


1. Introduction and summary

Many phenomena studied in the social sciences and clsewhere are complexes
of more or less independent characteristics which develop simultaneously. Such
phenomena may often be realistically described by time-continuous denumerable
Markov processes. In order to definc such a model which will take care of
all the relevant a priori information, there ought to be a way of defining
a Markov process as a vector of components representing the various charac-
teristics constituting the phencmenon such that the dependences between the
characteristics are represented by explicit requirements on the Markov process,
preferably on its infinitesimal generator.

In this paper a stochastic proccss is defined to be composable if, from
a probabilistic point of view, it may bc regarded as a vector of distinct sub-
processes.

In a composable Markov process the concept of force indenpendence between
its components is defined as restrictions on the infinitesimal generator.

The paper gives a set of theorems on the relations between the concepts of

force independence and stochastic independence.

2. Composable processes

§ 2A. Let Y = Y(t) be a stochastic process with real time T and an
%
at most denumerable state space E. fssume that there are p =) spaces
Ei; i=l,...,p; such that the number of cluments of each space at least equals
D

2, and that there exists a one-to-one mapping £ of E on to X E..
ML (&) l
i=l

Definition: The process Y is a cowposable process with components
Yl""’Yn given by f(Y(t)) = (Yl(t3,,.,,Y (t)) if and only if for each

ACZ{l,Q,:..,p} with at least 2 elemonis,

o

s

N R P
1im 3 P{ ¥, (t+h) Py .l vy =y,
h¥0 = iea = 7 *

whenever y;€ Bi; i=l,...,p; and t& T.

In other words: Y is a composab! @ process with components Yi; izl,...,P3
if the probability that more than onc component changes value during a period of
length h, is of magnitude o(h). If this is the case, we write

Y ).

Y ~ (Yl,..., b



§ 2B. The compositioning of ¥ « (Ylﬁ...s‘z'D is not necessarily unique.
< N C .
If p > 2 let Al,...,Ar; 2 - r <p, be e partitioning of {l,...,p}, i.e.
‘ r

if i ¥ § then Aiﬂ Aj =0, A F 0 fori=1l,..,r, and U4, = {1,....0}.

1 1=1
We can then define E', = X Bi aud #' es the one~to-one mapping of E on
> A
r 1€ 4.
¢ s .J L
_XlEi induced by f. In this case ¢ consequently hava
] =

Y (Y.,...,Yp) e (Yiﬁ "3Yf)

where (Yi(x),...,Y;(X)) = FY(X)).

§ 2C, IfyY™n (Yl

forces of transition ux(y;yF) cvist, then M (ysy7) equals zero if y and y°
D

seee,Y ) ic & composable Markew process such that all
" L

differ on more than one component. v  y' & X E This is an immediate

i=1 1
consequence of the following definiiion of the forces of transition:
1

hP{Y(x+h) =y |Y(x) = yl.

u, (y3y") = lim
x h+0

3. TForce independence

§ 3A. Let Y be a composable llarkov processz with finite state space.
We shall call Y a CFMP (Composable Tinite Markov Process) if for all y.y' & E
such that y % y' the force of transition ux(y;y?) exists and is a continuous
and bounded function of x on any closed interval in T.

A CFMP Y has a normal iransition-probability th(y,y') = P{Y(x+t) =

yiY(x) =y}, i.e. lim th(y,y‘) cquals O or 1 according as y and y' are
t+0
different or equal. In this case the total force of transition ﬁx(y) =

Looudy,yt) = lim-i(l - P (y,y)} ‘s a continuous and bounded function of t.
y‘:}y ty0 t xt

§ 3B, Let Y v (Ylﬁa,nYﬁ) he & CFMP, According to § 2C only those
u>$y;y?) differ from 0 for whiclh y and y' are equal in all but one component,

say the r-th. In order to suppress <uperfluous argumcnts, we let
r ;
He(ysy ") = v (ysy))

where y! is the r-th component of y*.
r



Definition: The component Y is force indcpendent of the component Yr

9

if and only if Y%(y;y&) is a constant function of the »-th ccmponent Y., of y

forall x €T, y"€ E and y.€ ., i * r,
q q i L

The relation ‘force independent of ¥ is neither symmetric, reflexive, nor

transitive.

