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. Introduc -tion and s -marar..f

Consider a time-continuous Markov chain with a finite or countable

state space I and with time-dependent transition probabilities (Feller, 1957,

Chapter XVII.9). Assume that a number of independent sample paths of the chain

are observed over a period L-0,X] with a view to statistical analysis of parameters

of the process. One may sometimes like to remove such sample paths as end up in

some closed subset R of the states in I by time x before carrying out the

statistical analysis. We shall show that, on certain general conditions, the

remaining paths may be regarded as realizations of a new Markov chain over the

state space K=I-R, which we shall call the ;urged chain. By comparison to a

corresponding karLtial Markov chain, which we will define, we shall see that the

forces of transition of the purged chain generally differ from those of the

original one. If the original chain is time-homogeneous, the purged one need

not be so.

. Blanket assumtkns

If a sample path is in state i at time s, let P1 (st) be the probability

that it will be in state j at time t>s. Let P. (s,t) = E P..(s,t) for ALI.
jiA 13

The follcwillg asoumptions will be adopted to hold throughout the paper.

Assumption 1: Fcr all i and jEI,

P. (s,t):';),ij 

lim P. .(t) a P.J (C,S) 	 6ijI
t+s 13

< 	 <
for 0=s<tr-x,

for any sK(4,x>,

andPij ( 	 Paks,u) = E . (s,t)
kj

(t,u) 	 for 0=s<t<u=x.
kEI

Assu1pj4o .A . 2: To every pair (i ,j) of states where ifj there corresponds

a time-dependent fol-ce of tranlition

(1) 	 11..(s) 4= lim 2..(s,t)/(t-s) < co for sED,x>.
3.3	 t+s 13

Assumption 3: To every state i there corresponds a time-dependent total

force of decrement
-

(2) P .(s) = lim {l-P..(s,t)}/(t-s) < 	 for s	 ,x>i 	
t+s 	 11

(3) 	 where.	Pi(
0 	 E 	 11 2 .(s).

jEI-1. -L3



Wepermitthepossibilityp..(04c0(or.(s)400) as stx for some state

i and some JO-
Let K and R be defined as in 1, let H be the set of states in K from

which R cannot be reached,and let J=K-H. Of course H may be empty. Otherwise

H is closed. If HO, we shall assume that also JO to avoid trivialities.
We wish to avoid that all sample paths end up in R by time x with prob-

ability 1. We also want to secure that some paths starting in K may enter R.

We therefore make

AT5:231Lin4: For any ftK and sED,x>, P.
K (s ' x)>0. There exists 

an
a. 

I.EK and an slo,x> such that P. 	 '(s x)<I.

21_21,122_1211ids2ELLI

If all sample paths ending in R within time x are mmoved from the data,

the remaining paths have transition probabilities

(4) Qii(s,t,x) = P1 (st) PiK(t,x)/PiK(s,x)

for all j4.K, jEK, 0.5zs<tx. Specifically

Pii (s,t)/PiK(s,x) 	 for iEJ,
(5) Q..(s,t,x)

iP..(s,t) 	 for iEH, jeK.

It is easily proved that the Q..(s,t,x) satisfy conditions similar to those in

assumption I with I replaced by K provided the following assumption holds:

Assumption 5 : For any given jEK,
PjK(

 .,x) is continuous from the right

in

Under this assumption, forces of transition satisfy

(6) X..(s,x) = lim Q..(s,t,x)/(t-s)2.3
t+s

= 1.1..(s) PjK(s,x)/PiK(s,x) for 
ifi, iEK, jEK, 0=s<x.

As in (5), this formula simplifies somewhat for i€J, jEH, and for ieH, jOK.

For each W.1 a total force of decrement (relative to the Qj s ,t ,x ) )
i

exists and equals pi(s). (Cf. the second member of (5).) To prove the existence

of a finite total force of decrement satisfying a relation similar to (3) in the

purged process for an iEJ, more restrictive conditions seem necessary. Specifically,

if K is finite,

(7) Xi(s,x) = limfl-Q..(s,t,x)1/(t-s) = E X 4 .(s,x)
t+s 	 jEK-i 4'

12.
3

for all iEK.

ObUously the sample paths removed from the data can be given a similar
treatment.
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A third Markov chain can be derived from the original one in the following

way.

R is removed from the state space, which is thereby reduced to K. For

each j.K, jER, the function p..(.) is substituted by O. We make

Amml.g.E1_6: From the remaining forces of transition p..(.) with i and
13

j-EK a Markov chain with state space K can be uniquely constructed.

We shall call this the partial chain corresponding to K. Its transition

probabilities, will be designated Pi ( st). These functions constitute a

generalization of the partial probabilities of multiple decrement theory (Du

Pasquier, 1913; Hoem, 1968a). (Other names for the same concept are 'independent

probabilities" (Zwinggi, 1945), "absolute probabilities" (Jordan, 1952), and

'net probabilities" or "partial crude probabilities (Chiang, 1961). Correspondingly

the P1 (st) are called "influenced probabilities'(Sverdrup, 1961), "dependent

probabilities" (Zwinggi, 1945; Jordan, 1952), or "crude probabilities' (Chiang,

1961).)

It has some interest to compare the purged and the partial Markov chain.

Both are derived from the original chain, and both have state space K, but their

transition probabilities will generally be different. By (6) and assumption 6

the purged and the partial process are identical if and only if P iK(.,x) is

independent of i for iEK. In that case H must be empty, since otherwise

A..(s,x)	 p..13(s)/P.11( (s x) > p..(s) for some i&J, jEH, s401,x>, by assumption 4.13
It is intuitively plausible that the two processes may be indentical

if the p..(s) are independent of i for iEK, jR. We prove

Theorem 1: Let K be finite and assume that for each j1Z there exists a

functiorlYJ.)over[0,x>suchthatti.J.)=(.) for all iEK. Let R 	yy = E .,
1] J

	

.3	
jeRand assume that yR(o) is continuous in[0,x>. Then

(8)s,t) = exiof-f y ( T)d -r1P iK( 0 R

for all iEK, 0=s<t<x.

