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1. INTRODUCTION AND SUMMARY

1 A. Typically, projections for closed human populations will be

based on a Simple recursive linear calculation procedure which cai'l be written

in the form

(1)	 ?,(t) =	 )(t-1) for t	 1,2,...

Here, M(t) is a square matrix of projection rates (fertility rates, survival
A

rates,andsoon),andX(Oisavectorwithelements5\<.(t) representing the

projected number of individuals in classes into which the population has

been subdivided. The recursion starts off with some known initial population
A

vector X(0).

In a large number of cases, the purpose of making such a projection

is to forecast the population X(t) which will actually occur at time t. One

cannot claim that the forecasting experience has been encouraging in this

respect. To quote Sykes (1969), "the model has been found to give predictions

of future populations which might most charitably be described as poor.

Nonetheless, because of the importance of population projections to economic

and social planning, they continue to be computed ...".

In this situation, it has some interest to study the properties of

the deviation X(t) X(t) under various sets of assumptions. It is the

purpose of this paper to give a numerical illustration of such properties by

analysing characteristic traits of its covariance matrix under two models which

have appeared in the literature, and which we call the pure branching process

model and the pure stochastic matrix model. We also provide a link between

the two in a model for a branching process in a random environment. The

numerical material previously published is scanty and mainly consists of some

figures given by Sykes (1969) and Schweder (1971). We believe it to be worth-

while to take a closer look at the calculation output, and have chosen to

report our results rather fully.

The outcome of our investigation is, briefly, that neither of the two

models which we have studied numerically,provides a satisfactory description

of real population dynamics. In both cases, the structure of the uncertainty

estimated differs too badly from general forecasting experience. This

conclusion will be strengthened further when our investigation is placed in

a larger context in more comprehensive companion papers which are under

preparation Ili , 121.
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k. In our numerical investigations, we have concentrated on a

closed female population, partitioned into 46 single-year age groups from

age 0 to age 45. Our time unit (and projection unit) is one year. In line

with the now classical matrix model for population dynamics, we specify the

population matrix

/f f f 	 f 	 f
t 	 1, 	 44 	 45

	I Po , 0 , 0 ,e0f, 0 	 , 0

rtiJ 	
0 , pl , o 	 0 	 ,

•••

ft 	0
"." P44'

where px is the probability that a female who is x years old at the beginning

of a given year, will survive to the end of the year, and f is the

corresponding fertility rate. The values of these parameters may change over

time in certain cases. In our data f
x
= 0 for x < 14.=

The projection starts at time 0, which is at the beginning of the

first year, so time t is at the end of the t-th year, and X(t) is our

projected population for that time point. The preceding years are counted

backwards from year 1,so that year 0 is the year ending at time 0, year -1 is

the next preceding year, and so on.

1 C. We have taken the end of 1967 as our "time 0", and have used

the registered Norwegian female population as of December 31, 1967, as our

initial population (0). Our fertility and mortality data have been the ones

for the Norwegian female population for the years 1953 through 1968, counting

only live girls born. The empirical means and standard deviations for the age-

specific birth and death rates for these years may be found in Table 1. We

have also computed empirical covariances between each of the 2 850 pairs of

rates, but they are not displayed here.

1 D. We have tried to compare our numerical results with those
q,

published by Sykes (1969), who used a time unit of 15 years and, correspon-

dingly, age groups of fifteen age years. Except for a rough similarity in

general features, nothing much has come out of this attempt due to the large

discrepancy in time and age units. We believe that our use of a unit of one

year brings out the detailed features of the implications of the models much

more clearly. Indeed our time unit is instrumental in revealing the essential

inadequacy of the pure matrix model.



2. A PURE BRANCHING PROCESS MODEL

2 A. In the now standard matrix form of classical stable populationflJ
theory, one takes the projection matrix as independent of t. Recursion in

(1) then gives

(2) >,Z,(t) = e) ,n (0).

Let us take M as given. We shall assume that the real population X(.)

transfers from any time t to the subsequent time ttl according to a multi-

type branching process, as describes by Pollard (1966), Sykes (1969), and

Schweder (1971). Under this model, ?.,(t) is a random variable with

EX(t) = MtX(0)(\,

which suggests that ? .(t) is indeed an appropriate forecast for (t). The

covariance matrix C(t) has elements C .(t) which can be calculated fromi]
recursion relations

(0) = 2;

(3) 	 c 1+1 (t4-1) 	 p.(1-p.) ).(t) 4- 12. c..(t);3 	 3 	 3 	 3 33

C. 	 (t+1) = p.p C (t); 	 j;3+1,k+1 	 ] k jk

and similar formulas for C
00

(t+1) and C
0,j-

1(t+1); j = 0 4,...,44 (Pollard,

1966, (18)-(25); Schweder, 1971, (2)-(6)).

