work" routines converted in this way

are fully debugged -- after all they come from an operational

economic model which has run for three years. For this

reason, further alteration of the work routines is risky

and the alterations stated above should only be carried out

using global editing instructions. Lines should not be

replaced or altered individually.

The role of the miniature runtime system is to create

arrays whose start addresses will be passed to the "work"

routines, and to place and receive data in these arrays.

If the "work" routines assumed that all data objects were

always in core, that would be all. However, the "work"

routines do not assume this. They call on IOR routines

which must therefore be provided to fetch the data. The

IOR routines must emulate the IUR routines, seen from the

point of view of the "work" routine. Of course they will

be much simpler since they do not have to deal with disk

transfers.

How are the arrays created? The total length of array

is calculated in a new "test" routine written for the occasion

for the new combined command. Objects which are input to

the new combined directive are treated as usual in the "test"

routine and the same goes for output objects. They will be

handled by DATSY.

Some data objects are output from one "work" routine

and input to another, and are not input or output to the

new combined command viewed from the outside. The user will

not see them. Normally they would be treated as "dummy objects"

37

To avoid overheads, we create a single "dummy object" in

DATSY of class zero for the combined command, force the

object to remain in core, and dimension it in the new "test"

routine so that it is big enough to be split up into separate

objects by our own runtime system. We make sure it has

room also for all the input and output objects mentioned

earlier. If there is any difficulty due to size, DATSY

will stop safely in the new "test" routine and tell the user.

To save as many overheads as possible, the commands

being combined should yield a new command with few input

objects, few output objects and many potential "dummy"

objects.

The new "test" routine calculates as usual the size

of each array. Instead of telling DATSY, it passes this

information via COMMON to the new miniature runtime system

from which the "work" routines are called. But it does set

the dimensions of the output objects via DATSY in the usual

way.

So much for the new "test" routine. How do we write

the new "command" routine? It calls SID once, referring to

the new runtime system which appears disguised as a single

"work" routine. The objects named are the input and output

objects, and our single "dummy" object. Savings in overheads

result from calling SID with fewer objects and only once,

as compared with the existing situation.

Let us now focus on the miniature runtime system routine.

It calls the original string of "work" routines, one after

another, directly. It creates data arrays for their use

by allocating parts of the single dummy object. It copies

input objects into their correct places in the single dummy

object before it calls any "work" routines. Later, it copies

final results from the single "dummy" object array to the

output objects.

It receives the size of each array via COMMON from the

test routine. It decides on the position of these arrays

in the single "dummy" object array. Integer variables are

computed giving the first word of each array within the

dummy object. Let these integer variables be MAT1, MAT2, MAT3,

38

MAT4, fl, J2, and JANNE. Let the single "dummy" object

array be called SPACE. The input objects are copied into

the right position in SPACE. Then the work routines are

called as in the example below:

CALL ADDMAT (SPACE(MAT1),SPACE(MAT2),SPACE(Ji))

CALL MULT (SPACE(J1),SPACE(MAT3),SPACE(JANNE))

CALL SUBMAT (SPACE(JANNE),SPACE(MAT1),SPACE(J2))

CALL KOLSUM (SPACE(J2),SPACE(MAT4))

In this example, we add MAT1 and M7T2 to give Ji, which we

multiply on the right by MAT3. The result is put into JANNE.

MAT1 is subtracted from JANNE, with the result being J2.

The columns of J2 are summed and the result is MAT4, which

has a single row.

In this way we allocate a single array to serve as

many arrays with variable lengths. The altered "work"

routines find the dimensions of the matrices by calling on

the new IDIMA and IDIMB routines (with altered names).

The only alterations in the "work" routines are their names

and the names of the routines they in turn call.

The next part of the suggestion is that IOR-routines

(see earlier) be constructed to deliver data as required to
the work routines. All this data is in core, and could be

referred to directly but to do this we would have to rewrite

the "work" routines and this would introduce unnecessary

errors, so we do not do it like that.