Proof: The Kolmogorov forward differential equation

aIri pij (s,t) 	 -pi ( t) pij (s,t) + E P. k (s,t	 .(t)
kEK 1 	 hik]

holds for iEK, j0<, 0 -f:s<t<x. Let p
kA

(t) = Z 'kj(t). Summation over all j

in K gives	 jA

a
t P.2.1( '( s t)	 E p.(t) P1 (st) ,t) + E P. s,t)pkK(t).

jEK
a

kOK
ik(
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Since 
Ilk1( = 

p
k
-p
kRk

-y
R 

we get

a piK(s,t) 	 -1R(t) PiK(s,t),

from which the theorem follows. 0

The partial probability ij
(s,t) need not have any interpretation at

all as a probability within the original process (Hoem, 1968a and b). In a

certain case this is different, however. Assume that the sample space has the

form I=MxN, where M is finite or countable, and where N={1,2,...,n} for some

positive integer na.:2. Let NN = . {1,2,...,n-1} and assume further that the forces

of transition have the form  

(1)..(s) for i,j01,a=f3N,'13
n. (s) for i = je4,aiN1 f3=a+1, and• la

0 	 otherwise.
p (i,a),(j4) (s)     

(An example has been given by Hoem (1968b, 3C).) We let P (

E p . 	(S t) and have
ON (1 ' a) ' (3 ' 5)

Theorem 2: Let cit(-.Nm and let R r:{(j,$):jeM,Pal. If the limit

0..(s) lim P(i "a) (ja) (s,t)/(t-s) exists uniformly in ikti, then
t+s 

P . 	 . 	 ts t) 	 P . 	 . 	 (s t).(1,a),(3,a) 	 (1,a),(3 ,N) 	 '

Proof: Let4 .(s) =7 E 
j
(s). Ay the assumptions of the theorem we have

jM

3 p
at ... (i0),(j,$) (s,t) 	 -P0.0),(i,a) (s,t) 4).(t) + E Pf

kEM-j ‘
4

j"" '`
( 1,

" Q

N(S,t) (Pki (t)
"

-P • 	 (s t)n. (t) + p . 	 . 	 (s t)n 	 (t)

	

(1,a),(3,13) ' 	 3$ 	 (1,a),(J'a-1) 	 j0-1.

for all 1.04, jEM, aEN, $EN, with suitable interpretations when 0=1 or f3=11.

Summation over all a in N gives

3 n
ae (i.0),(j,N) (S,t) L7. -P (i,a),(j,N) (S,t)4)4 (t) + E P • 	 (s t)(11. (t).

ke4
. (I"a) (k N) 	 kj

J 	-3 	 '

The theorem then follows from assumption 6. Ei
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5.  The time-homogeneous case

If the P . and the p 	
1

.. are independent of s and P..(s,s+t) = P..(t), we haveI 	 ij	 3	 ij

.(s,x) = p.. P. (x-s)/	 x-s),ij JK	 PiK (

which may genuinely depend on x-s. Even when the ori inal Markov chain is

time-homogeneous -deetedchainnld.etrt.

In this case, Qij (s,t,x) will depend on x-s and x-t, i.e. generally

not on t-s only.
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. Introduction and summary

§ 1A. In the analysis of nuptiality it may be fruitful to regard a

marriage as a contract established in a 'marriage market" in which there is a

demand for partners and a supply of partners. In many respects the two sexes

enter symmetrically into this market. Rather than analysing marriage formation

unisexual4, i.e. from the point of view of one sex only, a bisexual approach

therefore seems preferable.

§ 1B. In the present note we shall look into some of the basic concepts

relevant to such an approach. Our terminology will be quite similar to that

of birth-and-death processes. The most important concept introduced is a

function v..01,k), called "the propensity to marry" for the age group conbination

(i ,j), conditional upon a marriageable population with size paramters t and

We suggest that a bisexual theory of marriage formation be formulated in terms

of this concept.

§ IC. Yntema (1954) has studied models closely related to ours.

2. A simple bisexual  marriage-and-death process,

§ 2A. Consider first a closed population observed during a period

[0,Q. Since real life nuptiality varies with age, any reasonably realistic

nuptiality model would incorporate an age concept in some form. For our

purposes it suffices to partition the population into suitable age groups.

Departing slightly from common terminology, we define an age group in

the following way. We partition the marriageable age interval LK ,w>o
for males into intervals pc

0'
x
1
>,[2c x

2
>,
s'"

[x
I-1'

x
I
>, with x

I
=w, and

let [yo ,y1>,[y1 ,y2>,...,[yj-1 ,yj>with yj=w be corresponding intervals for the marri-

ageable femaiesSAs usual w is the highest possible live age.) The males who

at time zero have ages in the interval Ex :L..1 ,x > will be taken to constitute

"male age group I» throughout the period [0,0. At time t "male age group i"

will then obviously consist of males at ages in the interval

Similarly for the females. In this way any person will remain within the same

"age group" throughout the period of observation. This approach is well

adapted to cohort analysis, and it will ease our presentation.
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2B. Let us concentrate for the moment on the subpopulation consisting

of all bachelors in a certain age group i and spinsters in an age group j.

The number of marriages formed within this subpopulation during [9,0 depends

on a series of factors, such as the number of marriageable males and females

in other age groups and the number of previously married persons in male age

group i and female age group j. To get a fairly simple mathematical model,

however, we shall disregard for the moment all such factors except the number

M. of bachelors and the number K. of spinsters in the subpopulation considered,
3

their mortality, and their propensity to marry.

2C. As the period of observation progresses, the number of bachelors

in the subpopulation will decrease because some bachelors marry and others die.

Similarly for the spinsters. Let Mi (t) be the number of bachelors left in

the subpopulation at time .t, Let K.(t) be the similar number for the spinsters,

and let N..(t) be the number of marriages contracted within the subpopulation1,3
during the period [o,].

Weintroduceamaleforceofmortality.,a female force of mortality

Ii'
 and a "propensity to marry" v..(m,k). These will be defined as follows:

kM1 ett.A .0=m-10‹.(tfAt)=1‹, and 14. .ftfAt)=n114.(t)=m,K.(t)=k, and N(t)n}
3 	 3.]

=mp.At+o(At); (a male death).i

iP{11. 1,K.(ti-At)=k-1, and N..(ttAt)=n1M2(0=m,K.(t)=	 2.k, and N..(0=n)
3	 ]

=kY -At+o(At); (a female death).]

