


1. Introduction and summary

Graybill and Hultquist (1961) describe a variance components model
as follows: An (nxl) vectcr of obeervations Y is assumod Lo be a linear sum
"

of k+2 quantities,

1. Y = ¢ I .B.
(J.)’b gs+' BL%HS

Here 8 is a fixed unknown constant. B. is a (p;*1) vector of mgltinormally
distributed random variables with mean 9 and covariance matrix o 5Pi'
(Ek denotes a k-dimensional identity matrix and Qa null matrix).
The vectors §1‘§2""’ By are stochastically independent. Ji is a (k*x1)
vector with all elements equal to 1. R; (i =1,2,..45k) a (n*pi) matrix
of known constants.

Some general theorems concerning this model have been derived by

Graybill and Hultquist (1961) under one or both of the Following assumptions

(i) ﬁi and ﬁj commute, where Qi = %i Ei (i= 1,2,¢..,k)
‘s . . . . - . . -
(ii) The matrix Ei is such that i nﬁi r.d r and Ql ipi in’

where r, is a positive integer.

The assumptions (i) are not satisfied in unbalanced models.

In this paper we will consider a special case of model (1.1) without
assumption (i), viz. the common variance components model for a complete
two-way layout. Spjotvoll (1968) has treated the same model in a different
manner,

In sections 2 and 3 we shall transform cur model to a "'semi-canonical®
form and find a method for obtaining confidence intervals and testing hypo-
theses concerning the ci. In section 4 these tests are compared with the
corresponding tests in a fixed effects model, In section 5 the test statistics

are expressed in terms of the original observations.

2. Modification of the model of Graybill and Hullquist

We consider the following model:

(2.1) Y33k T Mt + Bj + Yij + eijk;

1=21,2,e00,r3 J =1,2,00.,8, and k = 1’2""’nij' Here H is a constant,

while e, Bj, Yij’ and e,

1§k are independent normally distributed random



variables with means 0 and variances 02, og, GzB’ and 025 respectively.
- ey
Define Vi = (l/nij) kil Yigs & F 1,2,000,r3 5 = 1,2,.0.,5. Then

(2.2) V.. = U+ 0, +B. + Y.. + ...
ij i 3 ij ij

With e (1/ >nij
ith e.. = (1/n.. L €..i.
ij S ijk

For any set of variables aij (i = 1,2,000,23 3

)'. Then
s

1.2,...,8), let a

. . v
be the vector (a is multivariate

115 31030 es Apos Apysens?

normally distributed with mean Q and covariance matrix E (

et

) =K 02, where
n

Mt

(2.3) K = Diag (n 1 1y,

11 M1o2tee Ppg

Formula (2.2) may be written in matrix form as

al Bl
2.4 v = d + % B : a
( ) Y7 dp M El 2r + EQl.Q + ESX + e,
v . . v ny
d, )
- N ~
J 3 0 5eues O (1
S Y n, NS
with By =9 05 dgoees O b By =035 s
CREEA

and §3 = %ms’ which is of the same form as (1.1). The covariance matrix for

X turns out as
n

) =B, B! ¢ +B, B! o +1

z (
n, r\,l ’bl

el

Lemma 1: B, B! and B, B! commute.

P : 1 1 9 i v i 1 .
roof Multiplying gl El with 52 52, we get a symmetric matrix
When the product of two symmetric matrices is symmetric, the matrices commute. [ |



From lemma 1 it follows that there exists an orthogonal matrix P with
the property that P A, P' and P A, P’ are diagonal matrices with the eigenvalues
Aol A A oAa2 A b
on the diagonal (Herbach,1959). 2 may be chosen so that the first row, in z is

~2 A= T T.oA = g
(rs) (l,l,eoo 91)- ('I\X,l - f:%l %l’ ![\\32 - EQ (%2)0

If 2 = Py, the covariance matrix for 3 is
v Ny ")
n
$(Z) =P A P' 624+ PA P .o+ 1 c? K Pt o,
n v vl A A A A2 A B Ars "AB A A A

