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Summary

In the present paper, formulas are given which show how age-specific

mortality rates and fertility rates appear aŠ weighted averages of underlying

forces ok mortality and fertility. This is done separately for period rates

and cohort rates, Which turn dut to have radically different properties. More

general rates are also introdUced and investigated. In a final chapter, it

is ShoWn how the thedry coUld be extended to a simplistic description of

school atiendance.

A certain type of foimuia which has appeared  in the demographic literature,

turns out to have less general applicability than apparently believed before.

It is valid in generalized stable populations, and as an approximation in

connection with sectionally (generalized) stable populations, bUt not elsewhere.

. Introduction

k. Consider a model population exposed to a mortality schedule given by a
force of mortality function 11(0. Let us define the period male death rate in

the model for the ages x to x+n, say for a given year, as the number of male

deaths at such ages divided by the aggregate number of person-years lived in

the age segment during the year, both calculated according to the model. Such

a rate measures the mean mortality risk over the given age interval, and it can

be expressed as a weighted average of the instantaneous death rates p(x+t) for

0 < t <n
 

in the form
n

(1) 	 w(xit)p(x+t)dt/ tr) w(x+t)dt

If we take the value w(x+t) of the weight function at age xi-t to represent the

number of males in the population that will ever reach age xit during the study

period, then (1) is immediately seen to hold for any model population, whether

open or closed.

The purpose of the present paper is to study formulas like (1), partly

with different interpretations of w(-).

B. The idea that the death rate for an extended age interval can be regarded

as a weighted average of corresponding rates for shorter intervals is quite

familiar in demography, but apparently explicit formulas similar to (1) have

only been published quite recently (except for very special cases).
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Keyfitz [(1970), compare also (1968a), page 173, (7.1.75] gives the formula

(for n=5)

5 	 5 ,(2) 	 P(x+t)11(x+t)dt / 	 p(x+t)dt,

which he takes as valid if we "suppose a continuous function p(x+t) underlying

the observed age distribution within the age group x to x+5. This means that

the number of individuals in the exposed population between ages xtt and x+ttdt

is designated p(x+t)dt."

Let us introduce

•p(k) = p(x) / T p(u) du.

We can replace p by p in (2) without changig the value of the ratio. Let us

imagine that this has been done. The function -5 represents the age distribution

of the population at a particular moment. This distribution will change over

timei extept in stable populationt. For a meaningful interpretation of formulas

like (2), it is therefore necessary to specify, either

(i) at What moment i; represents the population age distribution, or

(ii) that the population considered ia taket to be stable,

We shall see how important it is not to omit such a specification, In

the present paper, we take To, to represent the age distribution at the beginning

of the study period, which we call time zero". (Compare Keyfitz (1968a),

page 97.)

Through private conversations, I have found that many people consider the

representation of the mortality rate by (2) as being self-evident. Unfortunately,

It is not so. Quite contrary to this belif,22.-Lanly_illt...2.9.1_211±2nLLILLIEt
it is not even corresIt_Tis2pIcular circumstances. Fortunately, it is

correct in stable populations, and many papers on mathematical demography,

like Keyfitz's from 1970, really confine themselves to such populations even

though it is not always explicitly stated.

In fact, we shall show that in a closed population (2) is correct as a

general formula, i.e., for all x simultaneously,

.911.1E when the population is of a generalized stable type, viz. when p has the

form

(3a) p(u) = 	Akeku k(u),

and at the same time
oc 	rkt(3b) b(t) = 	 Ak e

where b(t)dt represents the number of live babies (of the sex considered) born



into the population between time t and t+dt, The constants Ao ,A/,.. are the

same in (3a) as in (3b), and so are ro ,r1 ,... • k(x) is, of course, the survival

function. We take £(0)=14

k. We shall prove the above claims in section Z. In section we study

similar questions for cohort mortality, which turns out to be much simpler.

We also introduce a general mortality rate and give corresponding formulas.

In section 4 we show how this reasoning can be extended to cover age-specific

fertily
 fk,
rates. The same theory can easily be formulated for the multiple

decrement situation also, but we shall tot do so.

The structure of the cases just mentioned is really very simple, and we

get nice formulas. The same kind of theory can be brought to bear on more

complicated situations, but then the complexity of the formulas increases

rapidly. As an illustration, we use a simplistic model or school attendance,

where the mathematics are still manageable (section V.

Our account is written in the pseudo-probabilistic vein commonly

employed in classical population mathematics. The possibility of immigration
4.MM.

and emigration does not really throw any light on the questions we want to

discuss here, but rather tends to detract attention from our main line of

argument. In what follows, we shall therefore consider a closed population only.