N14.(ti-AtY=TTI-1,KJti-W=k-1,andN..(t+At)r-nfllt4.(t)=m,K.(t)=k, and N.3. .(0=n)3

=v..(m,k)At+o(At); (a marriage).
13

The total probability for all other kinds of changes during <t,t+Atj is o(At)

when values for M.(t), K.(t), and N 1 (t)have been assigned. (As usual
3

o(At)/M+0 as At4.0.) Suppressing the indices i and j for the rest of this

paragraph, we let

P(t) = NM(t) = m, K(t) = k, and N(t) = nl,

P(t,x,y,z) = E P 1,,,(t) xm yk zn , and
m,k,n m" 4

Y(t,x,y,z) = E v(m,k)Pmkn (t)xmykzn .
m,k,n



Standard methods will then give the following relations:

d
dt n 	 r- 

'{mp+ky+v(m
'k)}Pmkn

(t) + (m+1)vPm+1,k,n (t)

+ (k+1)yPm,k+1,n(t) + v(m+1,k+1)Pm+1 ,k+1,n-l(t)' 	
(2.1)

a 	 a 	 a
= 	 + y(1-0W(t sx,y,z) 	 --1)y(tsx,y,z), (2.2)xy

litEM(t) = u EM(t)- d EN(t), LEK(t) = -y EK(t)- d EN(t),
dt 	 dt 	 dt

(2.3)
dand ITi-EN(t) = E v(m,k)P 	 (t).mkn

m,k in

The relations in (2.3) have an immediate interpretation in a deterministic

model.

§ 2D. Our assumptions of constant forces of mortality are reasonably

realistic provided r, is not too large. To specify  a set of values for v(m,k) 

for the various (m,k) is in fact to ive a theo of how seosle marry (in the

subpopulation under consideration). To establish such a theory must be one 

of the main ob'ectives of (bisexual) n tialit anal sis.

If such a specification were available, together with a specification

of the values of u and y, relations (2.1) and (2.3) would make it possible to find

the quantities EM(t), EK(t), EN(t), and P(t) for various (m,k,n,t) by

numerical methods, although this would in general be quite a task due to the fact

that there are four arguments in (2.1) (viz. m,k,n, and t).

If we wish to find closed mathematical formulae for EM(t), EN(t), etc.,

v(m,k) must be an exceedingly simple function of m and k,as is shown by the

following three examples.

§ 2E. Such a simple choice as v(m,k) min(m,k) v, where v is a
dparameter, is outside our reach as T and ---EN(t) will be too complicated fordt

serious treatment.

§ 2F. The choice v(m,k) = mkv makes (2.2) reduce to

a 	 a 	 „a 	 a
2

ii-P(t,x sy,z)	 1-1(1-0.57P(t,x,y,z) + ytl-yr—P(t,x,y,z)+N) (z-xv)---P(t,x,y,z), .0.4)3y 	 , 	 4 Dx3y.

which appears insoluble by known methods. The last relation in (2.3) becomes
d
--EN(t) =vE{M(t)K(t)}, which makes (2.3) equally insoluble.dt
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,§ 2G. In case v(m,k) = l(m+k)v, (2.3) may be solved to give

EM(t) = {M cosh(itK) 	 12c.1-yk+(1-y)li]sinh(tK)}e - 	 9

a similar expression for EK(t), and

EN(t )	 (m440{(ert...1)/r÷(eSt...1)/s1

1
-.0)/10{v (M+10+(A-y)(M-K)}4(ert-1)/r-(est-1)/s},4

where K rz vy +01-y)
2 

r = - i(v+p+y)+K, and s = 	 i(v+p+y)-K. In this case,

(2.2) reduces to an expression quite as forbidding as (2.4), and no closed

expression for P (t) has thus been found.

2H. These three choices for v(m,k) do not of course represent serious

attempts at formulating a theory of how people marry. We have presented them only

to give some indication of the mathematical difficulties involved.

21 SimaltilEnEL2,221ys isoitallagegrouRs

§ 3A. As we have already indicated, the model of chapter 2 has some

defects, the most immediate of which probably being the fact that it does not

take into consideration persons in age groups outside those on which interest

is focused. If bachelors and spinsters in the various age groups are regarded

as "goods" in a "marriage market", we have thus left out of account the

possibility of substitution between the various kinds of "goods". A more

realistic approach would consist in a simultaneous analysis of the nuptiality

of all age groups of bachelors and spinsters. (For ease of exposition we shall

disregard second and higher order marriages in chapter 3.)

§ 3B. Consider then our closed population with I age groups for

bachelorsandJagegroupsforspinsters,andlettheforces 
Pi 

and y. of
 3

mortality be defined as in chapter 2 along with the random variables M1(t), K.(t),
3

and N..(t), whose values M.0), 1‹.100), and Nii (0) = 0 are known. Leta.)	 i 	 1
!xl(t) = IM1 (t),...,MI (t)},let Ki (t) =. fKi (t),...,Kj (t)1, and let gl■IT,(t) be the

matrix (N..(0). Given that M(t) = m=011 ... m ) and K(t) = k=(k ...,k ),
,I13 	 , 	 «J 	1'	 , I 	 fl, 	 fx, 	 1 , 	J

let v1.(m 	 At,k)At+o() be the probability of observing a marriage between a

bachelor in age group i and a spinster in age group j during the period <t,t,+Ai].

We may call v..(m,k) the "propensity to marry" for the age group combination

(i,j), conditional upon the values (ml'...' m
I
) and (lc

l'
...,k

J
) for the random

vectors M(t) and K(t).
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To establish a theory for how bachelors and spinsters marry would then 

be to specify values for v..(m,k) for the various m,k,i, and j. Given such
	 13 A, A, 	 q, 

a theory, one would be interested in finding quantities liketheprobability

distribution and expected values of M(t), K(t), and 14(t).

§ 3C. One may always give some more or less vague general statement

of probable effects of changes in the arguments

If forinstancemi ">m.'andk.">k.' for all i and j, one would expect each
1 	 3

vii lf 	 v..(m",k " ) to be largerthan the corresponding vq,	 ij
simply because there are more marriageable people of both sexes in the larger

population.Similarlyi.f 1m.''=mi 'foralliwhileeachk." is considerably

larger, than the corresponding k.', one would again expect each vij to be
3

smallerthanthecorrespondingv ii ", because the marriageable men would have

greater difficulty in finding a wife in the smaller population.

