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SUMMARY

This paper starts by giving a number of demographic and actuarial

examples of time-inhomogeneous semi-Markovian models. The examples are

presented in a uniform terminology, viz. that of forces of transition between

states in a system (state space). The states correspond to demographic or

actuarial statuses, and the central features of the substantive models are

reflected in the pattern of the state space and in the specification of the

forces of transition. A sample path usually corresponds to the history of

an individual. Jumps between states correspond to demographic events.

Forces of transition have been highly useful in a number of fields

of application, yet the standard literature on semi-Markov (and the related

Markov renewal) processes has found little room for them. The place of

these functions in the now classical, time-homogeneous theory is pointed out

briefly, and they are used as a connecting link between this theory and that

of the corresponding inhomogeneous processes. The rudiments of the latter

theory is then spelled out. Its basic notions are introduced; it is shown

how the device of an operational time can be used to transform an

inhomogeneous semi-Markov process into a homogeneous one (necessary and

sufficient conditions are given and a uniqueness theorem is proved); and

certain important problems connected with retrospective investigations are

studied. In a final section, the multiplicity of uses of words like 'select",

selected", "selection", and 'selectivity - are discussed, and some

parallellities between this terminology and others are pointed out

After the "ordinary' list of references, a bibliography of some

further recent articles on homogeneous Markov renewal processes is given.



1. INTRODUCTION

1.A.	 Since L'évy, Smith, and Takacs published their first papers onr‘,
semi-Markov processes in 1954/55, and particularly since Pyke's two basic

papers on the related Markov renewal processes appeared in 1961, these

processes have attracted widespread attention, and each year has brought a

new crop of articles on the subject. The development has largely parallelled

that of Markov chains, and much energy has gone into extending results in the

latter theory to the new field, which has become a mature branch of stochastic

processes. There now exists both a general theory of Markov renewal processes

and a number of studies of applications. [A review of Markov renewal theory

has been published by Çinlar (1969). A mathematically less advanced intro-

duction has been provided by St5rmer (1970; see also de Smit, 1971). Neuts

(1968) has put out a working bibliography going up to 1968, and a number of

later articles are given in the subsidiary list of references appearing at the

end of the present paper.

In its present form, general Markov renewal theory seems to concern

itself exclusively with processes which are homogeneous in time, and interest

in similar time-inhomogeneous processes has been manifested primarily in

certain fields of application. In one such area, viz. actuarial science, the

concept of an inhomogeneous semi-Markov process has roots going back far

beyond the inception of the modern theory. The central idea in this theory

is the dependence of the process on duration in the current state, and a

disability model with genuine duration-dependence appeared in the actuarial

literature as early as in 1924 (Schoenbaum, 1924/25).

n
%

semi-Mark,ovian models useful in two fields of application, vize demography and

actuarial science. We shall also indicate how our examples appear as particular

cases of a more general theory, whose basic characteristics we will outline.

Our purpose in doing this will be threefold:

Firstly, a pointer to some of the possibilities in this direction will

hopefully help attract greater interest from people working in the theory of

stochastic processes.

Secondly, population mathematicians and actuaries may find some

inspiration in seeing their particular models in the perspective of a more

comprehensive theory.

2

In the present paper, we shall describe a number of inhomogeneous



Thirdly, one may hope for some cross-fertilization between the two

applied fields. After the early start indicated above and some subsequent

pre-War work, actuarial science has witnessed only a very modest development of

semi-Markovian ideas. (The early history of the subject is sketched by Seal,

1970.) These notions caught hold in population studies at a much later date,

but they must have found a more fertile soil in the new area, because a

considerable number of papers have been based on them since the middle 1960-s.

Though closely related in many ways, the two fields have largely developed

independently of each other, however, with some duplication of effort as a

result. It may be useful, then, to remind the two traditions of each other.

1.C. Our mathematics will he on the intermediate level. Our interest
,1)

will be focused on the substantive models described and on what can be said

about them, and the mathematics will appear only as a convenient language to

say it in. We do not aim at complete mathematical generality, and shall

frequently impose more rigorous assumptions than what is really necessary.

We will use no measure theory, so statements about what holds almost every-

where are ruled out.

We shall give a few proofs, but not where the results can be argued

by "direct reasoning" (i.e. by intuition) or are well known or almost

immediate. All this means that we shall sweep some interesting mathematical

problems under the rug.

I.D.	 The examples described in the next Section have some interest

in themselves, and beside this they can be seen as an introduction motivating

the general theory which follows. The presentation of the examples will be

made in a uniform terminology, viz, that of forces of transition between

states in a system. The central features of the substantive models will be

reflected in the pattern of the state space and in the specification of the

forces of transition. This sometimes means that our formulation differs

somewhat in outlook from the one in the literature to which we refer. Part

of our purpose is to emphasize the usefulness of force functions.

We shall stress those aspects of the examples which will be useful in

the later account.



14

2. EXAMPLES FROM DEMOGRAPHY AND ACTUARIAL SCIENCE

2.A 0 An actuarial model of disability. A number of models have been

suggested as a basis for disability or sickness insurance. (See Seal, 1970;

Hoem, 1969a, 1969b; Hoem, Riis, and Sand, to appear; and their references.)

In one which is of central importance, the insured lives are simply divided

into two groups, called "active lives" (or "able lives") and 'disabled lives",

and transitions between the two groups are described by means of two forces

of transition, viz. the force of disablement v(x) for an x--year-old active

life, and the force of recovery p(x,u) for an x-year-old disabled life whose

current disability has lasted since age x-u. The two groups have forces of

mortality which we call, say, p(x) and 11(x,u), respectively. The intuitive

interpretation of (x ,u) is that p(x,u)tix -t-o(Ax) represents the probability

that the disabled life will recover within age x +46x and stay recovered until

that age. Similarly for the other forces.

In stochastic process terminology, this is an inhomogeneous semi-

Markovian model with the three states 'active", "disabled", and "dead". The

latter is, of course, absorbing. The forces of transition are sometimes

called intensities or infinitesimal transition probabilities. They are

functions of the age of the individual, which makes the process inhomogeneous

in time. Two of the forces (p and n) also depend on duration in the current

state, which makes the model semi-Markovian.

2.B. A three-state fertility model. In a recent paper, Chiang (1971)

suggested using essentially the same model to describe the fertility histories

of individual human females. In his set-up, the two transient states are

called "fecundable" (corresponding to the "active lives') and 'pregnant or

infecundable (corresponding to the "disabled lives"). A woman moves from one

state to another as she conceives, becomes fecundable again, and possibly

dies (as fecundable or infecundable). The function v(.) could be called the

force of conception, and p(x,u)Lx+ o(x) represents the probability of a

transition back into the fecundable state of an infecundable female of age x

whose latest conception was at age x-u. In Chiang's version of the model,

such a transition cannot take place at a duration less than some lower

bound a, and a female may not stay infecundable for more than a maximum

period of time b. In terms of the forces of transition, the first cf these

conditions means that p(37+ ki,u) ::: 0 for 0 u a, for each fixed age y at

conception. The second condition implies that

(2.1) 	 p(y+u,u)	 00 as u 1- b.



The latter observation has some interest in principle, so let us give

it a little consideration.

Assume that a woman conceives at age y, and let T be the time she

will subsequently spend in the infecundable state before she dies or becomes

fecundable again. Assuming that the distribution F of T is absolutely

continuous and that p(yiu,u) and n(y+u,u) are, say,continuous in u, we will

have

tr
F(t) 	 t} .--- 1 - exp{-fly(y+u,u) +r)(y+u,u)].dul.