Yj Wi.Ll be said to be force de pg_vdent on V(“ when it is not force
inde endent of Y . When Y. is force -ependent on exacily Y. eossY. 1T
r H] 1T

q :‘ ll . L

S

is convenient to write

~
"

9 \]( oxy ? )
- A y. ,ana)y: -,_j]_
J X l_]_ K

§ 3C. We shall elucidat¢ the relation betwcen force independence

and stochastic independence by proving some theorcems.

Theorem 1. Let Y ™ (Yngq) Lioa CFMP. I Yy is force independent

of Y,, then {Yl(X)} is a Farkov proccos with forces of transition %i(yl;yi).

- C ] —arn L . ..
Proof. Assume that |[x x| T 7. Let N be the number of transitions
:;\,

. 0 0 0 . I ; . . . .. 0
in [x %], let Y = Y(x), let ¥ be “1- time of the k-th transition after X

k . . .
and let Y be the value of ¥ immedictoly after the k-th transition. Let

(Q;*gP) be the probability space in whiclh the process ¥ is defined. On the

basis of (Qﬂ* P) we can construct a probability space (U5%,Q) for the random
, 122 i

varisgbhle W = (Y N X T,Y X",V . ﬂé;x’_x }, with a natuwral o-finite measurc

o over (ﬂtgﬂ constructed by means of the counting measure and lebesque measure.
(See Albert, 1962, p. 73L. Since our process does not have staticnary
transition probabilities, W differs (incssentially) fron the space Albert
constructs, )

The points w of {{/have the form w = (y ,1,x .v .X .y ,..,,beyn)
where yas_ E; yi # yi+l; i=l, ... 0 1G< Xl < L.t < X, 1 Zo.

Then a stochastic process Y i a Markov process with forces of
transition ut(y,y‘) fulfilling the vrepularity conditicns previously mentioned

if and only if Q is absolutely cortinucus with resnect to ¢ and the Radon-
a9 .

Hikodym derivative f = go is given by the formula
Qo
n xl P 3 "'l q = - n
fo(w) =p 0 T exp{-/ ut(y" ‘)gt}rxi(y* o) wm{- S ut(y Y}
= Y oi=1 i~ ’ P

e

where Py0 = Pr(Y0 =y ) =Py 2y = /% (The product [ is interprcted as

1 if n equals 0.)



If this is the case., U is Firite with probability i (Hoem, 1968)

and fq is a density.
Assume now that Y ~ (¥, Y.) iz & CFMP such vhat Yl is force independent
of YQ, By the definition of composability, a transition of the process is with

probability one either a transition oi Y, or of Y. Consequently, it 1is

.o . 5 TL,0 1ok L2 2 Ny Hy
s . i ] apriablos W o= Nooxk oy . 1 i
possible to define random variablce:s 1 (Yw, e l { o Yl ,Xl ’Yi ) and

J. N -i"‘
2 (Y2 N29xra"°9 20 Y_4) which arn he h«varlables connected with the

Yl and the Y2 process, respectivcaly. Both wl and ¥, arc measurable functions
~ . . . . KA 0 “
of W, in particular Nl + h2 =i, vy = (Yl,Yg)

. . _—. s ay 0 o s
W, 1is defined over the %-Tiniic measure spvace (df,ol:ﬁl) induced by
A

1
(%ﬁﬂ%c)ﬁ and has a probability measurc Q1 which is obviously absolutely continuous
. im is ‘o show that _ 4, .
with respect to Oy Our aim is o shou fQi EEI is given by
i
nj X . . X
1ol -1
£, () =po M exp{- f C Sarh, -<j y,) expi- J >l<y 1ydt},
Q VY i= KIS "1 : L

where Ai(yl) is the total force of iransition for Y, .

/
i € I, = } Thoen
Let A ESl(W v =n ). Then

Ql(A) = Q({wlwle.A}) = (w!i - fQ(w) og(dw).

By the force independcnce wie have for y = (yl,yz) the relation
at(y) = X%(yl) + §%(yl’y2)' Fubini s thecorem then gives

]

Ql(A) = f fQ(W) o (dir)

A*Wb
n..l. Xj: - T . . . . X b n

= [ I expi- /L gt st AR DL DU
pyo T exp -1 t(yl d+ [(}' vy, ) expl néi ,xt(yl )at

1 %)

3
n X X r2 _ .
fopo 1wl [ A an TRl iyl
W, 72 j=1 e s =L % i -

. 2 n
- - dw ()
cxp{ f Y. (Y )dt} O':.(L,V.Z ) G, ( H

X
i
n xl - l N -
1 ; A d-d .1 1 JA,.n
= f D. O .H' exp{— S zt(yl Y ‘”j( | ) C*D{“ S at(y )df} Gl(dwl)
& YL i=1 i-1 il <1
1 -1