These are scale effects. Substitution effects may be described

analogously:Ifm.'':m.'foreachiandk.''=k.' for each ifs, while
3

s ' 1 >k
s ', each v. would be larger than the corresponding v. ', while for

j+seachVinightactuallybesmallerthanthecorrespondingv ii l , because in

the smaller population many bachelors who might have married spinsters in age

group s, must shift their demand for a wife to other (female) age groups.

3D. Presumably a verbally formulated bisexual theory of marriage

formation would include These as well as subtler effects. In that case it

may be nice to have the aid of a precise concept like the function v..(m,k)
13 q,

when the theory is established.

Perhaps such a theory is all that we can expect. It would not be

sufficient, however, if a probabilistic characterization of 14;11,(t), Vt), and

N(t) is desired, as it would be e.g. in connection with a forecasting model.

This would require the specification of a functional form for v..(m,k). To
13 ix, q,

give such a specification seems quite a task. In addition it is probably

outside our reach to overcome the mathematical difficulties involved in the

further analysis of kl(t), ( t), and ki,(t). It has seemed worthwhile nevertheless

to give the formulation above so that we can seawhatthe analyst is up against.

§ 3E. The concepts of §. 313 invite a further interpretation of some
J 	 I

Let v. (m,k) .--. E v..(m,k), v (m k) .7.- E V. '(in1. 1, I, 	
j...71 13 q" 11' 	 .3 '1) 11.1 	i=1 13 (1' q)

(m,k), and s..(m,k) .7.: v..(m,k)/v •(m,k). Then
• ix, q, 	 13 ,‘, ,x, 	 13 q, A, 	 03 q, A,

v. (m,k)Atio,(At) is the probability of observing a marriage in <t,ttA -0 with1. q,

functions

r..(m,k)
13

of v..(m,k).
13 A, q,

v..(m,k)/v.
13 et, 	 1
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the bridegroom in age group i, given that M(t)1=m and K(t)=k. r..(m,k) is the
N 	 N 	 N 	 N 	 13 rt, ft,

probability that the bride belongs to age group j, given that such a marriage

has occurred and conditional on M(t)=m and K(t)=k. N.) .(m,k) and s..(m,k) have
N 	 N 	 N 	 N 	 .3 N N	 13 A, N

similar interpretations.

3F. An inspection of the argument in the present chapter shows that the

definition of an age group introduced in chapter 2 is not essential to the general

theory. If desired it may therefore be dropped in favour of the more common usage

of the term. (The results of chapter 2 build on our special definition.)

4. Extensions

In the previous chapter we consciously disregarded the fact that a person

who has been married, may return to the "marriage market" in seach of a new spouse

after dissolution of the marriage. (Such a return would at the same time

constitute an offer to supply a new "good" in substitution of a bachelor or a

spinster, as the case may be.) Introduction of such returns poses no real

difficulty for the concept formation. It is not essential to the theory that the

indices i and j refer to age groups, the main point is the distinction between

population groups with different mortality or nuptiality parameters. Thus i and

may be chosen to simultaneously represent age group and marital status. In

principle other dimensions, like social status, area of residence, etc., may be

incorporated similarly.

The restriction to a closed population is superfluous and may be removed.
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1. Introduction
0.111.11.01e..111.1.00111Oli.1•111111111■■••11111MMIWN••••••••••.1111.11.0

§ 1A. In the present paper a hierarchic time-continuous age- and

duration-dependent Markov process will be suggested as a nuptiality model.

In the model each person is characterized at each moment by age, marital status,

duration of current status, and number of marriages experienced.

We shall proceed as follows: The complete nuptiality model will be

presented in chapter 2. Various sections of the model will then be described

and discussed in chapters 3 to 5. In chapter 6 some further results on this

model will be listed. Finally chapter 7 contains a suggestion for modifications

of the model to comply with common data, as well as an indication of how

nuptiality and fertility could be studied simultaneously.

Estimation problems have been treated in previous papers (Hoem, 1968a

and b) and will not be considered here.

§. 1B. The model presented is unisexual, i.e. only one sex is explicitly

considered, except in one segment (marriage dissolution), where both sexes

enter symmetrically during part of the argument. For the most part it is not

necessary to specify which sex is considered, and we shall generally consider

'persons" without further qualification. It is then understood that this refers

to persons of a single but unspecified sex.

1C. In a unisexual model the opposite sex enters only indirectly

as a kind of shadow factor. In real life, however, the two sexes of course

play rather symmetric parts in the marriage process. It would therefore be

conceptually more satisfactory if this could be taken care of in the nuptiality

model as well 	 (Henry, 1959, pages 12-13). We have previously made an attempt

at investigating a bisexual model for marriage formation (Hoem, 1968c).

Unfortunately the technical difficulties involved proved insurmountable.

The bisexual approach led to "collective" treatment of the marriageable

population in the sense that all persons of the population were considered

simultaneously as interacting units. In contrast to this we shall now regard

the individual person (or in one segment the individual married couple) as a

unit operating independently of the other individuals in the population. Under

this approach many of the real problems met with in the bisexual theory are

glossed over in the hope that they may prove less important after all. In

return the mathematics involved are greatly facilitated, and we are actually

able to find a solution within the unisexual model to many questions which went

unanswered or even unasked in the bisexual theory.
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1D. Among the many previous authors who have studied similar problems

we may mention Winkler (1922), Wicksell (1931), Hyrenius (1948), Henry (1959,

1963), and Mertens (1965).

2. The complete nuptiality model _

2A. We classify the population by marital status and number of

marriages experienced in the following way:

Spinsters and bachelors will be said to be in state Mo . Persons in

their k-th marriage will similarly be classified as being in state Mk , for

k z 1,2,...,m. We will alow at most m marriages to a person, in the sense

that marriages after the m-th will not be registered. Of course m will be

chosen high enough to cover most marriages.

Persons divorced after their k-th marriage will be classified as in

state D
k' 

and widows and widowers after the k-th marriage are in state W
k'

for k 1,2,...,m. Persons who have reached Dm or Wm will be registered as

staying there until death or emigration.

Let A be any of the states defined so far. A persons who dies while

in state A will be said to move to a state DA. Similarly an emigration while

in state A will be reflected in a registered transition into a state EA. Once

a person has been registered as entering a state DA, he or she will obviously

"stay" there forever after. Transitions into a state EA will be treated in

the aame way. Thus all states DA and EA are absorbing. All other states are

transient.