Lemma 2: (i) Rank (%l) = r;
(ii) Rank (gzz = s,
33 ? = -1-
(iii) Rank (51322) r+ s -1, :
(iv) Rank (A, + A.) = rank (B,!B.).
vl A2 1?2

Proof: (1), (ii), and (iii) are seen from (2.4). (iv) follcws from

the proof of Graybill and Hultquist's (1961) theorem 1. E]

From the fact that rank (A,) = rank (B.,) = r and because A, has the

eigenvalues s of multiplicity r and 0 of multiplicity (r . s - r) = r(s -1), it
follows that E él P! has r diagonal elements all equal to s and the rest equal
hY

to 0. In the same way it is seen that T A2 P' has s diagcnal elements all

equal to r and the other elements equal to C.

From (iii) and (iv) it is seen that the matrix (P A, P' + P A P') has
’\4'\11’\; ’\a"\;2’b
(r + s - 1) diagonal elements different from zero. Thus when the diagonal
element in E él g’ is different from zero, the corresponding element in E é
is equal to zero escept in one place (in the first row).

%4
We now partition 5 in the following way:
(i Zl = (rs)% V ..., Which is the first element in %,

(ii) %A consists of the (v - 1) elements in % whose covariance matrix is
independent of Ug.

(iid) Zn consists of the (s - 1) elements in % whose covariance matrix
is independent of cz.

(iv) %AB consists of the (r - 1)(s -~ 1) elements in % whose covariance

matrix is independent of oi and céo



T Py - _Z - = ~‘
Lemma 3: E%A mB F%AB 8]

Proof: "}13 follows from the fact that P is orthogonal with a first
row which is (rs)’ 2(1360.,1) ]

We have
2 2 2

L (Z = I ;

P s oyt Lyt o,
2 2 2

z (z = r

P2 =r Iy oy tIoy o K0,

and 1 (z. ) =1 o + K 02,
n ~AB A{r-1)(s-1) B 3

Here K., K, and Kﬂ are the corresponding submatrices of P K P'.
Ak’ A2 N

7 and Z will be used for testing hypotheses
/O £l

In what Follows3 Zys 2

concerning o, /c s O /c » and g,

2 2
2. 5
a Test for OAB/C

2 2
z A = .
L (%AB) may be written as ‘I(r 1)(s-1) bup t 53)0 , vhere 4 GAB/O
Then
-1 . 2
(2.8) Qup = Zap (Tr1y(e-1) Pap + K) 7 Bpp/o

has a x? -distribution with (r-1){s-1) degrees of freedom. There exists an

orthogonal matrix A such that A K, A" = D. is a diagonal matrix. Introduce
" N NS A m%
= A ° i i ce i Z
Zpg = A Zppe The covariance matrix for Z,. is (I(“—l)(s 1) gt D,) and
-1 -1 %
( ) 7 =
LoD 2 T 590 Zap T By sm) Sam P00 Zam
(r-1)(s-1) . 5
= jil (Z jAB) /(AAB + dj).

Here dl’“”’d(r~l)(s—l) are the diagonal elements of Rl We see that QAB
is a decreasing function of AAB‘
- 2
Define Q = L {yijk T Yiy )2. Then Q/¢” has a X2—distribution with

1,3,k
(n-rs) degrees of freedom. Q is stochastically independent of QAB' Thus

F(4,.) = (n-rs) QAE/(r—l)(s—l) Q has an F-distribution. Since QAB decreases

AB

. A A . . L
with &, 0. F( AB) decreases with 4

in the usual way.