= £, (w 3o, (du ),
A Li 1 R



(1)

We have written yi

for the value of Yj(xl) and p. o = P(Y,(xo) =y
12 Y 2

Let YV (Y. ,...,Y ) be a CFli¥¥ and let A be a noncmpty subset of
1 P

'{l,...,p}. Assume that Yj is force independent of Yk for each j € A and ke A,
If Yi is the vector containing'{inj € i} and Y% is the vector containing the res+t

of the components, then y %(YiSY;) is ¢ compositioning of Y such that Yi is

force independent of YE. In this case Yi is a Markov process which develops

independently of Yé.

Theorem 2. Let Y v (Yl’Y°) bc a CFMP. Then Y. is force independent

1
of Y, if and only if, for all £ > 0 and %, x + t& T, Y,(x) and Y,(x) arc

stochastically independent, given Y, ().
o+

Proof. Let yl,yié?El,yze;E95 #>0 and x, Xx + ©£€T. Assume that Yl is
force independent of Y,. Y. is then a Harkov process by theorem 1, and for
&

h €<0,t)> we have

1

R(y2) Pr(Yl(x+t) = y@le(x) = yl’Y2(X) = Y,)

1]

+t) = iy 4 =3 K4 : = Y = =

b Pr(Yl(x1N) yll*l(x+h) y) Pr(,l(x+h) y!-l(x) yl,YQ(x) y2)

yeE
1

z Pr(Yl(x+t) = yiiYi(x+h) = y) Ri(yl,y}h

vy,

+ Pr(Yl(x+t) = yf}Yl(;+h) =y )@ - l;(yl)h) + o(h)

Consequently

H

R(y2) lim Pr(Y. (x+%) = yiin(x+h) =y,)

he0 1 1

which is independent of Y, and this is cquivalent to the stochastic independence
of Yl(x+t) and Y2(x), given Y. (x).

Assume conversely that

) = (%) = v.. Y. (x) = = Y. (= = y! =
Pr(Yl(x+t) z yilYl\x) = ,1,1?\“) y2) Pr(fl(“+f) yllYl(x) yl).

For yi # y, we have by definition

yi(yl,yQ;yj'_) = lim %PP(Y (r0) = 1Y (x+0)= y |V, (k) = y) T,(x) = y,) =

0 1

. l - - > . s 102 ‘J_' - i - | 7 -
= lim :Pr(Yl(x+t)~yi Yl(x)nyl,YZ(x)my?) lim tPr(Yl(x+t)—yi>Y2(X+t)fy2;&l(x) =y

+40 © - 40 1

yYQ(x) = y2).



By the composability, the last werm eguals 0, and by the assumption above we

get

Y (yl’y2’yl) il if& TPI’”-(“‘) =yl G =y

vhich is independent of y,. [ ]

We shall now show that compicte mutual force independence of all

components is equivalent to their stochastic independence.

L""’Yp are stochasti-

cally independent Markov processcs if and only if cach component is force

Theorem 3. Let Y~ (Y¥,.....Y ) be a CFMP. Then Y.
e — J- [

independent of all the others.

]

Proof. Assume first that VW uc.,Yp are stochastically independent
Markov processes. Let Pj (y ,y :) be the transition probabilities of Y], and
let y; ,y e;E 3 1= l,...,p De Sugu vhat v # y and y =yt 3#q Finally, let

]
y = (y ,...5yp) and y' = (yl"'°”y£)' Jy the assumpflon.

D

2 S yi) = aint 1Pl (yoyD)
\X yl’ ’YP’ Yq E;Q t - vt y]Jyj
= lim % FET(yh,y‘) o 1im T ij(y .)
oo & 9T 40 55 373

which is independent of g for all itq since Pit(yi°yﬁ) tends to 1 as % tends
to 0.
Assume conversely complete muiual force indcpendence of the components

Y 9...,YP. By theorem 1 all YO arc liarkov processes with forces of transition

Ag(yq,ya) and corresponding transition probabilities P3+(yoﬂy;), These

transition probabilities determine a ncw set of transition probabilities

b
1 -
Pit(YSy ) - .I_l‘ Xt(y’: 3..':)
j=1

which belong to a CFMP Y' with stochastically independcnt components. Since
however, the two CFMP's Y' and Y have common forces of transition, they must
have identical transition probabiliiies and hence the iarkov processes Y. . Y

[EERRTLS
must be stochastically independent. | |

The following extention of thc theorem is obvious and needs no special

proof.