Immigration into the population will be permitted, but will be determined

extraneously to the model. For ease of exposition and although this is not

always realistic immigrants will be assumed to have the same properties as

the natives, and no distinction will be made in the model. Reimmigration of

a previous emigrant is possible and will be treated on a par with an "ordinary"

immigration.

2 13 . As indicated already in connection with states of the form DA

and EA, transitions between 	 certain states of the system are possiblé.

In fact this is what makes the model dynamic.

If a person marries for the first time, a transition from Mo to M1

will be recorded. A subsequent divorce will be recorded as a transition from

state M
1 

to D
1
. Similarly for the other kinds of events registered.
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Let B and C be two distinct states of the system. If it is possible

to experience a transition direct from B to C, such as from Mo to Mi , we

shall designate this by writing B-0-C. Otherwise Bi'-C.

The states of this system may be represented graphically as in diagram

2.1, where arrows indicate possible direct transitions. (Immigration has not

been indicated, but it may occur into any transient state.)

M Never 	
-0i Dead i DMo

0 im
arried 	EM0

, 	u( ,
M
m In,-. 	 r 	 -! Dead 1 DMm

quirria e 	 4Emigrate4 EMm,
\

D
m 	

\,,, 	 W
m

--) 	—.._____DD i Dead 4--------1Divorced 	 )1 De,ad 	DWmm ______ 	 Widowed
ED
m 

Emi  ratedE	i "------------irEmig-rated EWm

Diagram 2.1.
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2C. Even when B-74C it may be possible to reach C from B by transitions

via one or more intervening states. If BC and C can be reached from B,

whether direct. or not, we shall write B'- 'C. Otherwise BS,C.

If BrvIC in our model, then CAB. Thus we may call the system of

states hierarchical.

2D. Consider a person who at age y+u is in a transient state B and

who entered this state at age y. We define PBB(y,u,t) as the probability

that this person will stay in state B at least until age y+u+t. For any state

C where BC we define P Bc(y,u,t) as the probability that this person will

be in state C at age y+u+t. (If C is absorbing, this will be taken to mean that

state C has been entered within age y+u+t.)

Here y>0 unless BLIM0. In the latter case, y must obviously equal O.

It is then superfluous and will be suppressed, so that we write e.g. P m c(u,t)

for P 	 0m c(0,u,t).
0

§ 2E. If BC, we shall assume that the limit

lim PBc(y,u,t)it
t40

exists and is a continuous function of u for any y and u with 04.<y+u<w, where

co as usual designates the highest possible live age. The limit will be

called the force of transition from state B to state C at age y+u and duration u.

We introduce the following names and designations for the forces of

transition:

v
0
 (u) is the force of primary nuptiality, i.e. the force of transition

from state M
0
 to M

1°

vDk
respectively, for 1. --k<m.

6k(y,u) is the force of divorce and wk(y,u) is the force of widowhood,

respectively, in state Mk , for 1.7.0.m.

P 0 (u) and n 0 (u) are the forces of mortality and emigration, respectively,

in state M0 .

k (y,u), nk (y,u), 1.1Dk(y,u), n Dk (y,u), pwk (y,u), and nWk (y u) are the

corresponding forces for states Mk , Dk , and Wk ,respectively, for 1.1---04p.

We interpret v o (u)Au+o(Au) as the probability that a u-year old un-

married person will marry within age u -i-Au and stay in M, until this age. The

other forces have similar interpretations.

Forces of transition which depend on y and u, separately, rather than

on age attained (y+u), will be called select.

(y,u) andu(y,u) are the forces of remarriage in states Dk and Wk ,
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2F. Let B be transient, let B-*C, and let ' be the set of states

consisting of C and all states that can be reached from C. We introduce

P
Bg 	 '
(y u t) = 

E PBA (37 'u,t).Aed
Dividing by t, letting t+0, and using the fact that lim PBC (y,u,t)/t = 0

t+0 
if BeNile but 	 we see that lim P13 	 u t)/t equals the force of transitiont+0 ; "
from B to C. We shall need this result at several occasions in later paragraphs.

2G. For any transient state B the limit

lim' {1-PBB(y,u,t)}it
t+0

exists and equals the sum of the forces of transition out of B, by the

assumptions of 2E. We shall call this limit the total force of decrement 

from state B at age yfu and duration u. We introduce the symbols 0(0

ak (Y '" aDk (y,u), and a, (y,u) for the total forces of decrement from M o ,

Mk , Dk , and Wk , respe 	 Then

a0 (u) =	 (u)i-n (u)+11 (u) 0 	 0 	 0	 '

ak (Y 'u) = 6k (37 ' u)-lawk (37 'u)"k (Y 'u)+11k (Y'u) '

and similar relations hold for aDk and awk. We interpret ak (y,u)Aui,o(Au) as

the probability that a person in Mk at age yi-u and duration u will have left

Mk within age y+u+Au. Similarly for the other total forces of decrement.

§ 3A. The section of the model relevant for the never-married persons

is given in diagram 3.1, where M 1 and all states which can be reached from M 1

Diagram 3.1.
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have been combined into a single state calledk
1
. We may regard this section

as a four-state Markov chain with the transient state M and the absorbing states0
DM ° , and EN. If we use the symbol x for age attained, the transition

probabilities of this chain are

Pm 14 (x,t)=exp{-6 ot o (x+T)dT}, P
00

,t)  f P 	 (x' T)v
0
 (x+T)dT,

0 10M0

P
M DM 

(x
't)= f P 

M M 
(x

'
 T)P

0
 (x+T)dT, and P 	 (x

' 
t)= f PM M (x '

T)n
0
(x+T)d-r.

0 0 	 0 0O 	M 0
EM

0 0 	 0 0

By 2F the forces of transition are v o ,p 0 , and n o .

Since the values of each of these probabilities are influenced by

all three forces of transition, we shall call them influenced robabilities.

(Sverdrup, 1961).

3B. The sectional model of 3A represents a common net nuptiality

table (Spiegelman, 1955, H,.."‘t, , Grabill, 1945; Jacobson, 1959, pp. 76-82;

Schwarz, 1965) with the addition of emigration as a cause of decrement. The

various columns of a nuptiality table arise as follows.

From a cohort of 100 000 persons born alive,100 000 Pm m (0,x) will
00

be expected to remain alive and single at agp. x. Out of these, a proportion

(x,1) will be expected to die while single, a proportion Pm Em (x,1)Pm DM
0 0 	 0 0

will be expected to emigrate while single, and a proportion Pm (x,1) will be
1

expected to marry for the first time during the age year following age X.