In order to emulate the IUR routines, extra core buffers

are needed. The single "dummy" object can be doubled in

length to provide these (later we will see that it may as

well be tripled at the outset), so that every new "array"

created within it as in the example above has a "backup"

array which could be used for example to refresh it, when

emulating rewinding of a data object. Information regarding

39

the length of the single "dummy" object array would have to

be passed via COMMON to the IOR routines. They would then

be able to work on the basis that when asked to process an

object beginning with address X, they could also use a core

buffer with start address equal to X plus (say) half the

length of the single dummy object (later on, it will be one

third of the total length). I.e. when asked to process the

array with name A, they could use A(l+length/2) and upwards

as a suitable core buffer. It would be natural to keep a

copy of each array here and bring down data to A(1) as requested

by the "work" routine.

This may seem to imply a lot of unnecessary movement

of data in core. In fact using Fortran these movements are

unfortunately necessary, and for instance the existing

DATSY routine IURW3 moves data around in core in addition

to transferring it to and from disk.

If the implementation language allowed us to interfere

with pointers to arrays in a suitable way it would no longer

be necessary' to move data around in core in this way. This

is where for instance JOVIAL is superior to Fortran as an

implementation language.

Note that this solution is really very simple. The IOR

routines do not have to keep track of all the different

arrays we have created in the "dummy" object array, via

their addresses. The IOR routines are given the starting

address of all these arrays implicitly by the "work" routines

which call them. Hence the IOR routines can be written for

a single array called for instance A as above, and will then

work for all the new arrays created within the "dummy"

object array.

Similarly, the "work" routines refer to the different

arrays as A, B, C and so on as at present (they are not

changed, remember). In the example given earlier, SPACE(MAT1)

corresponds to the array A in ADDMAT, SPACE(4AT2) corresponds

to the array B in ADDMAT, and SPACE(J1) corresponds to the

array C in ADDMAT. ADDMAT then views its task as adding

matrices A and B to give C.

40

However, the IOR routines do have to keep track of the

status of each object -- i.e. whether the object is currently

being read from or written to by the "work" routines, how

many rows have been dealt with up to now, and so on. By

tripling the size of the "dummy" object array such information

can be stored there as well. It wastes a little space (of

which we are not short according to our problem formulation)

but is very simple to triple the length of the "dummy" object

array and store all extra information including object

dimensions for array A at A(1+2=flength/3), with the previous

core buffer mentioned earlier at A(l+length/3). The row of

the data object currently available to the "work" routines

begins at A(1), of course. The last one third of the array

must be large enough to hold this status information for each

object. This can be arranged by always allocating at least

a certain minimum number of words for each object.

Information stored in the last one third of the "dummy"

object array will be of two types -- dimension information

used by the new IDIMA and DUMB routines (with altered names),

and status information showing the stage which reading and

writing of each object has reached. Of course, this refers

to an emulation of disk reads and writes using only core,

which is why the extra copy of each object in core is needed.

Using the simplifications above, the IOR routines would

be very simple and treat all data objects alike, as if in

fact there were only one data object, although of course

there are many.

Most commands in DATSY use only IURD3 and IURW3 among

the IUR routines, so that emulation of IURD2, IURW2, IURD1

and IURW1 may not be necessary since not all commands will

be involved in these combinations. However it would not be

particularly difficult to emulate all these routines in any

case.

As noted earlier, these suggestions are no longer

relevant to MSG, but are included here as input to the

general discussion about replacing or improving DATSY.

	Front page/Contents
	1. Introduction, Summary and Historical Background
	2. MODIS III Using Fortran/Assembly Compared with MODIS IV
Using DATSY
	3. Strong Points in DATSY
	4. Weak Points in DATSY
	5. TROLL, TSP, APL and Simula
	6. Interactive DATSY
	7. Advantages and Disadvantages in Developing Software
Locally
	8. Who Owns DATSY?
	9. DATSY Tries to Do Too Much
	10. Suggestions for Improving or Replacing DATSY
	Appendix