Chiang assumes that

(2.2)	 P {a	 T 175: b	 1,„

so F(b) 7- 1, and thus

b
f Lp(y+u,u)	 n(rfu,u)]	 00 .
0

Since (x u) will be bounded by a constant for all - ageS and durations.of

interestthis'implies (2.1).

The central assumption leading to this result is the absolute

continuity of F. One could easily achieve (2.2) in other ways, e.g. by placing

some positive probability mass in b. Such a feature does not seem to have a

reasonable interpretation • in medical terms, however, and, anyway, it is not

included in Chiang's model.

Since F(b) .7- 1, permanent sterility following a pregnancy is ruled

out here.

2.C. The qualifying period in disability  _insurance. When in Sub-

section 20A the force of recovery p(x,u) was taken to depend upon duration u

as disabled as well as upon age x attained, the intention was that this would

reflect the real-life phenomenon that equally old people who are ill, will have

a propensity to recover which depends on the duration of the illness.

Similarly for the fertility model of Subsection 2.B: the propensity -to become

fecundable again really depends upon time since conception. In other cases,

duration-dependence can get introduced through the observational plan, even

though the original model is taken to be genuinely Markovian. This can happen

when less than all relevant information about the sample paths is collected.

We shall give an example based upon the simple three-state disability model.

Following Du Pasquier's original formulation of the disability model

(Du Pasquier, 1912/13), let us ignore the dependence of p and n on u, and

let us take them to be functions of x only, so that we are faced with an



inhomogeneous Markov chain (with a continuous time parameter). In practice,

disability income benefits will not be paid from disablement in most cases,

but only after disability has lasted for some time K, called the qualifying

period or waiting period. In principle, the insurer will receive no

information about cases of disability lasting less than K. Indeed, part of

the justification for having a qualifying period is precisely that the insurer

avoids having to keep track of short-time disabirlity. This means, however,

that he does not observe the actual, underlying disability process, but a

secondary one, derived from the primary process by means of the "filter'

created by the qualifying period. It is easily seen that the secondary

process is not a (three-state) Markov chain (Hoem, 1969a, Theorem 3.1)

although the primary process is. The secondary process is semi-Markovian;

no additional information about the behaviour of an observed sample path

before an arbitrary moment t will change aur probability statements about its

behaviour after time t, once the state and duration at time t is known.

The observed process will have the original p(x) as a force of recovery

at age x and the original n(x) as a force of mortality for an x-year-old

disabled life. Its forces of transition out of the 'active' state will not

equal v(x) and p(x), however. Since it will be impossible to observe a

disablement during the qualifying period, its force of disablement, say

v(x,u), will equal 0 for durations u < K. At duration u K, this function

will make a jump to some positive value. An expression for this quantity is

Riven elsewhere (Hem, 1969a, page 111), but it need not concern us here.

What is important to us is that ---(x,°) is discontinuous at K.

Evidently, both -.)-(x,u) and the corresponding force of mortality, say

Ti(x,u), will be functions of all four original forces, v, p, p, and n.

2.D. Marriage models. It is well known that the inclination of

existing marriages to dissolve varies with the duration of the marriage.

This is even reflected in a popular expression like the seven year itch'.

Similarly the inclination to remarry depends on time since marriage dis-

solution. A class of marriage models incorporating this feature has been

reviewed elsewhere (Hoem, 1970b). (Additional references are Rowntree and

Carrier (1958, pp. 214-218), U.S. Bureau of the Census (1970), Land (1971).)

In these models, one operates with a number of marital states called "un-

married", "in first marriage", and so on, and again one has forces of

transition which depend on age attained and duration, separately. Most of

these models account for one sex only, but a model for marriage dissolution

can easily take both sexes into consideration simultaneously. (It is easy
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to describe the termination of a unit, viz. the marriage, but no one has been

able so far to give a satisfactory mathematical model for how two arbitrary

units in a population, a potential bride and a potential bridegroom, can join

forces and make a couple.) If one subseouently translates the two-sex model

into a single-sex one, to match up with a one-sex model for remarriage, say,

one may get duration-dependence even when there was none in the original two-

sex model. Just as in Subsection 2.C, the reason is that some relevant

information is not collected. In the present case information on one of the

spouses is left out.

Let us describe how this effect may arise. To simplify exposition,

let us disregard remarriage and emigration. (It is easy to include these

features, but only at some notational inconvenience.) Consider a couple whose

marriage has lasted for u years, and where the bride and bridegroom were

y and x years old at marriage, respectively. Dissolution of their marriage

can take place by divorce or through the death of one of the spouses. We

describe the dissolution process by postulating a standard multiple decrement

model with three causes of decrement, viz. (i) death of wife, (ii) death of

husband, and (iii) divorce. The time parameter is marital duration, and the

three forces of attrition are (i) the force n(y+u) of mortality for (married)

females, (ii) the corresponding force p(x+u) for (married) males, and

(Hi) a force of divorce a(x+u,	 u). While the forces of mortality are

taken as functions of age attained only, we shall let the force of divorce

possibly depend separately on marital duration also©

To derive a one-sex model for females, say, we will take the age X

of the bridegroom of a bride who marries at a known age y, to be a random

variable, and we postulate a distribution G(z) 	PIX-y zl for the age

difference Z X-y. We can then describe attrition from the marital state

by a standard multiple decrement model with death, divorce, and widowhood as

decrements and marital duration as the time variable. The forces of attrition

are
(a) the force of mortality: n(y+u),

(b) the force of widowhood: w(y+u,u) = f 1.1(z-fyi-u)dG (z),
and

(c) the force of divorce:	 6(y+u,u)	 f a(zty+u,y-t-u ) u)dG (z),

where	 is the range of the age difference Z. Since a depends on u,

separately, it is not surprising that 6 should also turn out to be duration-

dependent. Since male mortality is a function of age attained only it may be

less immediately obvious that w should have the same property as has. The reason

for the duration-dependence of w is, of course, the empirical fact that the



distribution G (o) of the age difference genuinely changes with the age y

of the bride.

2 0E0 Parity and birth intervals. If the incorporation of duration-% % 	 _

dependence is important or desirable in many situations, it is quite essential

in models intended for a closer study of human reproduction. Nature has set

a definite lower bound for the interval between two live births to the same

woman, so her propensity to have another child depends in a definite way on

duration since the previous one. Marriage and other social arrangements

similarly interfere and produce duration-dependence in fertility behaviour.

To indicate how human reproduction processes can be described by a

semi-Markovian model, let us disregard widowhood and divorce, extra-marital

births, and emigration,for simplicity. While an unmarried female will be said

to be in state -1, a married woman will be designated a state equal to her

parity. Any female thus starts in state - 1 at birth, moves to state 0 at

marriage, moves on to state I at her first live birth, and so on. There will

be a force v(x) of nuptiality, which is a function of age attained. There

is a force of first births, say (p
0 (x,u), depending on age x and on marital

duration u. To births of order n 2, there corresponds a force (pn-1 
which

depends on age x, time w since the last previous birth ("the open interval'),

and possibly also on marital duration u. (One will usually have to confine

oneself to at most two out of the three arguments x, u, and w.) There is also

a state of death with corresponding forces of mortality.

A recent paper by Sheps and Menken (1972) is based on essentially this

type of model.