Of single persons at age x an expected proportion of Pm tk (x,w-x)
01

will ever marry (where w is the highest possible live age). Similarly a

proportion Pm (0,x) of the new-born will be expected to marry within age x.

This quantity must not of course be confused with the expected proportion of

aver-married persons at age x, nor with the probability of being ever-married

at this age.

3C. Although emigration plays some part in the life of most

national populations, this fact is commonly disregarded when marriage tables

. In fact all published tables known to this author implicitly

model where n 0E0. If we let O-t o(x) = v o (x)+p o(x), -fm m (x,t) =
00

(x+T)dT} 	M Vi' (x,t) = f 	 (x,T)v (x+T)dT, and
0 '10 0

(x,T)11(x+T)dT, the PAB (x,t) will represent the

are set up

build on a

exi)f- f
0

t

PM Dm (x,t) = f P
00 	0
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transition probabilities of this implicit model. Since the values of all

TAB (x,t) are influenced by both v and p 0' but not by n
0' 

we shall call them0 
sEizinflmE2LEERblpilities. If the nuptiality and the mortality among the

emigrants do not differ from those of the persons remaining in the population,

the '13AB(x,t) may be given an interpretation in the model section of § 3A. While

Pmciii(x,t) is the probability of marrying within age x+t while a member of the

paulation, P
MOM

N
1
 (X,t) is the probability of marrying within age x+t, no

matter whether this occurs before or after a possible emigration. The other

semi-influenced probabilities have similar interpretations. (For a proof, see

Hoem (1968d).)

3D. In a theory for the formation of first marriages, interest centers

on transitions from M toLk
l' 

and the decrements due to death and emigration0
represent elements of nuisance (Henry, 1959, 1963; Mertens, 1965). One

may wish to produce some measure of nuptiality which is free from the influence

of mortality and emigration. For this vo (x) is an obvious choice. It is

sometimes desired to have a measure with the dimensions of a probability,

however. Since both P	 (x,t) and Tmcki (x,t) are obviously inadequate, multiple
M (11

decrement theory then opfers the partial probabilalty.

M( (x,t)	 1-exi){- f v
0 (x+T)dT}:: 1-Pm m (x,t),

0'1	 0	 0 0
which represents the chances which a single x-year-old has of getting married

whitin age x+t provided mortality and emigration are inoperative in the meantime.

Gross nuptiality tables are based on this function.

Unfortunately Pm (x,t) has no interpretation as a probability in the

nuptiality model of 3A. Instead it is a transition probability in a different 

Markov chain, viz. one with the two states Mo andki only, and with vo as the

force of transition from Mo toki .

3E. Let T be the remaining lifetime in state Mo of a single person

of age x. Then T is a random variable. Its probability distribution is

F(x,t) 1-P	 (x,t) in the model of 3A,
M OM O

Nx,t) 1-P11 M (x,t) in the model of § 3C, and
00

f(x,t) 7. 1-Pm m (x,t) in the model of S 3D.
' 00

Since
momo

(x,w-x) will presumably be positive, F(x,t) is an improper

probability distribution.
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We shall designate the mean values of T in the two first of these distri-

butions by ( 0 (x) and -e-0(x), respectively. Thenw-x 	 w-x
Sow = f P 

M 
(x,t)dt = f fl-F(x,t)ldt,

0 0
M 0
	 0

and a similar formula holds for e o(x). Specifically eo (0) is the expected lifetime

as a single person for a new-born baby. A mean value for T in the distribution

F will be introduced in § 3F.

§ 3F. 21-22_2211.22 -tfirstmarriage (of a given sex) will be calculated

from population data by adding together ages at first marriages registered and

dividing by the corresponding number of first marriages. The quantity ensuing

is best interpreted as an estimate of a corresponding quantity within our

probability model. One might perhaps believe that this estimand is either
0
e0 	 0 	 '(0) or '6 (0) since mean age at first marriage is obviously equal to mean

waiting time until first marriage for a new-born. It is noteworthy that neither

of these suggestions is correct.

To get at -the 1241 -t es -timand.„ we start by noting that F' 	 (x,w-x)

represents the probability that an x year old single person will ever get

married. Given that such a person ever does get married,

Fm(x,t) = P 	 (x,t)/P , (x,w-x)
Mel

is the probability that this happens within age 	 Thus Fm (x,.) will be the

distribution function of the waiting time until the marriage, and
w-x

e(x) = f {l-Fm (x,t)}dt
0 	 0

is the mean value of this distribution. The quantity estimated by the observed

mean age at marriage is 4(0).

Correspondingly, the median age at marriage x+4(x) for an x-year-old single

person who will marry, is defined by the relation el{x,4(x)} = 2, or equivalently

P
Md3 {x,m

m (
°

x)1= 
0 1

me (x) and m (x) are influenced measures. Corresponding partial measures0 	 0...: 	 L-..-
are e0 (x) and ì 0 (x), defined by

_ 	 w-x, - 	 , =,
é (x) = 	 f 11-T(x,t)/Fkx,w-x)}dt,0 	 0

and 	 rf G, (x ' 
rn (x)) = Ij i;	 (x,w-x).

14 d41	 0	 3(ol

§ 3G. Considerations like those of §§ 3C to F apply in each of the

sectional models of the chapters below. To avoid being repetitive we shall

not formulate them in each case.
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40 Marriage dissolution 

4A. We shall open this chapter by suggesting a bisexual model for

marriage dissolution, both because such a model has some independent interest,

and also because it provides an introduction to the unisexual model, to which

we shall return in Ç 4B.

If we want to preserve the feature of emigration in a bisexual model,

we must take account of the fact that the spouses need not emigrate simultaneously.

This will cause some trivial complication which have nothing to do with our

present argument. We shall therefore disregard the possibility of emigration in

§§ 4A and B.

Consider then a married couple where the husband is in his k-th and the

wife is in her nth marriage. Let ut describe this by saying that the couple is

in state (Mk ,Mn ). If the husband dies while they are still married, the couple

will be said to move to state (DMk0). Similarly they move to state (at,DMn )
n

if the wife dies and to state 6)0)11 ) if they get divorced.