AB° Hence a confidence interval can be obtained
I,



When testing the hypothesis

<
A - 1 A A
AR AO against /AB > "

we reject when F(AO) is larger than the upper a-quantile, fl-a’ of the corre-

sponding F-distribution. The powzr function is

R
B(4,5) = P{(n-rs) { : QMB/@O + di)J/ [(e-1)(s-1) @] > £, _}
( :____ E
[n h
= Ploors) | B (g 4 a Ry/(G + di)J/[(r—l)(s—l)] > £}

2
: e \ ~-dis e h
where Rl’ ’R(r-l)(s—l) are independent X“~-distributed random variables wit

e ( case i A .
1 degree of freedom, B‘AAB) decreases with A

f;
2.b. Test for gi/c“ assuming Opp = 0

Z
. . A
= 0 the covariance matrix for }% - is equal to

~AB
[k K ]
L %ql 9

di . (¢] b

. . . K, K. | &
» %%(r~l) 8» is positive semi-definite, and q4al Ahp is
0

9B

]
J

Iir-1)

N

+

e ™
{ «.?DN
e
g
]
/ om Y
co
CO 2o
A
Q
o2

-

where E{Z, 7' } = «
n

WA VAB 0 K K

Wy o/ '\;L" ’\,3
positive definite, sc we can find a non-singular matrix H such that

H 51 541 H' = . and H Jg %(r—l} g HT = X = diag{A,,...,A s Oseee,0)e
n n N n v 1 r~1
K, K 0 0
b A3 N v
4 2,2 -1 2
J :Jm = = ur(aa U
Define i A {;A f o, oA/o > Q= mA(i At I -1)) NA/o
) mAB EPAB
has a X°-distribution with (r-1) degrecs of freedom, and QAB (r “1)(s- l) /c

2 .. . . .
has a X" -distribution with (r-1)(s-1) degrees of freedom. QA’ QAB and Q are
stochastically independent.

. < - -
To test the hypothesis AF - AO against AA > AO’ we reject when

(2.5) G(AA) = QA{(n—rS) + (r-1)(s~1)}/(Q + QAB)(r-l)

is larger than the upper a-quantile, f, e of the corresponding F-distribution.
1-



In the same way as above it may be proved that the test is unbiased.

.. . . 2,2
A similar test exists concerning cB/G .

A - . " 2,2 . .
3. On the possibility of testing hypotheses concerning UA/G without assuming

T4 7 O

In balanced experimental design models we know that

(r=1)(s=1)23 s T 1fn +I’ r-1) 75 D7 2y B (Tero1)(s-1) AB+K3° )™ ZaB
(3.1)

e _ 2 ,

= -1 (smDZAST 1300 + Lo yybag ¥ KT £/ (1) BT 0, 130" o

is F-distributed. This is not always the case in unbalanced models because

%A and Z,  may not be stochastically independent. Let us now assume that %A

VAB
and %AB a r e stochastically independent (this may happen even in an
unbalanced model). Define two orthogonal matrices Ml and %q such that
<
!z 2 M, § T =L i nal. S} 4 1G = .
NiAaRn TRy and N Kg My 7 Lo ave dlagomal. Let ¥, =My 7, and ¥pp =M, Zap

Then (3.1) may be written as

[ T e
(3.2)  {r-1)(s-1)} o V; /(sA AAB +zli)£/{(r-l jil VjAB/)AAB + 22)

where El. and lQi are the diagonal elements of L, and L The quantity in (3.2)
- ’\J

has an F-distribution, but the assumption that Aﬁ and ZAB are stochastically
gt Y

independent is not sufficient to give a test for the hypothesis AA - AO against
Ao > A
A 0

In cases where

(3.3) 45 F Q?j = & for all i and j, formula (3.2) is reduced to
r-1 , (r-1)(s-1) ,
A 2)(r-1)(s- V2 /(p- ‘ )
(8,5 + 2)(r-1)(s l).z Ui/ (e-1)(sby + B0+ R) R ViaB
i=l . j=1
r-1
If the null hypothesis is A, = 0, we have that g(Ap) = (s=1)(r-1) L Vi, /
{(r-1)(s-1) 5 ' i=1
(r-1) z VjAB is F-distributed under the null hypothesis. Hence we
j=1 )

reject if g(0) is larger than the upper o-quantile of the corresponding F-
distribution.