2 B. In our computations based on this model, we have used the mean

fertility and survival rates in Table 1 as our elements of 	 Extracts from

the projections can be found in Table 2. Our interest centers on the

covariance matrix C(t), however, and selected diagonal elements have been

listed in panel a of Table 3. (The off-diagonal elements are much smaller.)

We see quite clearly that the stochastic variation in ?(t) is mainly connected

with the births in the years 1,2,...,t. 	 There is a little additional

variability due to mortality at age 0, which is substantially higher than the

mortality at the other ages studied here (although still very low as compared

with infant mortality in other countries). Mortality at ages 1 to 45

contributes only very little to the inherent variability of ?Iç(t) in this model.

The numbers along each downward slope of Table 3 correspond to a birth

cohort, and the trend along such a slope suggests that it might have some

interest to reorganise the statistics by cohorts. This has been done in Table

4, where panel a relates to the present model. The results call for some

comment:
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(i) In correspondence with prior expectation, the standard deviations

of the cohorts which will be born during the projection period lie on a much

higher level than those of the cohorts already born at time O.

(ii) Among the latter, the cohort of the year immediately preceding

time 0 (i.e. of year 0) has higher standard deviations than earlier cohorts.

This corresponds to the somewhat larger mortality at age O.

(iii) For each cohort born prior to time 0, the standard deviations

increase as the cohort grows older. This is as one would expect, because age

increases as we go further into the future. The increase in variability is

really even larger than the values of the standard deviations signify, because

the cohorts decrease through mortality. This shows up in the selected

coefficients of variation given at the bottom of panel a in Table 4. Still,

the variability is really very small.

(iv) For each cohort born after time 0, there is a drop of about one

unit in the standard deviation form age 0 to age 1, followed by a very small

and gradual decrease. The coefficients of variation shcws that this decrease

is neutralized by a slightly larger decrease in the size of the cohort due to

mortality, so that, for each cohort, variability, as measured by the coefficient

of variation, is almost stable with respect to age.

(v) As we go along into the future, the standard deviation of the size

X
0
 (t) of the birth cohort increases somewhat. This is nice, for one would

expect that it should be progressively more difficult to forecast births.

The birth cohorts increase more rapidly, however, and we can observe a decrease

in the coefficient of variation, in striking conflict with our notion of the

reliability of birth projections. This is brought out even more clearly in

Table 5.

(vi) There is another such conflict with prior notions in the material,

even if one confines oneself to what one would expect internally in such a

model (in contradistinction to what other sources lead us to believe). Since

the size of the birth cohorts has such a lot of built-in variability, one

would expect the coefficient of variation of X
0
 (t) to get an upward shift when

the cohorts born during the first years of the projection period reach the

most fertile ages, and similarly for later cohorts. Nothing of this shows

up in the numerical results.

(vii) Finally, there is the crucial question of the size of the C..(t).

Schweder (1971) has shown that we may take X
0
 (t) as approximately normally

distributed, so that
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(4) P{0	 0	 '
(t)	 )^( (t)1 5 11 It 	 r‘Jt) 1 , 1 E,

-

for 0<e<1, where u is the upper lc percentage point of the standardized normal
c

distribution. Thus, according to our results, X
0
 (t) would be within 1% of X (t) 0,

with a probability of roughly 95% for each of the first 10 projection years.

Such an accuracy seems quite inconceivable in real populations. Similar

conclusions follow if we study other quantities involving cohorts born during

the projection period.

2 C. Just as Pollard (1968, 1970) and Sykes (1969) have done before
qi

us, and as one of us (Schweder, 1971) has said in a different context, we come

to the main conclusion that the variability of Xj(t) inherent in the pure

branching process model is much too small for a description of the unreliability

of population forecasts. In addition to this, the model has some further

undesirable consequences, the more important being that it seems to imply that

the inherent inaccuracy of birth projections does not increase over time.

The reason for this is, of course, that the model leaves changes in fertility

rates entirely out of account.

3. THE BRANCHING PROCESS IN A RANDOM ENVIRONMENT

3 A. After reaching the above conclusion, Pollard (1968, 1970)
`N

suggested that one might use the branching process approach for each projection

year, but that the branching probabilities should be regarded as random

variables. This is essentially the same idea as that due to Smith and

Wilkinson (1969), who study a one-dimensional Markov chain which they call a

branching process in a random environment. In our case, the randomness would

be caused by a randomly changing macro environment, such as weather conditions,

epidemics, fads and fashions, and the like. Such influences would make

M(1), M(2),... random. When these matrices are given, the conditional

distribution of)4,(1), 7x.(2),... is taken to be that of a time-discrete multi-

type branching process, inhomogeneous in time.

In his 1968-paper, J.H. Pollard in effect limits his analysis

to the case in which M(1), ;(2),... are uncorrelated, identically distributed

random matrices. We shall do likewise.

(In his 1970-paper,J.H. Pollard makes a first attack on the case in

which the projection probabilities are random but dependent. We shall not go

into this here. A.H. Pollard (1970) has looked more closely at random mortality

fluctuations.)
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Let V denote the covariance matrix operator and introduce

=

(t) = Ef(t)11v11,(1),... 5 1„ ,(071 5

-,q(t) V .WOV1),... 5

Q(t) = Vr?((t)ll .