2 0F. Human reproduction. Models of the sort sketched in the previous

Subsection are essentially simple extensions of the life table model. They

are geared to the type of data which can be collected in good official register

systems, and do not go into the details of the human reproduction process,

with conceptions, pregnancy outcomes, post-partum infecundable periods, the

effect of contraception and abortion, and the like. The latter have been

studied in the considerable literature which now exists on probabilistic models

for human reproductive histories. Although there had been some previous work,

notably due to Henry, it would be fair to say that the breakthrough along

this line came with the 1964 papers by Perrin and Sheps (Perrin and Sheps4964;

Sheps and Perrin, 1964). Later developments have been reviewed by Sheps and

her associates (Sheps, Menken, and Radick, 1969; Sheps, 1971). An additional

reference is Tolba (1966). Further papers ate being published at a steady rate.



Most of this work has been based on semi-Markov models which are

homogeneous in time, but some papers incorporating age-dependence (i.e., time-

inhomogeneity) have also appeared (Sheps et al, 1969, Section 7.3; Potter,

1971; Venkatacharya, 1971). What makes these models semi-Markovian rather

than, say, straight Markovian, is the feature that the probabilities of the

various outcomes at the termination of a pregnancy (whether foetal loss,

stillbirth, or live birth) depend on its duration. Usually, these models are

not phrased in terms of forces of transition, but if such a framework were to

be used one would specify a force of foetal loss, say X i(x,u), a force of

stillbirth, say X 0(x,u), and a force of live birth, say X 3(x,u). All these

functions would depend upon pregnancy duration u, and, possibly, upon age x

attained. Their sum, X(x,u) = E X (x,u), would be a force of pregnancy

termination. The ratio w
1
 (x,u) = 1 (x,u)/X(x,u) would represent the prob--

ability of a foetal loss in a pregnancy terminating at age x when conception

was at age x-u. The ratios Â 2 /?, and Ä 3/A have similar interpretations.

2.G. Internal migration. To improve upon the realism of ordinary

Markov chain models for social mobility, McGinnis (1968, p. 716) has proposed

'the following simple axiom about motion through time in social space:

Axiom of cumulative inertia: The probability of remaining in any

state of nature increases as a strict monotone function of duration of prior

residence in that state."

In two perceptive recent papers, Ginsberg (1971a,b) has shown how

this idea can be used as a basis for semi-Markovian models for social mobility

in general, and for internal migration in particular. If we disregard

external migration for the moment, the states of the migration model represent

the regions into which acountry is divided, say, (plus a state of death), and

one could work with forces p (x,u) of migration from region i to region j
ij

for x-year-olds whose last previous move was made at age x-u. One would get

cumulative inertia by specifying the p
ij

(x,e) to be (strictly) decreasing,

but this is not a requirement in the model.

Ginsberg (1971b, pp. 8-9) does not rule out i to i moves; i.e., he
*4

keeps open the possibility of analysing moves from one location to another

in the same region. Following such a move, the value of the duration

variable would be set back to O. Thus duration is the length of stay at the

location, not the total sojourn without a break in the region.

The results of an analysis based on this model would probably have

substantive (say, sociological) interest only if the number of regions were
whose data Ginsberg plans to use.not too small. Perhaps a score or two is needed in a country like hnorway, /

This would mean that the analysis of a process which is inhomogeneous in time
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due to age effects, will surely be difficult because of the massive amounts

of data required to estimate parameters and carry out tests. It is always

easier to stay within a time-homogeneous set-up. To overcome this very real

difficulty, Ginsberg (1971, pp. 257-259) suggests using the device of an

operational time to translate his original model into a homogeneous process.

He feels that this has a good chance of working "if the interactions between

age and location [region] are not too great. 	a personal communication,

he tells me that for the value of the operational time function at age x

(for any x) he considers using the expected number of moves made by an

individual within that age.

We shall look more closely at the concept of an operational time in

Section 5 below.

3. ASPECTS OF THE THEORY OF HOMOGENEOUS SEMI-MARKOV PROCESSES

30A0 The purpose aE -ele present and the next Section is to provide some basic
f\i

mathematical machinery for the study of semi-Markovian models of a form which

is useful in demographicand actuarial applications. To provide a link with

the now classical homogeneous model, we shall discuss briefly some aspects of

the latter, largely using notation introduced by Pyke and Schaufele (1964).

The stringent mathematics have been given in that paper and others (see

çinlar, 1969), and we shall stay on an intuitive level.

30B0 	 There is, then, a finite or countable collection j of states

i, representing, e.g., the various demographic statuses in the above examples,

usually including the status -dead - . With this interpretation, transitions

between states would correspond to changes in demographic status (including,

possibly, death). A sample path corresponds to the history of an individual

(or sometimes an individual couple). These histories are taken as ind pendent.

The state of a sample path at time t is Z(t), time usually represent-

ing age attained. The transition into Z(t) occurred at time t-U(t), so that U(t)

is the duration of the 'current stay in Z(t). 	 The next transition occurs at

time t+V(t). It results in a jump from state Z(t) to state Z + (t) 	 Z(t+V(t)).

The duration variable U(') is then set back to zero, i.e., U(t+V(t)) 	 O.

The stochastic process i(Z(t), V(t)); t 01 is a homogeneous Markov

process over the state space JX [0,0°N , and its transition function is

P..(t-s,u v) 	 P {Z(t) = j U(t) 	 v IZ(s) = i, U(s) 	 u



Much of its behaviour is reflected in the function

Q..(u,v) 	 Z+(t) 	 j, v(t) 	 vi z(t) --: i, u(t) 	 u},

which essentially describes what the sample path may be expected to do next

when we know that it is now in state i with a currend duration of u. The

distribution of the future sojourn V(t) in Z(t) is given as

H.(u V) 	 EQ., .(u,v)	 Pfli(t)	 vj Z(t
	

i, U(t)

Two further quantities require our attention, viz.

-72 	
Q1i(0,c0) 	 P{Z+(t) 	 j I Z(t) 	 i, U(t)

and, for the (i 4 ) where Pij
	 0 so that a direct transition i -4- j is

possible,

F..(v) = Q. .(0,v) p. 	 V(t) 	 v 1Z(t) = i, U(t) = 0, Z+(t)
13

3.C. Frequently, it is convenient to base mathematical arguments on

the distribution F
ij (-) of the total sojourn in 

state i, given that j is the

next state to be visited, and many results are phrased in terms of this

function. Some descriptions of its role makes one imagine a probabilistic

mechanism where upon entry into state i, the next state j to be visited

is first determined according to the probability distribution {p; iC },

and 
then

 the 
length

	st ay 	
determined
  

 subsequently according 
	 Fe).

The notion of such a sequencing in time is useful in many connections,

but one must not get trapped, of course, by the wording of this interpretation

into believing that it is an assumption in the mathematical theory. It may be

equally fruitful to think of what goes on as happening in the reverse

sequence, i.e., to take the length of stay v as determined first (according

to H.(0,ø)) and the next state as being fixed only subsequently.

A third presentation can be given in terms of a continuously operating

mechanism for deciding at any duration u whether a transition will occur in

the next instant and, if so, to what new state the jump will be made. The

latter interpretation is the basis of the force of transition concept. In

the present context, the force of transition from state i to state jti at

duration u is defined as the limit

(u) 	 lim P th,u 00 )/i,
pai

	h+0	
ft-k 	 5
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which is assumed to exist for all  i jfi, 11.0. Evidently, 1.1..(u)Aui-o(du)

is the probability of a transition to state j within time Au, given a current

stay in state i of duration u.