In the case r = s = 2 assumption (3.2) is always fullfilled.



4. Comparison with corresponding tests in fixed effects models

A two-way layout in fixed effects models may be described as
... T Mt A, Bt Y., toe.. s
yljk A | Ylj ijk?

1= 1,2,00.5v3 3 =2 1,2,000,83 k=1,2,.0.,0.., Whereu a,., B., and v.. are
13 s 1 ] 1]
unknown constants such that

(4.1) § a, = § B, = Z y.. = § Y.. = 0,
1

and the eijk have a joint normal distribution with mean 0 and covariance matrix

2 v
I_o.
by !

The null hypothesis Yig = 0 {i=1,2,00e,r3 3 ==1,2,...,8) is tested

. - - - 2

by minimizing the sum of squares Q = I (y.,. - u=-o0o, - 8. - v,.)" under
1,9,k ijk 1 3 ij
E] b

the null hypothesis and under the a priori specificaticns. Let the two minima of

Q be Qm and Qq, respectively. The null hypothesis is rejected when
- —_ -1)(g-
(#.2)  (Q, - Q) (n-rs)/Q,(r-1)(s-1)

is larger than the upper w-quantile f _a °F the corresponding F-distribution.

1
We will prove that the auantity in (4.2) is equal to the test-statistic

F(0) in section 2a.

If as in section 2 we introduce § we have that
- - [a¥)
: H BT
4.3 = 4. . I / .
(4.3) y Jps Wt By ; + B, 4t tIvte
N 8 ! v N
] Cs) g

The only difference from the random effects model (2.4) is that oy ng and
Yij here are fixed constants with the side conditions (4.1). We write the

side conditions in the form

r-1 s-1
o = - I a.s B =~ L B.',
S £ B j=i
s-1 r-1
Vig 570 Yiss Vs Tk vis
is 321 ij r] 521 1
r-1  s-1
and Y . = z Looy..
S TR £ A

The (#.3) takes the form

u
(4.5) y =2 9V.F + e,
v n 3 v
" v N
LR

),
n



1. g% - . Y = T,
1ot B T (BB ) Y E ey (6010

Z is a quadratic, non-singular (rs X rs)-matrix and é is normally distributed

®
where o = (o
n

- 3 - . . f\, -
with mean 8 and covariance matrix 502, with K given as above (2.3). (It is
possible to write (4.1) in several other ways. This will lead to formally

different Z matrices, and formally different %x, Ex and xx in (4.5)). Define

V = K-% Y. Then . ~
4Y v

ee

_1
(4.6) V=K 2z 4 g2 + + ",
n Ny

VIR

® . . . . . . 2
where e” is normally distributed with mean 0 and covariance matrix IPSG .
v n n

The form (4.6) is very convenient because to minimize Q is equivalent
to minimize (X - EX)‘(X - E{). This is seen as follows: With the side

conditions (4.4) on the parameters, Q may be written

5 r-1 s-1 )2
Q= I (yiup =¥:2 )+ I T n,.(y..-w-a. -B,=-v..) +
1,5,k ijk ij. i=1 31 ij7ij . 3 ij

s-1 r-1 r-1 5

L nr’(yr’ - u+ I a, = B. + L yi.) +
jz1 T3 T i=1 I Y

(4.7)

r-1 s-1 s-1 5

Z n,(y, -uw=-oa.+ I B.+ L vy..) +

jz1 is7is i 521 3 521 ij

r-1 s-1 s-1 r-1 s-. 9

n_(y -4+ I a,+ Z B,+ I B,- I L vy..)

rs “rs. j=1 1L 521 i 521 3 i=1 §=1 ij

The part of Q which depends on the parameters, equals

(4.8) Q = (V - EV)'(V - EV).
P N n N N

)2,

The minimum of Q is then equal to the minimum of Q_ plus 2 (y:-ij - y{j
i,j,k e
Define QPQ and pr as the minima of QP under the a priori specifications and

under the null hypothesis, respectively. We then have

Lemma 4: Qw - QQ = pr - QPQ.
The a priori specifications are (4.4), and the null hypothesis is