The matrix T.( t) can be calculated from recurrence relations similar to (3).

Evidently, by conditional expectation,

E(t) = E Q(t) = E n m(t) x(o) tx,(0),
s=1'

so the projection calculated from (2) is still the expectation of

Furthermore,

Z(t) = E(t) + Vre(0]
t

(4) 	 E,Ç,(t) 	 \T L. H 1,1(0]),1Ç(0).
s=1

This gives a decomposition of the covariance matrixof ? ,(t) into one component

generated by the branching process nature of the transition from the beginning

of one projection year to the next when the branching probabilities are given,

and a second component generated by the year-to-year fluctuation in the

Given the likely year-to-year variation in the birth and death rates,

E(t) will probably be roughly of the size order of the covariance matrix ofrk,
?(t) in the pure branching process model of the previous Chapter. The second

item in (4) would give the covariance matrix of )4,(t) in a pure stochastic

matrix model where

(t) = 'f(t) ?7(t-1) for t = 1,2 5 ... 5

with kl(1), 11, ( 2),... random and independent as specified above. In this model,

iVt)1 would develop deterministically according to the linear relations above

once the M(s) were given.fk,
Faced with the inadequacy of the pure branching process model as a

decription of the inaccuracy of population forecasts, Sykes (1969) proceded to

study the above pure stochastic matrix model. We shall do likewise.

4. THE PURE STOCHASTIC MATRIX MODEL

4 A * Under the model specified at the end of the previous Chapter,qi
the projected population would continue to be given as in Table 1. We introduce

X(t) = VE 	 Di,l(s).1>4,(0),
s=1
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and denote the non-zero elements of m(t) by f
x
(t) and p(t). These are now

taken to be random variables, and we let

p 
x
 .T. Ep (t), f

x 
r. Ef

x
(t),

x

Œ ..-: cova
x
(t), f (t):,

xy 	 Y

7.: covlp (t), D (t)1,
xy 	 x 	 Y

and 	 y .7.: covio (0, f (0].
xy 	 x 	 Y

Then the elements of the X(t) satisfy the recurrence relations

V(0) 7... 0,

E {a..[-y..(t) + 5L(t) r(.(0 	 0

	

]+ f.f.V.. 	 1,
V00(t+1) 7. . . 2.3 13 	 i 	 3 	 i 3 13

1,3

V0 , 1 1.1(t+1 11571j(0 + 1 (t) 5L(01 +
 J 	 3 113

((3 . ..(v..(0.1,5*(,-0 	 (5L01 + p.p.V..(t),Vii.i1(t+1) = 13 13
	 1 	 ] 	 a. .3 13

for i,j 	 0,1,..., 44. These relations follow from others given by Sykes (1969).

4 B We define the matrix M as in Section 1 B, with the above inter-
rk,

pretation of p
x 

and f . This matrix has 76 non-zero elements, viz. the

45 survival rates .. 'p 	 . 	 p
44 

and the 31 fertility rates fr ,
b f16" . " f45 .

In our numerical computations, we have again used the mean rates listed in

Table 1 for these elements. We have used the corresponding empirical

variances and covariances for the a
xy'xy' 

and y above. Some selected
xy

values of V1T-- and 47-- are given in Table 1.
xx 	 xx

Evidently, this choice of M and VM(t) amounts to an estimation procedure,
rk,

leading to a further source of projection inaccuracy. In this paper, we are

not concerned with this source of variability, however, and we will take the

values used for the parameters as given. (A similar remark applies to Chapter 2.)

4 C Numerical results for this model are presented in panels b of

Tables 3 and 4, and in Table 5. Comments analogous to those in (i) to (vi) of

Section 2 B apply to the present case also. There is one curious feature which

this model does not share with the previous one, however, viz. the dip in the

standard deviation of X
0
 (t) which now appears between times t 10 and t .7: 30.

We do not feel that this dip represents an interesting additional aspect of

these models, and we have taken no pains to explain it.

4 D. We then turn to the study of the standard deviation of X0
 (t).

In the pure stochastic matrix model, it is the random variation in the p)IT(s)

which makes X(t) a random vector. We do not really know what distribution the

M(s) have, but even if we did, we could not easily find the distribution of

and
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distribution of
	1
 M(s). (Evidently, X(t) would have some generalized form

s=
of the lognormal distribution as an approximation for large t.) Thus we cannot

copy (4).

Still, it seems intuitively likely that X
0
 (t) 	 0(t) must overshoot

something like 1.5 times its standard deviation in absolute value a lot of the

time. 1.5 is the upper 93.32 percentage point of the standard normal distribu-

tion, so a standard normal deviate would exceed 1.5 in absolute value with a

proabiHty of 0.1336. Although X 0(t) is not normally distributed, we feel

rather confident that its distribution would not be grossly different from the

normal for large >4,(0).