In order to avoid burdering the account with mathematical niceties

which really are beside the point, we shall assume that all functions appearing

are continuous, and also state here once and for all that the set r/ appearing

in sections 3B, 4C and 5C is taken to be Lebesgue measurable.f‘) 	 r\i

2.Period mortality rates

Let us designate our study period by to 	We want to derive formulas

for the mortality rate nM , for the age interval from x to 	 Let nV x denote

the number of deaths during [6,11 with age at death between x and x+n, and let

n x denote the aggregate number of person-years lived (tota:L. lifetime) in the

age interval []-c, x+n> during the study period by people in the population.

(We prefer to use script letters M, V, and L to avoid confusion with standard

notation possibly having slightly different meaning.) ?hen n'Ox is the number

of deaths in the region Q0 in the Lexis diagram in figure 1, nLx is the aggregate

length of lifelines ever entering S20 , and we define

M 	û /nx nx nx



Figure 1 

The Lexis diagram. A region 1 of interest in studies of

period mortality
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Assume for the time being that x>11 . This means that persons born into

the population during the study period cannot contribute deaths or lifetime in

%, because their lifelines never enter this region. Then
x+n min(11 ,x+n-u)

( 	
g,(u+t

) p(u+t)dt du.4) 	nl)x "": )(LT mah0,x-u) P (u) I-6713--
This formula is valid both for T 5, n and for T n.

The proof of (4) goes like this Assume first that T < n, as in figure 1.

The individuals whO can contribute to D , are those who at time zero have agesn x
in the interval from x-T to xi-n. Let us split this interval into the three

subintervals Fc-T,x>,[ic,x+n-T>, and EgAn:-T,x+n -1, and let us first considerihe p(u)du

individuals af a particular age u, say for x-T<u<x. They will start contributing

deaths from the Moment their lifelines enter 00 , Which is at time x-u. At time t,

for x-uft<T, p(U)dui2(u+t)/(01 of the original p(u)du individuals will still

temam alive, and during the period (t,ftdt) they will contribute

p(u)dult(utt)igu)111(u+t)dt deaths. The entire contribution to V from peoplen x
staring in the age group from x-T to x at time zero is, therfore,

x 	 T 1.. 	u+t) p	 lAxLT xluP ku 	 kJ u) pu+t)at du.

Similar arguments for those who have ages between x and x+n-T at time Zero, and

separately for those who then are in the age bracket from x+n-T to xi-n,

give (4) for T<n.

In the case where T>n, (4) is seen to hold by considering each of the age

groups [x-T, x+n-T>, Ex+n-T,x>, and lic,x+n], separately. This establishes (4).j

Introducing y=u+t for t and changing the order of integration, we get
x+n

(5a)
p(u) 

nOx 	f gy)11(y) f 	 du dy for x›T.x 	 y-T t(u)

By a similar argument, we get
x+n

(SID) 	 f z( y) y-1 	 du dy 	 for x>1 1 .n 	 x 	 k

If we let

w(Y) yIT p(u) k\r du

	

tku) 	 for y?.T,

then w(-) has the verbal interpretation given at the eld of section 16,, and we

see that M equals the expression in (1). It does not generally reduce to (2),n x
so the latter is not a correct general representation of Ai •n

k. If x<T, individuals born during the period LO,TxJ will contribute to n x
and 

n x . We let a function b(-) be defined verbally as underneath (3b),
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without necessarily assuming that (3b) holds. If we introduce

(6)	 h(u)	 (P(u)/2(u)	
for 40,

IPC -u) 	 for 11.0,

then one can establish the following two formulas by an argument quite similar

to the one for (4):

(7a) nx 3ç 56(011(Y ) YLT gu)du dy,

and
x+r	 37

(7b) St(y) yLTA(u)du dy.

Note that (7) reduces to (5) if x>T, so (7) is valid whether x<T or x>T.

n Vtx is seen to equal (1) with 14(y) =gy) yLT A(u)du	 for all y>0.

i. We have shown that (2) is not generally Valid, arid turn now to the case

of a stable population, in which case we shall see that (2) ji21 cortrect. Let

(Ba)
	

p(u) = Ae-ruk(u),

(813)
	

b(u)	 Aeru,

where A is any positive constant. Then

(9) A(u) L.: Ae ru

and

(10) y-
f

T
 A(u)du ".r. a A(y),

with
T if r=0,

(e
rT

-1)/r if r40.

We also get
n -rt	 n -rt(12)	 M = fe	 9,(x+t)p(x-i-t)dt/fe	 gx+t)dt,

n x 0	 0

which means that (2) is valid when (8) holds.