Yij =0 (1=1,25000,r=13 § = 1,2,...,8-1)



10

From the general theory for linear models we know that

rpl (x )~l R

(+.9) Q- Qg, =Y
Pw ;.DQ v \J ’-\4J~
AR, . ~ 3 . .
where vy is the least squares estimate for Y s and Eu is the covariance =~
" - BV
matrix for x'p U
The least squares estimate for *%x7 is
®
B
Y
=
¥
Y
AR
a
43%L = (70 K_%K%Z)—lZK%V,
n, I VR Ny
'\‘(

which reduces to

'l 3
u
X
y
v L - Z"'l -
‘éX' = Ve
Y Y
Y v
AX
L.Y J

. . . . . . - 2
The covariance matrix for this estimator is L = (Z! K Z) 1 g .
n, / AV

v

By introducing the transformation Eﬁ where g is the orthogonal matrix
with which the cell mean values were transformed in the corresponding random
_QpQ
% %
of Z, o&°, B , and v° and that (Q ) = Q,p When A

’\; v Y] '\1

effect modcl we will now prove thqt Q is independent of the choice

AR 0, where QAB 13

defined as in section 2.
The following lemma is usefull:
Lemma 5: Partition Z into submatrices corresponding to the
partitioning (u, &, 8%, ¥°)'. Thus
Y Y

-

7= g Z(rs x (r-1)) 7 (rs x (s-1)) o (rs x (pr-1)(s-1)
~ s’ v > X2 > a3 ’
Partition P likewise into
N N
P(lxrs)
ALr-1)xrs)
p i
P - 4 NQ((S_l)er) i t>
ny

23((s-1)(r-1)xrs

Ru




and P A,
n, Z
lemma 3,

¥
o By B

?
Py B B

For any choice of

(i} The rows of

Z
o
%
N
(ii) The rows of P
P
]

(iii) The rows of

w

11

7, we then have:

y are orthogonal

. arec orthogonal to the columns in %2,
£

are orthogonal to the columns in Zl'

to the columns in Z. and Z o

nl

(o1

sI O
AS A
0 0
NN

rl(s-1)(s-1)"

-1)(s-1)*(r-1)(s-1)"

Proof: By section 2 we can find a matrix P such that E él
rI_ 0]
pi =J Br gg. By the partitioning of E introduced in the proof of
v L~
i P = T pf = B! P! =
BB sk sl lene,
P} s RY P!t P! =
2T Re-neE-1* B3 B BT T Qe-ns-1)c k3 B2 B2 K
L , ar =0
BT 1) (s (e-1) (1) 4 By By By B3 % Dw
It is always possible to find matrices A, B, C such that
ox1 .(rx(r—l)) 2 ((r=1)x1)
~ ~ ’
gsx1 (Sx(S'l)) g % ((s-1)x1)
;(rsxl) _’C(roX(r -1)(s-1) x(r—l)(s—l)xl)
Y] Y ’\/

Formula (2.4) may now be written

B
B, A A and

columns in B, A are llncar comblnatlons of the columns in B

{Yb 8 C

rs

v

22 =i

Y(PSXl)

u+ B

1

®
A Q

AV VIRV

B, B equal Z and Z

N2 A
Il

in lemma 5, respectively, and C equals Z

+ B
"2

B
N

BK
"

+

C
uv

¥
Y
N

+

e Wi

1

., 80 that

3T

The

{(B ), where f(U) denotes the vector space spanned by the columns

in any matrix U.
V]

and thus

The rest of the lemma now follows by treating ?3 and Eu

Thus

Py Zg

Because P. J

PZ has the form

KAV

Pz =

= g, so the rows in P

— ) , T
n2 APS 53 LS
-
ﬁl irs 2
1 9 Dk
0 0
v V)
0 0
v} v}

£ ¢, (7
£(2,) c,é(gl) and %(2,)C

n2

=P
Y grs

O 20O

L3 2o

2O

J:
0(22).

s

Ra

P
A

0
N

iDy! =
Then since P.B,B'P 8, P8,

are orthogonal to the columns in %2,

2020202

P.B, =0
N

in a similar way. [ |

0. it follows by lemma 5 that
N

.