Sirce 1.5 times the coefficient of variation of variables like X0(1)

and 	 roughly 0.07, this means that corresponding relative deviations
, -

like 1X 0 (1)- ,"; 0(1)1/X 0(1) and 1X 0 (2) 	 5 0(2)1/ 0(2) should be in excess of

7% a lot of the time. To us, this seems to represent a very high level of

variability, possibly too high for the inaccuracy of one and two-year birth

projections encountered in practice. (The Norwegian projections published in

1989 overestimated the birth cohorts of its two first projection years, viz.

1969 and 1970, by as much as 3% and 10%, respectively, but it is felt that

this is the result of a very real drop in fertility to a new and lower level,

not a consequence of random fertility fluctuations. In any case, such shifts

must surely be relatively rare in countries like ours.) We feel on shaky

ground here, however, and we shall refrain from drawing firm conclusions. We

would be highly interested in hearing the opinions of others on this matter.

There seems to be a straightforward explanation of this apparent over-

estimation of the unreliability of early birth projections. According to the

arguments which Pollard (1968) and Sykes (1969) give for regarding the pro-

jection matrices as random, this randomness is supposed to catch variation in

vital rates around some mean level on which they would have stayed if

phenomena like cold and mild winters, droughts, epidemics and the like did not

occur. There is no reason to believe that fertility variations in Norway over

the period from 1953 to 1968 are of this sort only, however. There must have

been an additional secular trend in the rates, i.e. the level around which

there is random variation must have moved over the years. Our procedure for

giving values to the a
xy 

etc. will, therefore, have picked up the variation of

this mean level around the time-mean for the years, in addition to what it was

supposed to reflect. A better realization of what seems to have been the

intentions behind Pollard's and Sykes's suggestion, would have been to first

X
0
 (t) because of the complexities involved in deriving the probability



1 0

estimate the secular trend, and then get at the (random) variation around it

They have not done this themselves (although Sykes (1969, p. 125-126) does

give half a page of formulas which would have made this possible), and we have

regarded it as outside our present purpose to do so.

A further discussion of possibilities for extending the Pollard-Sykes

model will be given elsewhere . iJ, 1'21.

4 E. To sum up the conclusions of the present Chapter, we feel that

the pure stochastic matrix model does not adequately represent the

unreliability inherent in projections of births. (It seems all right

concerning deaths.) The variability implied by the model for the numbers of

births for the first projection years seems very high, indicating either that

one can put very little trust in projected numbers of births or that the model

is wrong. We regard it as a definite deficiency of the model that the coeff5.ci-

ent of variation of X
0 ( -0 does not increase with t. It is quite contrary to

what we would expect of a good model that the level of inaccuracy of birth

projections implied should remain roughly constant as we progress through te

projection period, as it does here.

The cause of this feature is, evidently, the constancy of the covariance

matrix of the elements of ,i1\11(t), i.e. the independence of t assumed for the

xy'xy' 
and y . If the increase in uncertainty about the fertility ratesxy

as one progresses into the forecasting period were to be incorporated into the

model, the a would somehow have to be made increasing functions of t.xx
Alternatively, the introduction of correlation among the(t) might help.

5. FINAL REMARKS

Such changes as there are in mortality in a country like Norway

cannot have much influence on the accuracy of population projections, and this

seems adequately reflected by both models which we have studied.

None of them seamsto give a satisfactory description of the unrelia-

bility of birth projections, however. The pure branching process implies a

variability which is much too low, and the pure stochastic matrix model implies

inaccuracy which either is too high, or which seems to lead one to a complete

distrust in birth projections. In both cases, the model does not incorporate

the increasing unreliability of birth projections as one progresses into the

future.
These deficiencies are inherited, of course, by the model of Chapter 3,

which combines the branching process aspect with the stochastic matrix aspect.
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Initial
population

(1 )

Age

32

32

31

31

30

29

29

29

29

30

29

30

29

29

29

29

28

29

29

30

31

32

29

23

25

23

20

21

21

20

19

19

18

18

18

20

20

21

21

21

21

23

23

24

25

25

084

009

549

107

427

751

675

515

804

181

901

658

902

822

960

508

192

333

294

206

303

640

614

249

216

617

671

582

007

499

691

096

699

787

629

297

496

253

007

819

733

087

108

272

499

735
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Table J. Selected input parameter values. Norwegian female population,
1953-1968

Mean
birth
rate )

per 10 000
(2)

Standai,d 	 Mean 	 Standard
deviation 	 death 	 deviaiion

(birth rates) 	 rate 	 (death rates)
per 10 000 per 10 000 per 10 000

(3) 	 (4) 	 (5)

o • . • • •

1 . . 	 .. .

2 .......

.......

5 .......
6 	 .

7 	 .......
8 0000000
9 	 *000.

10 00 *0000

- 11 00.09.*

12 'ewe,

13 .......
14 0000000

15 0.00 0.0

16

17 	 esoilk.loo
18 .......