3.D. The p..(.) correspond to the q.. of the 0-matrix of a Markov
f)J 	 -1]

chain with a continuous time parameter (Chiang, 1960, p. 130). While the

qij play a prominent part in the latter area, the standard literature on the

general theory of semi-Markov processes has found little room for the

Yet forces of transition have been highly useful in applications in fields

like demography, biostatistics, and actuarial science, and they could have

played an even more prominent part there, as we have indicated in Section 2

above.

These functions will provide us with a connecting link between the

models which are homogeneous in time and the corresponding inhomogeneous

processes, to which we now turn.

4. RUDIMENTS OF A THEORY OF INHOMOGENEOUS SEMI-MARKOV PROCESSES:
I. BASIC NOTIONS

4 0A0 Extending the notation of the previous Section, we now let
rki

p_Js,t,u,v) 	 PI Z(t) = j, U(t) 	vi Z(s) z. i, U(s) = ul,

with P..(s s u v) E 6. (a Kronecker delta);

0..(t,u,v)
- 13 • p{ Z(t) = j, v(t) 	 vl z(t)	 i, u ( t) 	 u};

H.(t,u,v) 	 E Q..(t,u,v) 	 PIV(t) 	 vl Z(t) 	 i, U(t) 	 u};

and, for 4j,

P..(s,u) • lim P. .(s,t ju,00) / (t-s) = 	 P, .(st,u,c°)
t=s'"

t+s

with obvious verbal interpretations. We assume that the p 1 (su) exist for

all ifj, 	 11.0, and take each p .(- .) to be continuous. (Extension to
ij

discontinuous forces, as needed in Subsection 2.C, is made ad hoc.)

We also assume that E P_Js,t,u,00) E 1.i 13

4 0B0 The p j are of central interest particularly when each

Qii (t,u,a) and H.(t,u,.) is absolutely continuous,as we shall assume. Then
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positive probability mass at any given duration is ruled out, something which

constitutes a definite restriction of generality, but not beyond what seems

of prime interest for the applications which we have in mind.

In the general time-homogeneous model, the Q ij
(u,.) are any (measur-

able non-negative right-continuous) functions such that H(u-) is a

distribution function, possibly defective, concentrated on Fo9 ' 3> . This

flexibility in the choice of the Q.. is essential for the great generality of
3.3

Markov renewal theory. One gets interesting and useful sub-theories by

introducing some special restriction, and, indeed, important theories, like

that of Markov chains, can be seen as arising in this way. Here, we try to

pursue this line of thought in another direction through restricting ourselves

to absolutely continuous Q. . and H. 	 In particular, H.(t,u,0) E 0, so that

all sojourns must take some time.

4000 There is another restriction which we shall make but which is

one of formal appearance only. To simplify notation, we shall do away with

direct transitions Le., we shall not permit Z+(t) to equal Z(t) with

positive probability. In its general formulation, the time-homogeneous model

allows for such transitions, and our comments on Ginsberg's migration model

(Subsection 20G) show that this property may be useful in demography. Never-

theless, we shall let O.. E 0, but this is no real restriction of generality.'11
If direct transitions 	 constitute an important element in an application,

one may easily "save this feature and still have O. E 0 by using two copies

of the state space f, say „f' s and r. A direct transition from a state

to itself would then be represented as a jump between the distinct states

i v (.7 :( ' and i 	j ".

4,D0 We also introduce the (total) force of decrement from state i,
ert

p(s,u) 	 lim {1-P ,(s,t,u,00)}/ (t-s) 	 --
a 

P.
3tt+s

9

and assume that

(4. 2)
	

p.(su) = 	 •
	 -

We will take each p.(.,.) to be continuous.

4.E. Let N(s,t) be the number of transitions observed in any period(1, rk,
The possibility that N(s,t) ::: co seems to have no interesting<' s



14

interpretation in the applications we have in mind, and we shall assume

N(s,t) <00 with probability 1. (Nobody experiences an infinity of demographic

events.) We shall assume also that

lim P {N(s,s+As)> 1 I Z(s) = i, U(s) = u }/ As = 0,
As+0

for all i, s, u. Intuitively, this means that the transitions (events) occur

in an orderly fashion, one at a time.

We will get ID ftqs,-0 <001 27.,(0. 	 U(s) 	 = 1 if 	 .(s',ul )„• 	 P3

some constant c for all j, all s 7 	, and all u 9 S u+t-s, because

N(s,t) will then be stochastically smaller than some Poisson distributed

variable with parameter c.(t-s). In practice, the p, are frequently

uniformly bounded in this way, so we have a simple criterion for the finite-

ness of N(s,t). Chiang's example (Subsection 2.B) shows, however, that un-

boundedp -s do have some interest. (N< 00 is secured there, of course, byi
the finiteness of c:/ 1 .)

4.F. Letfk,

(n)
(s,t,u,v) = PI z(t) :: j, u(t)s.v, N(s,t)::n I 	 0U(s)

Pij

Then

(0), 	 — ,(4.3) 	 P.ks,t,u 	 Hv) = 6	 c(v+s-u-t) 	 ks u,t-s),ij 	 i

where c(x)0 or 1 as x <0 or x?.. 0, while iii(s,u,t-s) = 1- H i (s,u,t-s) is the
probability that the -sample path will stay put in i at least until time t.
A decomposition with respect to the possible values of {Z +(s), V(s)} gives,
for n 1,

(4.4) (n) 	 — 	 (n-1)P.. (s,t,u,v) =E 	 H.(s,u,w-s)pik(w,u+w-s)P
kj 	

(w,t,O,v)dw.
kfi s 1

Adding over n, we get

(4. 5)

t
P..(s.,t.u.,v) = Ef

1

	(w u+w-s)P .(w"t 0„v)dw
kfi s 

ij 6(vi-s-u-t 	 s,u,t-s).

4.G. Another set of formulas follow from a similar decomposition

according to the value of U(t) and the state preceding Z(t)0 Before we

list these relations, it is useful to introduce a force  of increment (Hoem,

1969b, § 70F), defined as follows:
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x.
i

.( s,t,u)	 lim E {z(t)ti, z(ti-At) ,:j z(s)=i, u(s)=0/ At
j

(L+ .6) cc
t=	 E P (s,t,u,dw)	 .( ,w).

0
P. 	Pki

The quantity A.,(s.t,u)At o(At) is the probability that a sample path with

Z(s)=i, U(s)=u, will not be in state k at time t, but will make a jump to

this state before time ti-At. (For example, it may be the probability that

an s-year-old married female with marital duration u will be married at a

later age t too, but will then get a divorce before age t -i-At.)

We get

(n)	 t	 01-3)
P., (s,t,u,v) =E	 f	 fP	 (sTudw)p,.(T_wYff.(T,O,t-T)dT

kfj Tr-t-v w-0

for	

"	 ' K3 '

for n 1, v t-s; and, using the force of increment function,

P..(s,t,u,v)

(4.7)

,t-T)dT + 6
ij 

6(v+s-u-t)ri
i
(s,u,t-s).

max(s,t-v)

4.H. Some further formulas are
(1, (1,

(4. 8) ,u,v)texp	 f p.( +y,u+y)dy	 for v	 0,
-

0

v
Q..(t,u,v)	 = f H (t,u,w)11 (t-t-w,u+w)dw,

J_J 0	 i	 ij'

3p..(s,u)	 ----- o..(s
'

u,o),a N.T 

and

(4.9)	 X..(s s u)"

The Chapman-Kolmogorov equations are

CO

(4.10)	
0 k	 Pki 

',t,w,v),

At40

for 0	 s	 t 2 	t.
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4.1 Both demographers and actuaries will take interest in the mean
;y oA,

value of particular functionals of the stochastic process. Thus, demographers

will want to know such things as the mean number of births to a woman, the

mean age at marriage, the mean duration of a marriage, and so on. Such

expected values can be built up from two kinds of elements: the mean total

sojourn in given states, and the mean number of transitions of various kinds.