Corollary. Let Y v (Ylg...?Yﬁ) be a CFMP and let Al""’Ar be a

partitioning of {1,...,p}. Then the voctors Yj consisting of {Yili.e Aj};
j =1,...,r; are stochastically indecpendent Markov processes if and only if

Y. and Yk are mutually force indcpendent whenever j and k belong to different A-s.

Complete mutual force independence is not neccssary however, for some

components to be stochastically independent.

Theorem 4. If Y ~ (Yﬁ,Y25YQ) is CFMP such that both Y., and Y, are

1

force independent of YS’ then Yl and Y, are stochastically independent Markov

processes if and only if they are mutually force independent.
Proof. Let Y! = (YlaY?). Then Y ~ (Y',Y_) and Y' is force indcpendent

of Y. By theorem 1, Y' = (Yl’Y“) is a CFMP with forces of transition

l ks - T \
yx(yl,yQ;yi) = ux(y,y')L where v (yigyggySJ, and

2 0 0 4 0
Y (V1 3¥5375) = u (y,y ), where y° = (y),y,.5,).
The equivalence then follows from thcerem 3. []

By introducing the relation <« defined below . we obtain an intcresting

ordering of the components.

Definition: The binary rclation < betwezn components is defined as

follows:
(1) 1If Yj is force dependent on Y., then Yicfoj.

(ii) =< is transitive and reflcxive.

We shall say that Y, is a predecessor of Y. whenever Yke<ijo

k
By this concept we get the Ffollowing extension of theorem 4.

Corollary to theorem 4. Lot ¥ v (Yl,...gYD) be CFMP. If the components
Yr and YS have no common predecessors, then Yr and §s arc stochastically inde-
pendent random processes.

Proof. Define Ak = {i!Yi_<:Yk}’ Since o is reflexive, k € Ak' The
antecedent in the corollary is cquivalent to ANV A = J. Let now Y' be the
vector consisting of the components |
consisting of {Yiiié.As}. If + UL = {l,...,p} then 7 ~(Y?,Y") wherc Y' and Y*

arc mutually force independent by construction. Consequently Yr and Y_ are
<o



stochastically independent because - @and YV are. If however, A =

{1,...,p} - (ArU As) $ 0 then define Y'¢ to be the vector consisting of the
components'{YiliEIHu By our censtruction, we have YV (Y',¥" Y"") where Y' and
Y are both force independent: of Y"‘'. The corollary is now obtained by theorem

v, [

Note that Yr and YS need not be Markov processes, even if they have no

common predecessors. (See example L ¢f § 5 below.)

4, Conditional Markov processes

§ 4A. Starting with a CFI? it is sometimes possible to construct new
Markov processes by conditioning. Assume for example that Y %(Yl,YQ) is a
CFMP with time space T = [O => and writh the property that there exists a state 1

say in E, such that Pr(YQ(O) = 1) = L. Let (QJ@,P) be the canonical probability

2
space defining Y, (Dynkin, 1965, p. 85). i.e. every sample point w of Q represents
a unique sample path y(t,w) = (yl(t,w), v,(t,w)) with y,(0.w) = 1. Connect to
cach w in 0 a «' = g(w) which is the sample point recpresenting the terminating

sample path yl(t,w) = yx(t,wx);~t§_fr (/,)> where D(u") is the time of first

departure from state 1 for y.(t,x). S g(Q) is then a sample space to which
< Prs

there correspond a probability space (7 ,® ,P") where » may be taken as the

largest g-algebra such that g is mcasurable, and P p* = Pg—i. This probability

space determines a Markov process Y® with state spacc l’ time space [O o>,
terminal time D, forces of transition yf{yl,yi) = (y,,i vy *), and transition
probabilities

( = yi.v (E) = x<ESrt|Y (%) =y, ) =
th(yl,y ) = P(Yl\x+t) y,:Y,(8) = 1 for x<¢ *,Yl(x) yl,YZ(h) 1)

L

The truth of this is seen by elementary conditional probability.

n

§ 4B. Consider the probability P(Y™ (%) = y’fii Yx(xi) = yif}D>T) for
0<xl<... X <X<T, and y,yiéuEl< This probabi%ity safisiics the Markov condition
in the gense that for all O<Xl<"" :<n<r=;<~.g1 (Y (x) = I{”\ Y}(\ ) = yif\D>T)
= P(Y (%) = lex(xn)=ynf1D>r). These conditional probabilities therefore are
transition probabilities for a ilarkev prccess with timec space [O,f] and with
forces of transition v (y VA '). Ve shzil denote this process the conditional
Markov process, given Y2 = l. is will be seen in the examples below, this con-
ditional process may have & structurc which is much simpler and more informative

than the structure of the process fror which it is determined.