We then see that (P Z)-l also is a triangular matrix with zeroes to the left of

the diagonal. The {(r-1)(s-1) * {r-1){(s-1) submatrix in the lower, right hand

’__a

-1
corner of (P Z) = equals (P Zy )
Introduce P into the exnression for the least squares estimate and

Y I

its covariance matrix, we obtain:

A
U
Y
AR .
dJL sty tey
"%X ny &J N U Qx
e
\,\JJ
-1 -1 2 -l 2
and L = (%' K Z) o = (’3 7) PKER (E Z)’ . From what we found about
03 %)—15 it follows that the (r-1)(s-1) lower elements of (} %) R g are
K -1 et ., s
Y = (gu%%3) Eq % and the co“respondlng part of the covariance matrix is
—.L - L Pl . - s o . - ( - _ -
(gu 2.0 7 (RKXP), (B, 2,0 ", where (F K P'), is the ((r-1)(s-1) + (r-1)(s-1)

submatrix in the lower rlght hand corner og P K P'. (%4.3) may then be written

in the form

s 2
t ¥ ' 7 1 ) P Y
f Py By %) (Eu 2! R KR, (Pu TR %4) o
(4.10) = §° P! (P K P TP T o7
v AT A TH Al u
This quadratic form is independent of Zl %Xj EX and yx, and is the same as
vl T
i Y = 0. SYels = ] v . S}
QAB in (2.4) when AAB 0, because %XB Py, é and K (g 5 E )4 We have then
proved that {(n-rs)(Q, - Qu)/Q{r-1)(s-1) = F(0).

5. The test statistics expressed by the original observations

Lemma 6: With the choice of % made in section 4, the least squares
. b xR ~ ~ % Ry 1
estimates for (u, &, E Y Y ape | = y..,.,{oai}ﬂyi”--y“.}9 {g"} = {y.j. -y 1,

© o0

and {Yijx} = {yija " Vi, TV, + y,,.}° (i =2 1,2,00e,0-13 3§ = 1,2,.000,5-1),

Proof: If we insert y, fof it (67} end {w } for w, {o;}, {B }
and{Yij} in {4.7), Q reduces to _ b (]ijk - V.. )2 []:

i1,9.% e
<
When testing the null hypothesis AAB - 0 against AAB> 0, we reject when
~t . A
(5.1) (m-rs) V¥ GO VY T (g -y 07 (em1)(s-1)
v 133,k o T

is larger than the upper -quantile of the corresponding F-distribution. This
test is the same as the one suggested by Spigtvoll (1968).
It should be noted that the test statistic reduces to the usual one

when the model 1s balanved,



References

lll Graybill, F. and Hultquist, R. A. (1961): Theorems Concerning Eisenharts

Model II. Ann.Math.Statist. 32, 261-269.

|2| Herbach, H. (1959): Properties of Model II-Type Analysis of Variance
Tests, A: Optimum Nature of the F-Test for Model II in Balanced

Case. Ann.Math.Statist. gg, 939-959.

|3] Scheffé, H. (1959): The Analysis of Variance. Wiley, New York.

m Spigtvoll, E. (1968): Confidence Intervals and Tests for Variance Ratics
in Unbalanced Variance Components Models. Review of Int.Statist.Iust.,

37-42,




	Frontpage/Contents
	1. Introduction and summary
	2. Modification of the model of Graybill and Hullquist
	3. On the possibility or testing hypotheses concerning Q2A, /Q2 without assuming QAB=0
	4. Comparison with corresponding tests in fixed effects models
	5. The test statistics expressed by the original observations
	References