Let x and y denote the age at marriage of the husband and wife,

respectively, and let u denote the current duration of their marriage. Transition

probabilities will now have the form P(mk,mn) ,(A,B) (x,y,u,t). We define the

following forces of transition from (Mk Ma):

to (DMk ,ign ):pk (x,u),

to 00k ,DMn ):q1 (y,u), and

to 6Dk5ri):akn(x'Y'u).
Thus the male force of mortality pk is assumed to be independent of

characteristics of the wife. Similarly for the female force of mortali -ty prti .
Forces of mortality are well known to depend on marital status, (see

e.g. Jacobson, 1959, p. 139), so we should at least distinguish between the

forces of mortality for the single, the married, the widowed, and the divorced.

Intuitivelyonewould expect such forces to depend on the number of previous

marriages as well, as we have specified.

The common explanation of the lower mortality generally observed in

the married population than among single persons is twofold. In the first

place, marriage is thought to be selective as regards both physical constitution

and social adaptability. Secondly married life is considered to provide a

better environment due to the greater regularity of living (Thompson and Lewis,

1965, pp. 364-368).
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To the extent that the second explanation is correct, one would expect

the effect of married life on mortality to be gradually more pronounced as the

marriage proceeds. Thus there is a reason to use select forces of mortality

for the married persons. No harm is done in doing so even if these forces prove

to be non-select, for in that case one simply has p k (x,u) = pk (x+u), and

similarly for 11;1 .

There is every reason to believe that the force of divorce Y

select (Jacobson, 1959, p. 149).

Formulae for the transition probabilities are established quite easily

and will be omitted.

§. 4B. We now turn to the unisexual model. For an arbitrary woman

in M
n 

whose age at last marriage was y and whose current marriage duration is

u we define a random variable X as the age at marriage of her present husband,

and another random variable K as the number of marriages which he has experienced.

TheP (mk,mn),(A,B)( x,y,u,t) defined in 4A may now be regarded as conditional

probabilities,given that X=x and K=k.

To characterize K and the age difference X-y we introduce the distribution

Gkn(z9Y) = NX-yz,K=k}.

We then see that the transition probabilities for the wife have the form

rn
(a)	 Pm B(y,u,t) = E f P(Mk,Mn),(A,B)(x,y,u,t) dx Gkil (x-y,y)

kOn

where A is taken as M
k if B=Mn' 

A=DM
k 

ifB=10- A=Vh
k
 if B=DM

n' 
and A kn' 

B-). The integral is taken over all possible values of x.n
Dividing by t in (4.1) and letting t+0, we get

(4.2)	 w
n

(y,u) =	 I p,(x,u)dx Gkn (x-y,y), and
k=0

(4.3) n(y,u) = E f a, (x,y,u) d G (x -y,y),
k=0	 'n	 x kn

while the force of female mortality will naturally turn out to be the 111.11 (y,u) of

§, 4A.

In the general case, these forces will be select, as one would expect.

One may be more surprised to find that the force wn of widowhood may be select

even when the male force of mortalit is nonselect and inde endent of marria e

number, as we now proceed to show:



Dk

W
k 

!Widowed 	 Wk

Dead 	 DWk

25

<
Let Gn (z,y)=NX-y=z} = 	 Gi_(z,y), and assume that pk (x,u)=1.1(x+u). Thenk=0 '"

(4.4) 	 (A)n (y,u)	 I p(y+u+z)d
z 

Gn (z,y),

which will depend on y and u, separately, rather than only on y+u, as long

as the distribution function Gn genuinely depends on y. As long as the 
age

difference X-y at marriage has a distribution which depends on the age y of

the bride (Backer, 1965, p. 49), wn will therefore be select.

§. 4C. Of course the roles of the two sexes may be interchanged in the

unisexual model of Ç 4B. The introduction of emigration is trivial. This

gives the section pertaining to the persons in Mn 
in the general model of chapter

2.

5A. For the persons divorced or widowed after their k-th marriage

(k<m) the relevant model section is given in diagram 5.1.

Dead 	 DD	 k
Dk

Diagram 5.1.

The transition probabilities of this chain are

Dk
(y,u,t) = exiA-f
k 

	aDk
(y,u+T)(111,

PD ,f4 	(y,u,t)	 f PD D (Y'u'r)vDk (37,u+T)dt,k 
1<
 +1	 k k

pWkDWk
(y,u,t)= f Pw 

k w k
(y,u,T)pwk (y,u+T)d-r,

0 
and so on.
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5B. There is a lot of evidence to the effect that forces of remarriage

depend on age at dissolution of (latest) marriage and duration since dissolution

separately (Roeber and Marshall, 1933; Pressat, 1956; Niessen, 1960; Clarke,

1960). There are also many reports that remarrige rates among divorced men

and women differ from those of widowed persons (Spiegelman, 1955, p. 137 ;

Jacobson, 1959, pp. 70, 83-86; Backer, 1965, p. 60; Schwarz, 1965). Together

with mortality considerations similar to those of 4A this has notivated our

model.

6. Some further results on the hierarchical model

.§ 6A. While we have hitherto studied only sections of the nuptiality

model of chapter 2, we shall now list a few results pertaining to the complete

model. These results are self-evident, and they will be given without explanation.

6B. For any C in

P
M
O C (x0 ::: 	 P. 	 (x,T)v\(x+T) P 	 (x+T 0 t-T)dT.

0 1*IMO'o 
Mo 	M1

C 	 "

For k=1,2,...,m,

Pmp (3r,u,t) = r ,y,u,T)6k(y,u+T)PDkDk
(y+u+T,O,t-OdT,kl

0 MkM 
(

k

and similarly if Wk is substituted for Dk . For any C which can be reached

from Dk or Wk'

Pmkc(Y' u,t)iP	 (y,u,T){6k(y,u+T)P	 ---r(y+u+T,O,t)+wk (y,u+T)Pw c (y+.u+T,O,t-T)}clar
0 MkMk 	

D c
k 	 k

Similar relations are easily established for all relevantP n r(y,u,t) and
'k'

6C. Consider a person who is in state A at age y+u and who entered

this state at age y. The probability that this person will experience k marriages

altogether within the population equals

Pk (y u,A)=PA,DM (y 'u 'w-y-u)+Pk ' Ll ' w-Y-u)+PADDk (Y 'll ' w-Y-u)+PA 'EDk (Y 'u ' w-y-u)

+P
ADW (Y 'u ' w7Y-u)+PAEW (y,u,w-y-u),, k 	 , k 

and the corresponding mean number of marriages equals Ekp,(y,u,A). Various kinds
k

of"partial means" corresponding to the reasoning of §§ 3C and D may be defined.