5. Examples

Example 1. Let us consider @ queuing model described by Khintchine (1960,
p. 82). Calls arrive in a telephone =central with R lines, Ll...,LR9 according
to a Poisson process with paramcicr .. The service pattern is as follows: If
at time X a call arrives and the lines L L2°""LP | are busy while Lk is free
(1£k<R), this call is transferred via Lk. If all R lines are busy, the call is
lost.

Assume thlat the conversation periods are stochastically independent with
a common exponential distribution with parameter 1, and that they are stochastically
independent of the incoming stream of calls.

Define the random variables

0 if Li is freec a2t time X,
Y.(x) =
i

1 if L. is busy : ime 5 i=1,...,R,

Obviously the stochastic process Y(x) = (Y, (x);..eﬁYR(x)) is a composable

2—3

finite Markov process with forces <f transition given by

"

¥

.< or ¥y ~ 0,
[i for y. = 1 and Vi = 9 and yj 1; 3=1,...,k-1,

iy

0
c

v>y; = 1 and Vi T Dand y, = C, or y, = 0,...

(yls“ ° ,YRaY )

i

1 for yi = 0 and ' =1,

Consequently Yk is force dependent on YJ_.,‘.,...,”‘J(]/D and force indcpendent

of Yk+l""’YR'
1 where an arrow from Yj to Yk indicatus that Yk is force dependent of Yju

When R = 4 we can draw a picture of this structure as in figure

71
Ed
v Fig. 1
2 YB | ig. 1.
\\4\’
For K<R we may define Y*' = (‘x.’1 ,...,Y ) and Y = (YK+1°""YP)'
Thus Y v (Y',Y") where Y' is force independent of Y. Consequently Y' is a

Markov process by theorem 1 - somethins which is also self-evident.
Khintchine (1960, p. £3) has shown that Y, is not a Markov process
despite the fact that both Y' = (Y. .7} and Y, are.

If R = » we get a composablc ilarkov process Y = <Y1’Y2”"' ) with an

infinity of components. (See § 5B.)



1

Example 2. Suppose that on: wishes to investigate the simultaneous

influence on mortality of the five diseases

Yl: chill

Y2: pneumonia

Y3: bronchitis

Yu: hypertoni

YS: angina pectoris

A person may have or be frece from each of these diseases. A live
person of age x is characterizcd by tlc vector (Yl(X)”"’YS(X))’ where Yi(x)
equals 1 or 0 according as he has or docs ncet have the i-th disease. If the
person dies at age T, we shall say that at age X>T he is characterized by the

vector
(Y, ()50, ¥ (xD) = (Y (1), 00,7 (1)),

which in fact gives his status at death.

By introducing the componcnt YG(X) which equals 1 or 0 according
as he is alive at age x or he hac died at an age Tgx, ve may give a complete
characterization of him by the vector (Yl(X)""’YG(X))

A person cannot recover from any disease nor get a new one at death.
It is further natural to assumc that ¢ person cannot simultaneously get two
diseases, nor can he recover from onc disease in the same instant as he gets
another.

Y = (Yl""’YG) ig then a composable stochastic process with the
finite state space E = _X_{p,qu

1=l -
We shall assume, possibly with some lack of realism, that Y is a Markov

process.
From the moment when Y first equals 0, no more transfers are possible.

Consequently Y Y. are force dependent on YG' Conversely mortality depends

l,ooo, 5

on the state of health, so Y. is forcc dependent on Y.,.G.GYS. Although we

)
will not give any guarantee of medical reaslism, it is probably reasonable to
assume that Yl is force independcnt of YQ,...,Y5; Y2 is force dependent on

YS is force dependent on Yl and Y? and

Y3, and YS; and

.
5

Yl and Y3 and independent of Y, , Y
independent of Yu, Y Y, is force independent of Y , Y

5; 2:‘
Y5 is force dependent on Y4 and forcc independent of Yl’ YQ, Yg.
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Figure 2 gives a picture of {his structure.

Fig. 2.