19

20 00.00.0

0000.00

22 9000.00
23 0000.0.

24 woos*

25 00 00 0.0

26 .......

27

28 0000000

29 	 ...

30

31 .......
32 0000000

33 00.0000
34 0000.4.

35 • • • • •••

36 .......
37 **tow

38 	 .f000sito
39 .. 	 O .0

40 ow's*

41. 000.000
42 we**,
43 000000.

44 .......
45 	 ...

	134,7	 13,7

	

35,1 	 9,6

	

10,7 	 2,7

	

8,4 	 1,6

	

6,2 	 1,6

	

5,2 	 1,3

	

4,2 	 1,4

	

3,7 	 1,5

	

3,1 	 0,9

	

2,6 	 1,0

	

2,6 	 1,4

	

2,4 	 1,0

	

2,4 	 0,9

	

2,6 	 0,7

	

2,8 	 1,1

	

2,2 	 1,8 	 3,6 	 1,4

	

19,4 	 10,6 	 3,9 	 1,3

	

91,9 	 30,4 	 3,5 	 0,9

	

239,6 	 52,9 	 3,6 	 0,9

	

433,1 	 64,3 	 3,8 	 1,3

	

613,6 	 85,6 	 3,5 	 1,2

	

752,8 	 94,2 	 3,8 	 1,3

	

853,9 	 99,3 	 3,8 	 1,3

	

900,9 	 98,3 	 4,4 	 1,5

	

925,7	 92,1 	 3,8 	 1,2

	

914,6 	 74,2 	 4,3 	 1,4

	

887,8 	 66,0 	 4,5 	 1,4

	

844,2 	 51,8 	 4,9 	 1,6

	

779,7 	 38,6 	 5,8 	 2,1

	

724,8 	 31,8 	 5,3 	 1,6

	

664,0 	 27,0 	 5,6 	 1,4

	

604,4 	 31,8 	 6,5 	 1,7

	

546,4 	 32,2 	 6,4 	 1,9

	

497,6 	 48,3 	 7,3 	 3,1

	

444,3 	 44,8 	 7,8 	 2,4

	

393,2 	 46,9 	 8,2 	 2,1

	

354,3 	 47,9 	 9,5 	 2,7

	

301,8 	 41,4 	 10,1 	 1,8

	

259,9 	 38,5 	 11,6 	 3,0

	

219,1 	 34,3 	 11,9 	 1,8

	

180,6 	 31,1 	 13,2 	 2,4

	

140,9 	 27,4 	 13,3 	 3,4

	

104,3 	 22,8 	 15,7 	 2,3

	

69,9 	 17,4 	 16,4 	 2,7

	

44,7 	 12,1 	 19,2 	 2,6

	

25,4 	 7,4 	 20,3 	 3,6

••

•
	

• •

Female babies only.



o • • • • • •

• • • • • • .

• • • • • • •

• • I • • • • •

• Ai 4.	 • • •

2

3

Table 2. Population in selected age groups at the end of selected projection years

Age Initial
population Projected population

t=0
	

t=1
	

t=2
	

t=3
	

t=4
	

t=5
	

t=10 	 t=15 	 t=20 	 t=30 	 t=45 	 t=60

32 084 32 811 33 628 34 405 35 138 35 826 38 650 40 339 41 462 45 787 54 275 63 058

32 009 31 651 32 369 33 175 33 942 34 665 37 653 39 548 40 682 44 562 53 093 61 491

31 549 31 896 31 540 32 255 33 059 33 822 37 003 39 128 40 323 43 824 52 451 60 572

31 107 31 515 31 862 31 507 32 221 33 024 36 410 38 758 40 065 43 229 51 928 59 819

30 427 31 080 31 488 31 835 31 480 32 194 35 785 38 349 39 811 42 689 51 401 59 100

5 . ...... 	 29 751 30 408 31 061 31 469 31 816 31 461 35 131 37 900 39 556 42 210 50 868 58 417

	

10 .. OOOO .. 	 29 901 30 173 29 786 29 487 29 634 29 695 31 401 35 065 37 829 40 580 47 942 55 457 	
I--
(,)

	

15 • • • • • • • • 	 29 508 29 951 29 805 29 878 30 626 29 862 29 657 31 361 35 020 39 431 44 756 53 054

	

; 20 • • • . • • • • 	 31 303 30 194 29 272 29 300 28 150 29 453 29 807 29 602 31 304 37 711 41 999 50 614

	

; 25 4. • • • • • • 	 23 617 25 206 28 225 29 578 32 588 31 242 29 396 29 750 29 545 34 883 40 376 47 700

	

30 . • • .• • . • 	 19 691 20 488 20 983 21 547 20 628 23 558 31 164 29 323 29 676 31 165 39 185 44 477

	

35 •••••... 	 20 297 18 614 18 758 18 658 19 042 19 624 23 479 31 060 29 225 29 372 37 418 41 674

	

; 40 • • • • • . • • 	 21 733 21 793 20 957 21 181 20 407 20 192 19 524 23 358 30 900 29 425 34 507 39 934

	

, 45 ........ 	 25 735 25 449 24 185 22 989 22 938 21 564 20 036 19 372 23 177 28 849 30 662 38 551
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Table 3. Standard deviation of components of )4,(t) at selected ages for selected
projection years.