We give three examples. Given that Z(s) r. i, U(s) u, the mean total

subsequent sojourn in state j is

00

P..(s,t,u,00) at,
a.3

the mean number of subsequent jumps j-)-k is

00

),

t s v r. 0 1 	
lijk(t

and the mean number of subsequent arrivals in state j equals

CO

if À. .(s,t,u) dt.13

Actuaries will be more interested in mean cash values (called

"actuarial values') of various streams of money. Two examples follow. The

actuarial value at time s of an income benefit to an insured life for which

Z(s) 	 i ; U(s) 	 u, in the amount of B(tv) at time t 	 s if Z(t) =
I

U(t) 	 v, equals

.0

f 	 f e-6(t-s) EB.(t,v) P..(s,t,u,dv),
t=s v=0

where 6 is the force of interest, assumed constant. Similarly, the actuarial

value at time s of a benefit paid upon arrival in state j, in the amount of

c5 (t) if this occurs at time t, equals

e -6(t-s) c
4 (t)
	

s,t,u) dt.

One could also calculate other characteristics of these functionals,

such as their standard deviations (Hoem, 1969b, Section 7), but users

display little interest in them.

4.J. In demographic and actuarial applications, one will typical(N,
be concerned with a restricted age interval, not extending beyond the maximum

3,7
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lifetime of an individual. In fertility studies, for instance, one's interest

will seldom go further than age 50 for females. Chiang's fertility model

(Subsection 2.B) shows that there may also be some upper bound to possible

duration. It is easy to incorporate such bounds by specifying an interval

ro, 	 to which s and t must belong, and a similar interval for u aud

To save some writing, we suppress this feature.

5. RUDIMENTS II. OPERATIONAL TIME

5.A. A change of time scale is used for many purposes in the theory

of Markov processes. As we mentioned in Subsection 2.G, Ginsberg proposes

to use it to transform a time-inhomogeneous semi-Markov process into a

homogeneous one The first one who did something similar, seems to have been

Filip Lundberg (1903), who showed that a Poisson process with a time-

dependent intensity X(t) is changed into a Poisson process with a constant

intensity of 1 when one switches to the time scale

( 5 .1)
	

A(t)	 f X(s)ds.
0

Ove Lundberg (1940, p. 57) later used the same device to "homogenize" a pure

birth process with time-dependent birth intensities of the form

(5.2)	 n (t) n X(t),

and Bahlmann (1970, pp. 50-51) has recently shown that an inhomogeneous pure

birth process can be transformed into a homogeneous one by a change of time

scale arly. if (5.2) holds for some function A(.) and some set of constants

fcn1. We shall now first extend these ideas to semi-Markovian processes.

To make full use of our results, we shall subsequently specialize to general

Markov chains with a continuous time parameter.

)

5.B. For any non-decreasing, right-continuous real function “.),(‘
defined over [0, co> and with I, (0) .7. 0, let

A -1 (s)	 inf{t: f'.(t)•?-`. s },

as usual. The change of time-scale which we shall study, consists in

replacing real time t by a new time A(t), in the sense that we replace any
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real function f(t) by i'(t) = f(A -1(0). Thus Z(t) and U(t) are replaced
-1 	r-by Z(t) 	 (t)) and U(t) 	U(Å / (t)), respectively, and for N(s,t) we

-1 	 -Isubstitute N(s,t) 	 N(A (s), Å (t)). The transformed process will have

transition probabilities of the form

q,(n) 	 (n) 	 -I 	 - 	 -1 	 -1
(5.3) 	 p..13 s t,u,v) 	 P

ij	 (s), A (t),	 1 (s)- A (s-u), A(t) - A
-l

et-01,

(5.4)	 Q..(t,u,v)
ij

*".1,
Qi fj 1 A (t), A kt)- A

-1
(t-u), A 1 (t+v)- 	 ( t)

(5.5) 	 i"..(s,t,u,00) 471. P..
	 1 (s), A 1 (t), A 1 (s) -1 (s _u), . 1,

q,
and so on. The process (Z, U) 	 f(Z(t), U(t)); t 	 0} is, of course, time-

homogeneous if (and only if) 	depends on s and t only via

their difference t-s.

5.C. 	 If A(.) is continuous and strictly increasing, formulas (5.3)
rA,

to (5.5) have the converses

(5.6)P 
(n) (s,t,u,v)	 A(s), Mt), A(s)	 Å(t) - Mt-v)ij	 Pij

(5.7) 	 Q..(t,u,v) 	 r. Q.. {A(t), Å(t)- A(t-u), A(t+v)- A(t) 1,

and

(5,8)P j (s,t,u,00)	 P. { gs), Mt), A(s) Ms-u),	 1.i	 rj

If the forces p.. of transition corresponding to the P.. exist,
:ij 	13

and if (5.1) holds with a right-continuous X ( .), it follows from (5.8) that

.. (su) 	p
ij Ms), A(s) A(s-u) X(s).

The process (2,', U) will be a time-homogeneous semi-Markov process if and

only if each p
ij

(s,u) is independent of s. In this case,

(5.9) 	 p.,(s,u) 	 p ij { A(s) -Å(s-u) } X(s).
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(

5.D. 	 Let us agree to call any real function A(.), defined over
1., 'NJ

E0, 0°:> 2n_2perationa1 time provided it satisfies (5.1) with a positive,
r\J

right-continuous X(-), and provided the corresponding process (Z, U) is a

time-homogeneous semi-Markov process. The relation (5.1) of course makes

A(.) absolutely continuous and strictly increasing, and it makes A(0) -7- O.

We prove the following theorem.

Theorem 5.10. There exists an operational time A(-) if and only if

one can write the forces of transition in the form (5.9), where

X(.) is a right-continuous, positive real function, A(.)

satisfies (5.1), and the 	 are continuous.

Proof. 	 (i) Assume that (5.9) holds as specified, and let

(\,
11.(x) 	 *4: Z 	.i. .(x),

Then

(5.11)
	

s ,u )	 1.1 { A(s ) Ms -0 } X(s)

by (5.9) and (4.2). The substitution of (5.11) in (4.8) and the intro-

duction of w :7- A(t+y) Mt-u) as a new variable of integration gives

A(t+v)-A(t-u)
H(t,u,v) 	 exp i (w) dw ,

A(t)-Å(t -u)

and, consequently,

- 	 - 	 -H.{ A 1 (s),	 (0 -A (s-u), A 1 
(t)- A 1(s)}

(5.12)
t-s

= exp - f 	 (u+y ) dy 1.
0

Thus, by (5.3) and (4.3),

t-s
q40)
13 	 -3.3 	 0 '11(

P.. (s.t,u,v) 	 6.
• e r(s -u) (tv)] exp{- I . u+y)dy},

since A -1
(s-u) 1 A -1(t-v) if and only if s-u t-v. 	 This function there-

fore depends on s and t only via t-s. Now make the induction assumption

that this is the case for ri n) (s,t,u,v) for all i, j, s, t, u, and v for
fqn) 	 ek,(n)

all n<m, and write Pij (s,t,u,v) 	 Pij (t-s,u,v) 
for such n. Relations

(4.4) and (5.3) give



e (m)P..
13 (s t"

u v
A -1

(t)

E,	 f	 171. Å 1 (s), A -1 (s) A -1 (s-u),	 A -1 (s) } A(w)
k+i 

A-1(s) 
I

rk, 	 (m-1)	 -	 -
o U.ik { gw).-s	 kj+u P	 i w,	 1 (t), 0, A /(t)- A 1 (t-v)}dw.