By a look at figure 2 we immediately see that for all i, j we have Y, .<1Y5.

Thus all components are stochastically dependent.
If we proceed as in § 4, however, and construct the conditional Markov

process Y, given that Y, = 1, Y = (?1,...,§5) is a CFMP with force dependence

6
structure as shown i figure 3.

|

=<

\M Fig. 3.

2 3 5

R IE

We see that the components Y = (Yl’ Y2,

mutually force independent, and conscquently stochastically independent Markov

YS) and Y© = (YM’YS) arc

processes.,

This illustrates a feature commen to many situations where CFMP models
are useful. The CFMP model describces the evelution for instance of a person,
an animal, a machine, or another individual or unit which may die or stop
functioning. One of the componcntz of the CFMP indicates whether the
individual (unit) is alive (funczioning) or dead (out of function). In this
way the rest of the components arc force dependent on this particular one, and
if the latter is force dependent on “ie others (which often is the case),
then all components are stochasticaily dependent. If, however, we construct
the conditional process described, @ more interesting force dependence structure
may be obtained. This structurc scems to correspond to our intuitive under-
standing of the relations between the phenomena under consideration. In fact,
we probably take intc account only what happens to the individual (or unit)
up to its death (or as long as it functions).

Returning to our examplc, lot us recomposc Y by letting Y' = (§l’§4’§5)’
YU o= (?2, ?a), and Y & (Y',Y")., Because Y is force independent of Y¥, Y! is a
(conditional) CFMP and since ?l is force independent of ?u and ?5, §l is a
Markov process. Y" need not, nowever, be a Markov process. If, on the other

hand, we had recomposed Y into Y ~ (YS, Yg) where Yg = (Y ?5) and Yg = (Y,,Y

1’ 2273
. 0 0 , . R
then neither Yl nor Y2 need be Markov processes. The rcason is that ncither

7,)

3



Lo

0 0
Yi nor Y2
in figure 3.

consists of components from the top of the force dependence tree

This example throws some further light upon liarkov process medels
in general. Let, in fact, a complicated phenomenon be described by a CFMP.
This CFMP may be difficult to handlc as it has too many components. The
following question then arises: Is it possible to take under investigation
only some part of the phenomenon which posses its main fcatures ? Restating
this question in terms of the componcnts of the CFMP Y v (Yl""’

ask whether it is possible to rccompese Y into (Y7.Y")., where Y' = (Yi 5""Yi )
1 Q

Y ), we ma
D y

describes these main features and where Y' is not too complicated for
investigation ? If investigation means estimation of the probability structure
of the random process Y', this may be difficult unless Y' is a Markov process.
A reasonable requirement for the decompositioning of Y is therefore that Y°

be such a process. If we know the force dependence structure of the process

Y, we may draw a(mental or actual) picture of the “force dependence tree’ as
we have done in figures 1 to 3. Trom theorem 1 we then know that a set of
components Yi ,...,Yi forming a top” of this trec, if any, constitute a

component Y' = (Yi seees¥s ) which is a Markov process.
1 q

We shall call such a componcnc Markovian. A Markovian component of

a CFMP Y ~ (Yl""’Yp) is then by definition a component Y' = (Y'-"'°’Yi )
: L q

[

such that for all k; q<ks<p, Yik is not & predecessor of any of the ccompenents

Yi ""’Yi . Alternatively, if Y ™ (Y',Y") is a CFMP, then Y' is a Markovian
q
component if Y' is force independent of Y',
The question asked above may then be answered by looking through the

possible Markovian components of Y and judging them with respect to complexity

and adequacy.

6. Extension to a denumerable statc space

§ 6A. In the preceding accoun® we have considered Markov processes
with a finite state space only. The theorems in & 3 are still valid however
if we write CMP for CFMP everywhere, and let CMP stand for "'Composable
Markov Process’. We define the latter concept by letting a Markov process
wit a denumerable state space be a Ci'P if it is a composable process, and if
all total forces of transition ;X(y) ac well as all forces of transition
ux(y,yV) exist and are uniformly boundcd continuous functions of x where

p(y) = T u(y,y') holds.
X P X
y'eE
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§ 6B. Let us extend the concept of composability to the case of a de-
numerable set of components. L2t Y be a random process with infinite
denumerable state space. We shail call Y infinitely composable if for every
integer n, Y may be composed intc Y ~ (Yl,...,Yn).

By this definition, the process of example 1 with R = « may naturally

be regarded as an infinitely composablc Markov process.
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