Age

t=i	 tr.2
	

t=3
	

tr4
	

t=5
	

trio tr15	 t=20 t=30 t=45 t=60

0	 • • •
1 • • •••
2 •••••

3 •••••

4 ••.••

a. Pure branching process model

175,0 177,1 179,0 180,9 182,6 189,8 194,1 196,9 211,9 233,0 256,5

20,7 173,9 175,9 177,9 179,8 187,4 192,2 195,1 208,6 230,3 252,9

10,6 23,1 173,6 175,7 177,6 185,8 191,2 194,3 206,4 228,9 250,5

	

5,8 	 12,1 	 23,8 173,5 175,6 184,3 190,3 193,6 204,5 227,6 248,6

	

5,1 	 7,8 	 13,1 	 24,3 173,4 182,7 189,2 193,0 202,6 226,4 246,6

5 .. ... 	 4,3 	 6,7 	 8,9 	 13,9 	 24,7 181,0 188,1 192,3 200,8 225,2 244,7
10... •. 2,8 	 4,1 	 5,3 	 6,4 	 7,5 	 25,3 180,8 187,9 195,0 218,2 236,5

	

15 .. ... 	 2,9 	 4,0 	 4,8 	 5,6 	 6,2 	 9,7 	 26,6 180,7 192,0 209,5 230,3

	

20 .. ... 	 3,4 	 4,7 	 5,7 	 6,5 	 7,4 	 9,6 	 12,2 	 27,6 187,7 200,4 224,6

	

25 .. ... 	 3,1 	 4,8 	 6,0 	 7,2 	 7,8 	 10,5 	 12,3 	 14,3 180,4 194,5 217,6

	

30 .. ... 	 3,3 	 4,8 	 5,9 	 6,5 	 7,7 	 11,7 	 13,5 	 14,9 	 29,9 191,5 208,9

	

35 ..... 	 3,8 	 5,3 	 6,3 	 7,3 	 8,1 	 11,7 	 15,5 	 16,7 	 19,3 187,0 199,6

	

40 .. ... 	 5,1 	 7,0 	 8,4 	 9,4 	 10,2 	 12,9 	 16,0 	 19,9 	 21,6 179,5 193,5

	

45 .. ... 	 7,0 	 9,3 	 10,9 	 12,2 	 12,9 	 16,1 	 17,7 	 20,8 	 25,4 	 36,9 190,0

b. Pure stochastic matrix model

0 	 1534,7 1610,0 1667,8 1709,5 1734,3 1734,4 1635,5 1628,4 2016,0 2300,6 2775,3

1 ..... 	 44,1 1514,6 1588,9 1645,9 1637,3 1721,6 1631,6 1600,1 1945,5 2261,7 2700,8

2 	

• 	

30,9 	 53,5 1509,6 1583,7 1640,5 1725,0 1647,4 1590,5 1892,3 2246,8 2652,1

3 .. 	 8,5 	 32,0 	 54,1 1508,1 1582,0 1722,2 1669,9 1587,8 1843,4 2237,9 2608,7

4 	 5,0 	 9,9 	 32,4 	 54,2 1506,9 1716,5 1686,4 1593,3 1794,5 2229,9 2565,7

5 ..• • • 4,8 	 6,9 	 11,0 	 32,6 	 54,5 1701,7 1702,1 1605,2 1746,9 2221,6 2523,7

10 	 2,9 	 4,1 	 5,8 	 7,1 	 8,1 	 55,0 1608,5 1698,9 1595,4 2145,8 2344,8

15 .... 	 3,2 	 3,8 	 4,7 	 5,7 	 6,9 	 10,5 	 68,1 1696,5 1600,2 1972,3 2250,8

20 .. 	 3,8 	 4,6 	 5,3 	 6,4 	 7,7 	 10,4 	 13,1 	 55,9 1693,5 1738,2 2210,6

25 .. 	 3,0 	 5,3 	 6,7 	 8,5 	 9,0 	 11,4 	 13,5 	 15,6 1690,1 1587,4 2135,1

30 Se 00. 	 3,3 	 5,6 	 6,7 	 7,1 	 8,8 	 14,6 	 15,7 	 17,4 	 57,5 1590,3 1960,1

35 .. 	 4,4 	 7,4 	 8,1 	 8,9 	 9,5 	 14,4 	 21,1 	 21,2 	 23,7 1680,7 1725,0

40 .. 	 3,8 	 7,2 	 8,3 	 9,7 	 10,4 	 13,8 	 18,7 	 26,3 	 27,1 1671,8 1570,4

45 	 6,7 	 9,3 	 10,3 	 5,7 	 13,2 	 16,1 	 18,2 	 23,4 	 31,2 	 63,5 1565,0

0 ••.••

•••.•

2 ••...