The substitution of z A(0-s+u gives, by (5.12) and (5.3),

u+t-s
37.)(1	1T3 ) ( s,t,	

ki
u,v) 7: E	 f expi	 p. 	 7 	 ìk(p	 z) (u.ft s-z, 0, v) dz

Pkj
f u

so that this function too depends on s and t only via t-s. By induction,
	q (n)	 r‘,

allP.(s,t,u,v)thenhavethisproperty, andsodoestheirsum.(s,t,u,v),
ij 

as was to be proved.

(ii) Now assume conversely that an operational time A(.) exists.

Its inverse A -1
(o) is right-differentiable with

dl"
dt A (t)

and, for itj,

1/ “P, -leoL

P. i A (s), A -1
(t),A

-1
(s)-A

-1
(s-u),G, 1

-1
A

-1
(t) A- 

1(s)

t s -1	 -A	 (t)-.A. 1 (s) t

As t4s, the right hand side here converges to

ij {
-1

(s), A -1 (s) -A. -1 (s-u)}	 A-1(5)
ds

which means that the forces of transition corresponding to the P.. exist.
a :1

It then follows from the argument below (5.8) that (5.9) holds, as was to be

proved. D

5.E.	 If A(e) is an operational time, then evidently so is Aa(*)

aM• ) for any constant a > O. This transformation only corresponds to a

change of time unit, however, and we will regard all members of the class

{Aa(o); a> 0) as essentially the same operational time.

The question then arises whether there may exist two or more

essentially different operational times. It turns out that we may prove the

following uniqueness theorem.
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Theorem 5.13.	 If A(*) is an operational time and there exists a

pair (i,j), with iij, for which (0) >0, then A(e) is unique

(up to a multiplicative positive constant).

Proof. Assume that FM ft y(s)ds is another operational time,0
and let us designate the forces of the corresponding homogeneous process by

ij . Let p
kk

(0)> 0. Since

(s,u)	 kRffs} Xfs
,

ilksz f r(s) - r(su ) 1 ds),

we get X(s) = y(s) 1
1(2/

(0)./ 1.q;k0 (0) by letting u ::: O. The result of the

theorem is then immediate. 0

S.F.	The results of the previous parts of this Section will be
A,

specialized to Markov chains if we assume that the ij (s,u) are independent

of u. An operational time for a time-inhomogeneous Markov chain with a

continuous time parameter is, of course, a continuous real function A(.),

defined over [0, oc> , which satisfies (5.1) with a positive, right-continuous

A( • ), and which transforms the chain into a homogeneous process. Disregarding

homogeneous chains where all entries in the Q-matrix are zero, we get the

following theorem.

Theorem 5.14. 	 There exists an operational time A(p) for a Markov

chain if and only if one can write its forces of transition in

the form

p 11 (s) 	 q.. X(s),2.3 	 -13

where X(.) is a right-continuous, positive real function

satisfying (5.1). Such an operational time is unique (up to

a multiplicative positive constant).

We have, of course, restricted ourselves to chains satisfying the

assumptions which follow from Subsections 4.A, D, and E.

In his study of the operational time of a pure birth process with

variable intensities, Bühlmann (1970, Section 2.2.3) proves the analogue of

Theorem 5.14, except the part about uniqueness, with slightly less restrictive

conditions in the definition of the operational time. A perusal of his proof

reveals that uniqueness is easily proved in his situation too.



5 •G. 	 In the case of a Poisson process with a variable intensity

A(t), A(t) represents the expected number of occurrences of the event under

observation (the expected number of renewals) during [0, t]. Thus a nice

and simple interpretation of the operational time exists for this situation.

It would be a great help if some similar interpretation could be found for

the more general models considered in this paper. This would give a welcome

guide in looking for an operational time in a concrete application, and also

in checking whether a useful change of time scale is possible. Unfortunately,

such an interpretation seems to be lacking.

6. RUDIMENTS III. PURGED AND PARTIAL PROCESSES. THE IMPORTANCE OF THE
OBSERVATIONAL PLAN

6.A. People will frequently be interested in studying a hypothetical

situation where one or more of the forces in operation are eliminated. For

example, one will often want to know what number of births a female should

expect if there were no mortality, or the probability that a newly-wed 25-

year-old woman would become a widow if divorce were impossible (the alter-

native being that her husband becomes a widower). Such questions lead to the

study of partial models, which arise from the original models by the substi-

tution of 0 for the forces which are to be eliminated.

We have studied this approach as applied to Markov chains in a

previous paper (Hoem, 1969c)0 The extension to semi-Markovian models is quite

straightforward, and we shall only sketch some of the main ideas.

kok. Assume, then, that the state space d can be partitioned into
two disjoint parts, .11'6' and „i! , where .)a is absorbing, i.e., X cannot be

reached from Ja . Suppose that one wants to eliminate the possibility that
a sample path makes a jump into . One achieves this by substituting 0

for all p. (- 0) where i (E 	 , j 	k . The effect is that of removing
lj

the states in ,;::? and keeping those in X, .

Now assume that a set of transition probabilities P.ij (s,t,u,v;

of a semi-Markov process over the state space *1‹, can be constructed uniquely

from the forces fp (.,-); 	 , j C J 1. In actuarial and demographic

applications, this is uniformly the case. We will then call these functions

the partial probabilities corresponding to , and the semi-Markovian model

for which they are transition functions, will be said to be partial relative

to the original one.
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6.C. The procedure which produces the partial model corresponding
rki f‘,

to X , is not equivalent to conditioning upon non-absorption in , except in

special cirsumstances. Thus, for example, the (partial) probability of

becoming a widow when divorce is impossible, is something else generally than

the conditional probability that a woman becomes a widow, given that she will

have no divorce.

For the fundamental conditional probabilities, we pick some moment T. ,

which may represent age at menopause, say, or the terminal age w of the life

table, or age attained on a given census day, or some other moment or age of

interest. We then condition upon the event Z(T) 	 The corresponding

transition probabilities are

P..(s,t,u,v) = P {Z(t)j, U(t)=171 Z(s)=i, U(s)=u, Z(t) 	 }T 13

for 0.-1sSt5. T. (Using our marriage example once more and lettingT=w,

this may be the probability that a woman in her first marriage at age s, who

has then been married for u years, and who will never get a divorce, will

be married, or possibly remarried, at age t, with a marital duration then

not exceeding v.) Evidently,

P {
T3.]
P..(s,t,u,v) = t)=j, ti(t)v, Z(T)(:. 	Z(s)r-i, U(s)u}

P {Z(T)t.- X I Z(s)=i, U(s)u}

The denominator here equals P1x (s,T,u,0.)= E j(,fr Pij (s,T,u,00). The numerator

equals

min(v,t-s)
P .(s,t,u,dw) P.- (t,T,w,co)

0

+ 6.. e(v+s-t-u H. s,u,t-s) P. (t,T,u+t- s,°°).