In fact, (2) is correct under more general conditions than this. In

proving (12), we did not use (8) itself. We rather used (10), which in effect

tells us that the double integrals in (7) can be reduced to single integrals.

We see that (2) is valid if and onl if (10) holds for some a>0, not nenessaril

c given 	(13-)*
It is a nice fact that we can solve (10) and find what form A must have

to satisfy this relation. We differentiate (10) and get

dŒ --- Å(y)-A(y)+A(y-T) r.dy for y>0

This is a differential-difference equation studied in some detail by Bellman and

Cooke (1963). It turns out that all solutions of (10) are of the form
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(13) A(y):-.kroAke-rkY,

where the Ak are arbitrary constants r r ,... are all the non-real solutions

of the characteristic e4uation

erT- 1.(14) ar

(Compare (11). Note the following difference! In (11), r was given, and we

derived a. in (14), a is given, and we solve for r.)

(14) : has two real roots,P, and P2 ,say. Here, Pi = 0, while P2 0 as

a T‘ In (13), ro= p2 4 Thus

- 0 as a -

(13) is, of CoUrse, equivalent to (3)4

R. We have investigated4 among other things, the validity of t) as a

general fortdla, i.e., fOr all x simultaneously,  and We found that (2) is valid

if and only if (10) holds tor all y>0. if we ard only interested in a particular

value of x, it is of course suficiett that (lb) holds for x<1.c+5. This will

be the case, e.g., when (8) holds for x-T . 454 Similarly, (12) will hold for-
particular x and n if (8) is valid for x-T<u<x+n4 (Note that it is not enough

that (8) holds for x<u<x+n.)

If (8) is approximately valid for x-T<u<x+n, then of course (12) is also

approximately correct. On this basis, Keyfitz (1968 b, 1970) has developed a

method of retrieving values of the 2, (o)-function from a series of known values

5M0' 5M5' Ni10' ... for the mortality rates on the assumption that the population

is (approximately) what he calls sectionally stable (Keyfitz, 1968 b, page 1260).

E. In many situations, a demographer does not have L available, but mustn x
use some approximation, such as the midperiod population segment or the average

between the initial and final population segments. This gives rise to mortality

rates which are slightly different from nMx. The size of the relevant population

segment at time t is
x+n-t

nP 	 = 	 f n(u)t(u+t)du.x-t

In particular, nP (iT) is the size of the mid-period population segment. We define

ki
n°x/InFx(IT).Tn x

and

nMx14. = npx/fi(nPx(0)+Jx(T)).171.



If (8) holds, with r=0, the three rates coincide. If (8) holds with

rX0, we get

(15) n x

and

14
n x

i
nx

.(e rT

M • 2(erT-1)
n x 	 rTrT(e +1)

The correction factor in (15) is approximately equal to

2 21-fr T /24

as has been pointed out by Robert Retherford.

3. Cohort mortalit rates. General molItalitwtes

A. Let p(-) and b(-) be defined as above. Cohort mortality functions will

not coincide with the corresponding period mortality functions, so let us

designate the former by a prime. Thus, for instance, the cohort survival

function value at age x is kv(x), and the corresponding force of mortality is

pv(x). (The prime must not be confused with the symbol for a derivative. We

shall not use the prime in the latter meaning in this paper.)

We shall now give formulas for the mortality rate Mn x v for the 
age

interval from x to xim for a cohort born during the period from T'-x to Tvi-Tvv-x.

Compare figure 2. The number of deaths in çe is0
n

riV;c 	B. 	t(x+t)11(x+t) dt,

where
x-Tv

B 7. 	 A(u)du.X x-Tt-T"

The corresponding exposure time is
n

11 1.:c = Bx - 	 t(x+t)dt.

Thus,
n

(16) 	 nivf;, = nO;c 	
n

=	 gx-Ftwx-ft)dt/6 2,(x+t)dt.

Note that these formulas hold for all n>0, all Tv v >0, and all T',

only when the configuration is as in figure 2.

Note also that Niv _Ls2T.IÄE21y_iaitpttaLnt_aEn x
contrast to 

n
M
x

.
 Thus (16) holds in a stab.1.2_2malaton also .

insert the factor et in the integrals in the formula for Mvn x
(16) can also be written as

n
My = {t(x)	 it(x+n)1/ Ç k(x+t)dt.n x

not

p and b, in striking

One should not

as we did in (12).
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Figure 2 

The Lexis diagram. A region a' of interest in studies of cohort mortality.
0



B. 
Q0 	 0

and Q' in figures 1 and 2, respectively, are areas in the first

quadrant of the plane, and we have defined mortality rates 
n
M
x 
and W

nx
corresponding to these areas. We can go further and define a mortality rate

M(Q) corresponding to an arbitrary area Q in the first quadrant.