3 .•...
L. „,...

5 •••.•

10

15 •• • ••

20 •• • • •

25 .....

30 ...••

35 ... •.

40 ••••.

45 •••• •

C. Item in panel b divided by corresponding item in panel a

	8,8	 9,1 	 9,3 	 9,4 	 9,5 	 9,1 	 8,4 	 8,3 	 9,5 	 9,9 	 10,8

	

2,1 	 8,7 	 9,0 	 9,3 	 9,4 	 9,2 	 8,5 	 8,2 	 9,3 	 9,8 	 10,7

	

2,9 	 2,3 	 8,7 	 9,0 	 9,2 	 9,3 	 8,6 	 6,2 	 9,2 	 9,8 	 10,6

	

1,5 	 2,6 	 2,3 	 8,7 	 9,0 	 9,3 	 8,8 	 8,2 	 9,0 	 9,8 	 10,5

	

1,0 	 1,3 	 2,5 	 2,2 	 8,7 	 9,4 	 8,9 	 8,3 	 8,9 	 9,9 	 10,4

	

1,1 	 1,0 	 1,2 	 2,3 	 2,2 	 9,4 	 9,0
	

8,3
	

8,7
	

9,9
	

10,3

	

1,0 	 1,0 	 1,1 	 1,1 	 1,1 	 2,1 	 9,4
	

9,0
	

8,2
	

9,8
	

9,9

	

1,1 	 1,0 	 1,0 	 1,0 	 1,1 	 1,1 	 2,6
	

9,4
	

8,3
	

9,4
	

9,8

	

1,1 	 1,0 	0, 9
	

1,0 	 1,0 	 1,1 	 1,1
	

2,0
	

9,0
	

8,7
	

9,8

	

1,0 	 1,1 	 1,1 	 1,2 	 1,2 	 1,1 	 1,1
	

1,1
	

9,4
	

8,2
	

9,8

	

1,0 	 1,2 	 1,1 	 1,1 	 1,1 	 1,2 	 1,2
	

1,2
	

1,9
	

8,3
	

9,4

	

1,2 	 1,4 	 1,3 	 1,2 	 1,2 	 1,2 	 1,4
	

1,3
	

1,2
	

9,0
	

8,6

	

0,7 	 1,0 	 1,0 	 1,0 	 1,0 	 1,1 	 1,2
	

1,3
	

1,3
	

9,3
	

8,1

	

1,0 	 1,0 	 0,9 	 0,5 	 1,0 	 1,0 	 1,0
	

1,1
	

1,2
	

1,7
	

8,2
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Table 4. Standard deviation of components of X(t) at selected ages for selected birth cohorts

Pro-
jec-
tion

Birth year of cohort

year
-19 -9 -1 1)

0	 1	 3	 4 5 10 20

Pure branching process model

1 20 2) 3,4 10 2,8 2 10,6 1 20,7	 0 175,0

2 21 4,7 11 4,0 3	 12,1 2 23,1	 1	 173,9	 0 177,1

3 22 5,8 12 4,8 4	 13,1 2 23,8	 2 173,6	 1	 175,9	 0 179,0

4 23 6,7 13 5,5 5	 13,9 4 24,3	 3	 173,5	 2	 175,7	 1	 177,9	 0 180,9

5 24 7,6 14 6,2 6 14,4 5 24,7	 4	 173,4	 3	 175,6	 2	 177,6	 1	 179,8 0 182,6

10 29 11,3 19 9,5 11	 16,1 10 25,8	 9	 173,2	 8	 175,3	 7	 177,3	 6 179,2 5 181,0 0 189,8

15 34 14,8 24 12,2 16	 17,4 15 26,6	 14	 173,1	 13	 175,2	 12	 177,2	 11	 179,1 10 180,8 5 188,1

20 39 19,0 29 14,7 21	 18,9 20 27,6	 19	 173,0	 18	 175,1	 17	 177,1	 16 179,0 15 180,7 10 187,3 0 196,9

30 39 21,1 31	 22,4 30 29,9	 29 172,7	 28	 174,8	 27	 176,8	 26 178,6 25 180,4 20 187,7 10 195,0

45 45 36,9	 44	 171,5	 43	 173,6	 42	 175,7	 41	 177,7 40 179,5 35 187,0 25 194,5

60 40 193,5
Standard deviation in per mille of projected population

20 1,1 10 0,9 2	 3,3 1 6,5	 0	 53,3	 0	 52,7	 0	 52,0	 0	 51,5 0	 51,0 0 49,1 0 48,8