By (4.7) the integral equals

min(v,t-s)

ij
(s,t-w,u) IL(t-w,0,0 	

.

P. (to- ,w,00)dw
0 	 J

-A..(s,x,u) H. (x,0,t-x) P.
'max(s,t-v) 	 J Itij

Thus,

(6. 1)

P .(s,t,u,v) = f f 	X.4(s,x,u) H.(x,0,t-x) P. 	 t,T,t-x,00) dxT
MaX(S ,t"-v) 3-J

+ ij e(v+s-t-u) i9 3(s u t-s) P. (t,T,u+t-s,00) 1/ P. (s T
 1 'X. 	 1 X



The P. (s,t,u,v) will be a new set of transition probabilities for a semi-T lj

Markov process over the state space K.. The Corresponding forces of

transition are, for ifi,

T a. -3 *Tp .( s,u)	 lim P.,(s,t,u,00)/(t-s) 	 t=si3 t+s

LE :k ij	 t-xl	 (t,T,t-x,..)] is a continuous "	 '3
function of (x,t), as we shall simply assume, straightforward differentiation

is permitted in (6.1), and we get

p.
X..(s,s,u)

T 13 	 1 	 3	 (s T U c°) *

Thus, by (4.8) and (4.9),

(6.2)
P. 	 (s,T,0,00)

P..(s,u) 	 p..(sfu)
1 	 1] j 	 P. (s T" U c°) *

We see that the h p ii (s,u) differ from the p ij (s,u) unless Pix(s,T,u,°°)

is independent of 1.4: J. and of u, i.e., unless the probability at time s

of remaining in ,e. until time T is independent of position in 7C: and of duration.

Since the T p ii (s,u) will typically uniquely determine the TP ij (s,t,u,v), the

latter will therefore differ from the partial probabilities Pij (s,t,u,v;it,)

(for 0 5. s	 t	 T), again unless P 1 .jt (s,T,u,0°) is independent of u and of

6.D. The exception here is sufficiently interesting to merit separate

attentiondadoeshappeninpracticethatip.(s,T,u,03) is independent
2.)(e

of u and i6	 as stated, in which case the partial probabilities have an

interpretation as conditional probabilities. For instance, -.4), may be the

death state, which makes P 4 (s,T,u,..) simply the probability of surviving

to time T (given state i and duration u at time s), and the probability of

survival may often be taken as independent of demographic status and duration,

at least approximately. (For an application to fertility, see Hoem, 1970a,

Subsection 6.C.)

We shall prove a theorem containing conditions sufficient to make

Pik (5,T,u,00) independent of 1.06 and of u. Let

P iA ( s,u )
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for any subset __;( . In some models, p i k(s,u) is independent of i

and of u. (For mortality, this is often approximately correct, as

mentioned above.) This means that transitions X4.76 occur at a rate which

is independent of movements within A:. It should be possible, then, to
calculate P. - (s 5 T 5 U 5 as if one is faced with a model with the two "States

andie only. Thus, if il&s,u) y(s) for all i X and all u, where

1(.) is continuous, one would expect to get

(6.3)
	

P.
14: 5

( S 	 U
5 

°°)	 exp{ - f -y(t)dt}

for all 	 J6 and all u, under quite weak conditions. Our theorem is as

follows.

Theorem 6.4. 	 Assume that lim PLOs,t,u,00) / (t-s) 	 y(s) as t+s,

uniformly in i Z: and u?-0. - Then (6.3) holds under the

conditions stated.

Proof: 	 Let 0 s < t < t + At, andlet i X. Then  

z7 { P ik, (s ,t+At,u ,o. ) .„(s,t,u,001 	 y(t)   

f
1
At 	 P .ik (s,t u,dv) P 	 t+At,< 	 k 71:, ov,o0) 	 y(t) E 	 f P .ik(, 	 s,t,u,dv)

	E	 Pik(s,t,u.dv) 	 At (t t+At,v 50) 	 y(t)if

(-7(., 0

	

E P 	 (s,t"ueoc) for 0 < At < n(c,t

by the uniform convergence. Since P., (s
'
 t 11" 00) 	 .1 	 'P. (s 5t,u,00), we

get

kErite, 0

00

y(t)

from which the theorem follows. rj

This generalizes and corrects Theorem 2 in Hoem (1969c, p. 152).

If (6.3) holds, (6.1) and (4.7) give

P..(s,t,u,v) := P. (s,t,u,v) exp{-! y(y)dy}
1) 	 T 13

for all i and j6.- . In this case, therefore, a particularly simple relation-

ship exists between the P.. and the P.
T 13



Q ,E. Conditioning on an event Zer)EX, is something which
N

typically happens in retrospective studies, often inadvertently. Let us

consider an example from biostatistics this time. Suppose that one interviews

the patients in a group of health institutions in a particular week to get

their medical histories. Evidently, the histories of previous patients, not

currently admitted, will not be represented among the data. Now focus on

present and previous patients (now possibly dead) aged T when the interviews

are made. Pick an individual among them who at some previous age s was a

patient of a given category in a particular institution of the group, and who

had been so for a duration u. It is easy to conceive of situations where the

probability that such an individual will be a patient in one of the institut-

ions at age T also (and not dead, recovered, or hospitalized somewhere else)

may depend on his illness, on its duration at age s, and possibly also on

what institution was then involved. If this is the case, and is important,

then occurrence/exposure rates calculated on the basis of the retrospective

data will be estimates of the functions Tp ij rather than estimates of the p i j ,

as probably intended.

Fertility rates calculated on the basis of retrospective questions in

population censuses may be analogously affected. So may abortion rates and

other measures calculated from retrospective fertility histories, and similarly

in many other situations.

6.F.	 In retrospective studies, some information is left out simply

because there is no one available to give it. It happens that the same kind

of information is deleted from prospective studies also even though it does

get collected. For example, when individuals are lost to follow-up, even data

collected before they were lost sight of is sometimes removed. Similarly,

data concerning individuals who are dead or who have left the country, is kept

separate from data on the current population in some population registers, and

it is then enticing to concentrate on the current rile and leave the other

files alone.

When collected data are removed like this, one may perhaps say that

the rest of the data, on which analysis is subsequently based, are purged of

the data deleted. We have therefore suggested (Hoem, 1969c) that functions

like the 
T l
P. and 

theij 
be called purged probabilities and purged forces,j

respectively.

6.0. The purging effect is an artefact of the observational plan.
%

If data are first collected on a prospective basis and then purged, this

effect arises because a full use is not made of all information available.
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In retrospective studies, the 'purging'? effect comes in addition to other

problems like recall errors. We are therefore reminded once again of the

importance of the observational plan and of the fact that the results of

substantive analysis are going to be influenced by it. Among demographers,

Sheps and her associates have argued this case forcefully in a number of

recent papers (Sheps et al., 1970; Menken and Sheps, 1970; Sheps and Menken,

1972). (Compare also Subsections 2.0 and D above.)

7. SELECTION, SELECTIVITY, AND SELECT ACTUARIAL TABLES. A DISCUSSION OF

TERMINOLOGY

7.A. So far, we have stuck mostly to terminology geared to demography.
rk,

For various reasons, actuarial modes of expression differ from this in certain

respects. Thus, while a demographer is apt to talk of duration-dependence,

open and closed birth intervals, and the like, an actuary would probably

speak of select tables or models, select forces of fertility, and so on.