We designate a point in the plane by (t,x), and let

T = supftiOx)((t ok)e01,

i.e. T is the lest moment for which observation in 0 is carried out. We

assume that O<T<03.

The nuinber of deaths in is

*0(i/)
	

62.602,(x+thi(x+t)yt,x+t)dt dx,

where

1 if (t,y)eQ,

0 otherwise.

The corresponding total lifetime is

	,	 w T

	

LO) 	 ef 6A00(x+t)I(t,x+t)dt dx,

and the mortality rate is

(17) 	 M(Q) 	 D(Q)/L(Q).

(4), (5), (7), and (16) are particular cases of these formulas.

4.  F rtiltly_rates,

A. Let us designate the force of fertility at age x by gx). Thus the

probability that a woman at age x will have a birth within age x+dx is (x)dx.

(For a more detailed discussion, see Hoem (1970). Keyfitz (1968a) and many

others call this quantity m(x), but we prefer our own notation both because we

consistently use Greek letters for forces of transition, and because the letter m

is used for so many quantities connected with mortality. Note that cp is not

the net maternity function (Keyfitz, 1968a, page 140). The latter equals

(x)k(x) at age x.) We shall now see how one can define fertility rates for the

female population in analogy with the mortality rates we have studied above. The

similarity with the mortality formulas is striking, and the arguments are

essentially the same, so we can be very brief.
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k. Period ..f_qartates_. Let T be less than the age w o at puberty, so that

no one born during the study period can also bear children during this period.

The number of births in the study period between ages x and x+n are then
x+n min(T,x+n-u)	 2,(trit	 ,

nx xTma (0,x-u) ' (u)	 (Pku+t)dt du

x+n 	y 2SM2f £(y)y) f	 du dy
X 	y-T gu )

in analogy with (4) and (5a). The period fertility rate is nFx/nLx . If, in

particular, (10) holds, the rate is
n

p(x+t)gx+t)dt/6 p(x+t)dt.

(Compare Xeyfitz (1968a), page 173, (7.1.8) and the lines below it.)

Cohort_AEILEffaLtmLility_Latta. In analogy with (16), we get the cohort

fertility rate for the ages from x to x+n to be

11 (x+t q5(x+t )dt/ ilit(x+t )dt
0

A general fertility rate, corresponding to the arbitrary area 0, is

defined as F(0)/L(Q), where

w T
(18)	 F(0)	 f I A(x)2,(x+04)(x+t)I (t,x+t)dt dx

TO 	0
is the number of births in 0.

. A model for school attendance

A. Preliminaries. The situations giving rise to the mortality and fertility

rates we have discussed above, are very simple, and we get nice formulas. As an

example of a case which is more complex but still manageable, we shall briefly

consider a model for school attendance, and shall give formulas for school

entrance and drop-out rates.

As a description of real-life school attendance, the model suffers from

the weakness of being rather too simple, in that a person's previous school

history is not taken into account, except insofar as this is reflected in his

current status as being in school out of school. We include it here, nonetheless,

because

(i) it may have some pedagogical merit as a relatively simple

illustration of how the theory of the previous chapters may be extended,
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(a) it does have some of the more important features that a school model

should have, and

(iii) it is not more "unrealistic" than many of the other models

commonly used as abstractions of population phenomena. In this respect, it is in

fact just about on the same level as the type of very standard fertility model

which we discussed in chapter 4. In the latter, an individual's previous

fertility history is disregarded lit is easy to conceive of practical situations

where the lack of availability of data on individual histories forces the

investigator to work with Models of this type.

B. Some basic conte ts and notation. We statt by ibiroddcing some basic forces

of transition (p ,vand 11), some transition probabilities (t,s,p,i; and j), and some

survival type functions (kr and ks ).

Let p(x)dx be the probability that a member of the population who is not

in school at age x, will enter school within age x+dx.

Let v(x)dx be the probability that an individual who attends school at

age x, will leave school within age xi-dx.

Let p(x) be the force of mortality at age x, both for individuals

attending school and for those not doing so.

Furthermore, let r be the probability that a person who is not int x
school at age x, will attend school at age 	 and let tsx be the probability

that someone who attends school at age x, will also be in school at age x-Ft.

Let

tpx 	 k(x+t)/k(x),

s(x) = r0 , and 2,r (x) 	 k(x)-ks (x).x 

Then ks(x)/k(x) is the probability that an x-year-old attends school, and

kr(x)/k(x) is the probability that he does not do so.