39 6,4 39 7,1 31	 7,1 45 12,0	 44'	 54,6	 43 	53 , 8	 42	 53,2	 41	 52,6 40	 52,0 35 50,0 40 48,5

b.	 Pure stochastic matrix model

1 20 3,8 1 0 2,9 2 30,9 1 44,0	 01534,7

2 21 5,3 11 5,1 3 32,0 2 53,5	 1 1514,6	 01610,0

3 22 6,5 12 5,8 4	 32,4 3 54,1	 21509,6	 1 1588,9	 01667,8

4 23 7,5 13 6,5 5 32,6 4 54,2	 31508,1	 21583,7	 1 1645,9	 01709,5

5 24 8,8 14 6,9 6 32,9 5 54,5	 41506,9	 31582,0	 21640,5	 1 1687,3 01734,3

10 29 13,8 19 10,3 11	 34,0 10 55,0	 91503,4	 81577,6	 71634,9	 61676,7 51701,7 01734,4

15 34 19,3 24 13,5 16 34,8 15 55,4	 14 1501,6	 131575,6	 121632,6	 11 1673,9 101698,5 51702,1

20 39 25,1 29 17,1 21	 35,6 20 55,9	 19 1499,0	 18 1573,0	 17 1630,0	 16 1671,6 15 1696,5 10 1698,9 0 1628,4

30 39 27,1 31	 38,5 30 57,5	 29 1492,6	 28 1566,7	 27 1623,7	 26 1665,2 25 1690,1 20 1680,8 10 1595,4

45 45 63,5	 44 1470,9	 43 1545,5	 42 1603,4	 41 1645,8 40 1671,8 35 1680,7 25 1587,4

60 40 1570,4
Standard deviation in per mille of projected population

20 0,13 10 0,10 2	 0,10 1 1,4	 0	 4,7	 0	 4,8	 0	 4,8	 0	 4,9 0	 4,8 0 4,5 0 3,9

39 0,84 39 0,91 31	 1,21 45 2,1	 44	 4,7	 43	 4,8	 42	 4,9	 41	 4,9 40	 4,8 35 4,5 40 3,9

c.	 Item in panel b divided by corresponding item in panel a

1 20 1,6 10 1,0 2	 2,9 1 2,1	 0	 8,8

2 21 1,1 11 1,3 3	 2,6 2 2,3	 1	 8,7	 0	 9,1

3 22 1,1 12 1,2 4	 2,5 3 2,3	 2	 8,7	 1	 9,0	 0	 9,3

4 23 1,1 13 1,2 5	 2,3 4 2,2	 3	 8,7	 2	 9,0	 1	 9,3	 0	 9,4

5 24 1,2 14 1,1 6	 2,3 5 2,2	 4	 8,7	 3	 9,0	 2	 9,2	 /	 9,4 0	 9,5

10 29 1,2 19 1,1 11	 2,1 10 2,1	 9	 8,7	 8	 9,0	 7	 9,2	 6	 9,4 5	 9,4 0 9,1

15 34 1,3 24 1,1 16	 2,0 15 2,1	 14	 8,7	 13	 9,0	 12	 9,2	 11	 9,3 10	 9,4 5 9,4

20 39 1,3 29 1,2 21	 1,9 20 2,0	 19	 8,7	 18	 9,0	 17	 9,2	 16	 9,3 15	 9,4 10 9,1 0 8,3

30 39 1,3 31	 1,7 30 1,9	 29	 8,6	 28	 9,0	 27	 9,2	 26	 9,3 25	 9,4 20 9,0 1 0 8,2

45 45 1,7	 44	 8,6	 43	 8,9	 42	 9,1	 41	 9,3 40	 9,3 35 9,0 25 8,2

60 40 8,1

1) Birth year 0 is the year immediately preceding the first projection year.	 Here, year 0 is 1968.

2) An italicised number states the age of the cohort at the end of the given projection year.



• . • ... •

1

2

3

4

5

• •	 • e •

....... 46,8

47,9

48,5

48,7

48,4

44,9

40,6

39,3

44,0

42,4

44,0

• • • • • • •

5,3

5,3

5,2

5,1

5,1• • • • • ei •

8,8

9,1

9,3

9,5

9,5

9,1

8,4

8,3

9,5

9,9

10,8

4,9

4,8

4,7

4,6

4,3

4,1

32 811 	 175,0

33 628 	 177,1

34 405 	 179,0

35 138 	 180,9

35 826 	 182,6

38 650 	 189,8

40 339 	 194,1

41 462 	 196,9

45 787 	 211,9

54 276 	 233,0

63 059 	 256,5

1 535

1 610

1 668

1 710

1 734

1 734

1 636

1 628

2 016

2 301

2 775
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Table 5. Projected number of birthsm and corresponding standard deviations

Projection
year

( 1)

Pure branching 	 Pure stochastic
matrix model 

Coefficient 	 Coefficient
Standardof variation 	 of variation,

in per mille ' deviation in per mine
(2) 	 (3) 	 (4) 	 (5) 	 (6)

Projected
number
of birthsm

Standard
deviation

Ratio of
(5) to (3)

7

Really the number of 0-year-olds at the end of the year.
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