It is perhaps unfortunate that what is essentially the same phenomenon should

have different names in different contexts, but when this is the case anyway,

it may be useful to have correspondences pointed out. That is one purpose of

the present, final Section of this paper.

7.B. Duration-dependent forces of transition are called select by
rk,

actuaries.Itj's apt to be confusing, when words like -selected, - selection"

and 'selectivity'' are used an actuarial science, demography, and elsewhere)

also for completely different phenomena, viz. in connection with heterogeneity

of the subpopulation with a given status, as well as with the fact that

mortality and other rates may depend on demographic status. A second purpose

of this Section is to throw some light on the multiplicity of uses of the same

set of words,

We shall give some examples. These will be for illustration only.

The intention is not to b- exhaustive.

7.C.	 Speaking of mortality, Hooker and Longley-Cook (1953, p. 22)

give the following explanation of what "select" means.

"It is now proposed to consider [a] type of table relating to a

specific class of lives, in which the functions vary not only with the age

but also with the period which has elapsed since entry into the class of lives

to which the table relates. Such tables are known as select tables, and the
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process which makes it necessary to introduce functions which vary with the

duration as well as the age is referred to as selection. A life who has just

been selected is said to be select. (The word,.'selection has been used here

to denote the process of choice of the lives, as opposed to random sampling;

in some actuarial literature the word 'selection' is used to denote the sub-

sequent effect on the mortality rates of the process here called selection.)"

Seal (1959) has given a critical review of the evidence for the

existence of such selection, as well as of explanations given.

There are a number of reasons why insurance companies would observe

select mortality in, say, studies of cohorts of assured lives. We shall list

the following three, which are classical suggestions.

(i) There are continuing effects of an initial selection on the part

of the insurer or by the assured life (self selection).

(ii) The stock of lives with a given age at issue of insurance is

heterogeneous with respect to mortality, and the higher mortality risks get

weeded out through death. (This would give an effect towards making mortality

for equally old insured lives decrease with duration.)

(iii) The stock of lives with a given age at issue is heterogeneous

as stated, and there is a gradual withdrawal from life assurance of healthy

lives. (This would give a contrary effect towards making mortality for equally

old assured lives increase with duration.)

(In studies of Reriod mortality, one would get an additional effect

due to secular mortality improvement, which we want to avoid discussing here.)

7.D.	 Evidently, these ideas are easily extended to functions other

than forces of mortality, and this is done regularly. The main point is that

the forces of transition may turn out to depend on, say, age at issue and

duration since issue, separately, not only on their sum, which is age attained.

Fortunately, it is not necessary to use the apparatus of semi-

Markovian models to give a satisfactory account of this phenomenon. Age at

issue will, of course, be constant throughout the entire period of insurance.

Duration since issue is then the only important changing time variable involved.

As there is no _selLate duration variable in addition, the theory of in

homogeneous Markov chains with a continuous time parameter, or, in many cases,

much simpler mathematics, can therefore easily cope with the situation.

On the other hand, actuarial forces of transition may also depend on

current-state-duration, as illustrated by the disability example of Subsection

2.A. Such forces are also called select, and the quotation from Hooker and ,
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Longley-Cook essentially covers this case as well. We see, therefore, that

select forces of transition can arise in two ways, viz. through dependence on

duration-since-issue and through dependence on duration-in-current-state.

From a mathematical point of view, these are quite different phenomena, and

the latter one necessitates the use of semi-Markovian machinery.

7.E. So much about select forces and select tables. We now turn to(I, (I,
the second type of use of similar words.

When there is a withdrawal from assurance of healthy lives, as

suggested in point (iii) of Subsection 7.C, this is described by saying that

"withdrawals are selective from a mortality standpoint (Seal, 1959, p. 175;

see also p. 167). This must not be confused, then, with the fact that with-

drawal rates are frequently select, i.e. they depend on time since entry. (For
the latter empirical facti comparie., e.g., Hooker and Longley-Cook, 1957, pp. 13 and 157.)

In follow-up studies one will frequently postulate that losses are not

selective, i.e., that individuals lost to follow-up are homogeneous with the

observed population with respect to the phenomenon investigated. For instance,

this is surely what Potter (1969, p. 465) means when he assumes that cases

lost to follow-up in the k-th months of a study on the use-effectiveness of

intrauterine contraception are unselected relative to the subsample

effectively observed during that month".

On the other hand, observed duration-dependence due to heterogeneity

of the population is a well-known phenomenon in demography too. (See, e.g.,

Sheps, 1966, and her references.) Let me mention only that some women seem

to have a larger risk of expelling an IUD than others (Tietze, 1968, p. 382).

This should contribute towards making the expulsion rate a decreasing function

of retention period, as one can observe. (This corresponds to the weeding

out of unhealthy lives by mortality, as mentioned in point (ii) of Subsection

7.C.)

In Subsections 2.0 and D we mentioned that observed duration-dependence

could be due to real-life duration-dependence or could be an artifact caused

by the observational plan. We are reminded now that it can also be a result

of an inadequacy of the model, in that the heterogeneity of the population is

not taken into account explicitly, but only through its consequences for the

forces of transition.

7.F. The third use of words like 'selectivity" is to express the

dependence of forces of transition on the "delivering state, say the

dependence of p..(s,u) on i. Take the following quotation from Hooker and

Lon0.ey-Cook (1957, p. 21):
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let us suppose that a large organisation institutes a pension

scheme for its employees and let us assume that, after a certain age, there

are no withdrawals from service before the attainment of the normal pension

age except by ill-health retirement. It will almost certainly be found that

the observed mortality of the ill-health pensioners is heavier •0.. , In

these circumstances ill-health retirement is stated to be a selective decre-

ment".

Thus, in terms of the three-state disability model of Subsection 2.A,

one may expect n(x,u) to be greater than p(x) ("especially during the first

few years after retirement", to continue quoting Hooker and Longley-Cook,

1957, p. 21).

To generalize, assume that there are three states, i, j, and k,

such that direct transitions and j-9-k are possible. Then

transition j.-÷j is said to be a selective decrement with respect to k

if p
•k 	 jkf p . Otherwise it is a non-selective decrement.i 

The particular constellation of the states i, j, and k is important

in the definition of a selective decrement, as is seen from the following

counterexample. If, in a certain model, an IUD user is said to be in state n

if she has experienced n expulsions during a testing period, then< P12'P01
since an observed expulsion has proved to be an indication of a high risk of

further expulsion (Tietze, 1968, p. 382). One may perhaps say that there is

a differential inclination to expell the IUD. Yet the language of selective

decrements does not apply to states 0, 1, and 2.

If, on the other hand, the risk of conception with the IUD in situ

is different for expellors than for others, then expulsion 	 can be a

selective decrement with respect to in-situ conception..

The fact that transitions are non-selective decrements can simplify

many things. Suppose, for instance, that f in Subsection 6.D consists of a

single state k, and suppose that all transitions are non-selective decrements

with respect to k. Then p ik is independent of i. Suppose that it is in-

dependent of current duration u too, so that there is no differential tendency

to transfer to k at all. Then the theory of Subsection 6,D applies. Thus,

the purged probabilities, given non-entry into k, are equal to the partial

probabilities arising from the elimination of k, and, therefore, retrospective

studies will not be biased due to differential entry into k.

	7.G.	 In summary, we see that words like select, selected, selective,

and selection are used for a number of purposes in connection with models

involving forces of transition. We have discerned three lines of interpret-
ation which are distinct from each other, yet are closely interrelated, all

reflecting important aspects of the models.
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