Finally, let r and s be the values r and s would have if there weretx 	 tx 	 tx 	 tx
no mortality, i.e. if we replace p by zero everywhere.
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One may prove that the following formulas hold (Hoem, 1970, (5.4)).

(19a) trx trx- • tPx'

(19b) s 	 s- •
tx tx tx

The Kolmogorov forward differential equation (Feller, 1957, page 426) for

is

a --
a t tsx x{v(x+t)i-p(x+t)1+p(x+t),

which has the solution

	t-š' 	expi-f [v(x+ .0+p(x+02d11.

	

 x 	 0

t
f p(x+T) exp {-f iv(x+) t p(x+03d0dT.
o

Similarly,
t

(20b) 	 r 	 f p(x4-1- ) exp {-f [■)(x+) 	 p( -1- )]tiOdT,t x 0

so that

	S 	 r +

	

tx 	
exp f -f fv(x+T) 4- p(x+T}IiTl.

tx 	 0

We conclude that
x ,

(21)
s (x) = k(x) f p(t) exp {-f iv ( r) 	 p (t)

0
and get

x

	

i
0

5 	 s(x) / 2(x).x).- 

General school entrance rates and dro -out rates. In analogy with the

previous notation, we let p (x)dx denote the number of individuals in the age

bracket from x to x+dx who at time zero do not attend school, and let p (x)dx

denote the corresponding number in school. Then, of course, p Pr + Ps .

The number of times one observes that some person enters school in the

arbitrary area 2 in the Lexis diagram, is
w T

R(a) f f p
r
 (0(t p y - r )p(y+t) Io

(t,y+t)dt dy
00 	 ty

Ps (Y)( tPy tsy)p(y+t) yt,y+t)dt dy

0 T
b(t)12, (y)p(y) I (ytt,y)dt dy.

0 0 	 r

The aggregate not-in-school lifetime in 2 is
w T

yQ) -1: Jo- pr (y )(tpy - try ) I (t,y+t)dt dy

w T
+ f f ps (y)( t py - s ) I (t,y+t)dt dyoo 	 ty2

w T
4- 	f b(t)kr(y) 	 (y+t,y)dt dy.0 0

(20a)
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We then define the school entrance rate for 2 as

R(2)/Lr (2).

The corresponding drop-out rate is

S(0)/L8 (2),

with
, 	 w T

SW) = f f p
r
 (y) r -v(y+t) yt,y+t)dt dy

0 0 
w T

+ f f p 
s
(y) 	 s •v(y+t) I (t,y+t)dt dy

0 	 t
w T

+ f f b(t)2 5 (y)v(y) yy+t,y)dt dy
0 0

and
w T
f f p (y) •

t r
	 (t,y+t)dt dy

00r 	 37
w T•y f p 

s (y) • t y 2(t,y+t)dt 
dy0 0 

• T
• f b(t)t5 (y) I(y+t,y)dt dy.

0 0

R• Generation rates. By specialization of the above results to the 2; in

section 3, we get the following generation rates:
n 	 • 	 n

Entrance rate: f t (x+t)p(x+t)dt / f 9 (x+t)dt0r 	 0 r

n 	 n
Drop-out 	f k (x+t)v(x+t)dt / f k (x+t)dt.

o° 0 s

Note that neither of these depend on p r , ps , and b.

Period rates. For simplicity, let 2 be such that no one born during the

study period can enter (or leave) school during 16,T]. We can then disregard the

third integral in each of the integral formulas of section 5C. In this case,

R(ì) = f k(Op(y) f r
x+n 	 Y p (u)

y-T --Tro (1-y_uru )du dy

x+n
+ f

x 	 Zku)
k(y)p(y) 	 ---7---

( 1- s )du dy,y-T 	 y-u u

and
x+n

5(/o ) = fX

y pr (u)
y)v(y) 37 .!T  t(u) rurudu dy

x+nY Ps(u)
+ f x(y)v(0 37,4 t(u) rusu du dy,

X

and similar formulas hold for Lr (20 ) and L5 (20). In the particularly nice

situation where (8a) holds, and where we also have

Ls CR

X
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Ps (u)/p(u) 	 ks (u)/k(u)

for all u, we get the following rates:

)p(x+t)dt/Y
0

)v(x+)dtir)t 
0

Note the many similarities between the results of the present

the previous ones.

Entrance rate:

Drop-out rate:

0

1.16

-rte Lr kx-ft

-rtks ,e kx-i-t

-rte It kx+t)dt.

e t R,s (x+t)dt.
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