This concludes our study of the hierarchical nuptiality model.

P
WkC
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estions for modifications of the model

§ 7A. The model of chapter 2 may be modified in many directions to

serve various purposes. To indicate some of the possibilities, we shall suggest

two sets of such modifications, although without going into any detail.

§ 78. It is one of the nice features of the above model that it is

easy to establish simple formulae for the transition probabilities, and that

one easily sees the intuitive content of these formulae. Some further simplifi-

cation will result if the feature of select forces of transition is dropped so

that the attained age y+u may be substituted for the pair of variables (y ,u)

everywhere. In fact non-select forces will probably be used more often (even

though this gives a less "realistic" model) because it is more expedient or

because the data contain no information about duration and thus make estimation

of select forces impossible.

The simplicity of the mathematics of this model rests heavily on the

fact that it is hierarchical. In a nuptiality model where marriage dissolution

and remarriage may occur,this feature is provided by the registration of the

number k of marriages experienced for each person. If this variable is deleted,

a non-hierarchical model results, and in such a model no closed formulae can be

established for the transition robabilities in the • eneral case.

The sample space of such a nuptiality model has been indicated in figure

7.1. The forces of transition of this model may be regarded as averages of

corresponding forces in an underlying, more refined model, much in the same way

as n and wn in 4B (Stolnitz and Ryder, 1949).

Figure 7.1.
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7C. One often wishes to study nuptiality in conjunction with some

other phenomenon, such as fertility, migration, social status, or religious

denomination. As an example we shall suggest some basic concepts of a

simultaneous study of nuptiality and fertility. For simplicy we shall use

non-select forces of transition, although in the case of fertility there are

stronger arguments than ever for using select forces.

Let some nuptiality model with state space I be given. Although I

will contain states like -dead" and "emigrated", we shall call any state in

a marital state. We define P..(x,t;k,n) as the probability that a person whoij
at age x has had k births and is in marital state i, will have n-k further

births within age x+t (n...-k), and will be in marital state j at that age.

We introduce the force of fertility at age x in marital state i and with

k births as the quantity

(1)60=lim 
Pil.(c,t;k,k+1)/t,ik 

t+0

and a corresponding force of change of marital status

Xijk( x) = lim Pi (x,t,k,k)/t.j
t+0

Of course many X ijk will be identically equal to zero, since direct transition

is impossible between many marital states.

A simultaneous analysis of nuptiality and fertility then consists in

a study of the forces (Pik and the positive X ijk .

............nowLecaerinat

I am grateful to Mr. Tore Schweder, who has proof-read this paper in

manuscript.
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1. Introduction

1.1. Time-continuous Markov chain models with a finite or countably

infinite number of states can be applied to many problems in demographic

analysis. If i and j are two states (not necessarily distinct) of such a

chain, let P..(x,t) be the probability that a person who is in state i at age x,13
will be in state j at age x+t. For ifj we define

TÅ. .(x) = lim P..(x,t)it
13 	 13t+0

provided a finite limit exists. We shall call this quantity the force of

transition from state i to state j at age x. Then p..(x)Ax+o(Ax) may be inter-

preted as the probability that a person who at age x is in state i, will move

to state j within age x+Ax.

As indicated by the notation, the force of transition may depend on the

age of the person in question. In demographic applications of models which

should be realistic over broader age ranges, it is probably nearly always

necessary to use age-dependent forces of transition. In applications to a

restricted age interval, however, it may often be possible to remove the

technical complication of age-dependence and to work with models where the

forces of transition are constant parameters. In fact, even the calculation

of such quantities as age-specific fertility and mortality rates may be regarded

as an application of a(7e-h9polgenpous time-continuous Markov chain estimation

techniques to each of a number of age classes. The parameter values are then

assumed to be constant within each age class, but they may differ from one

class to another. After the estimation of the parameter values of each class,

they are sometimes graduated by some method, such as the Gompertz-Makeham

procedures in mortality investigations.

In the present paper we shall concentrate on age-homogeneous models.

Omitting the age x from our notation, we let P..(t) be the probability that a
13

person will be in state j at time t>0, given that he is in state i at time zero.

Similarly the forces of transition are p.. = lim P..(t)/t for i4j. (For
13 	t+0 13

§ 1.2. We shall start by giving two examples of simple age-homogeneous

Markov chain models with applications in demography. We shall then formulate

a general model which will have these examples and a great many others as special

cases. In the general model we shall derive maximum likelihood estimators and

shall investigate some of their large-sample properties. Finally we shall give

some consideration to parameter transformations.

existence theorems, see Chung (1960).)
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2.1. (Work-force parti.ELRation.) 

Figure 2.1.
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1.3. Estimation of the forces of transition has been studied by Zahl

(1955), Meier (1955), Billingsley (1961), Albert (1962), Sverdrup (1965), and

others. Many of our results are straightforward generalizations of similar

results given by Sverdrup (1965) for the special case of a three-state dis-

ability process.

2L_.T.EIE24MEIt2EY_TiaEE2-e s

Our first example will be a three-state time-homogeneous Markov chain, which we

suggest as a model for work-force participation. A person is said to belong to

state 1 if he is a member of the work-force, he will belong to state 2 if he

does not work, and he moves to state 3 if he dies. Possible transitions are

suggested by arrows in figure 2.1. We assume that all forces of transition

between the states may be regarded as constant parameters for the age range

studied. These forces are

the force of "unemployment" v,

the force of "re-employment' p, and

the force of mortality p.

It will be understood that the names of these parameters have been introduced

as mnemotechnical devices only, and that e.g. the definition of an unemployed

person does not have to coincide with that of ordinary labour force statistics.

For various reasons we have defined a single force of mortality valid for

persons both in state 1 and 2. Thus we assume that there is a common mortality

for the employed and the unemployed. It is not difficult to generalize to a

model in which a distinction is made between the mortality of the two groups

(Sverdrup, 1965).
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We introduce

i;
11

(t)	 (p+ve t )/(v+p), P12
(t) = v(1-e )t )/(v+p),

P
21

(t) = p(1-0-()+P)t )/(v+p), and P22
(t) = (v+pe-(v" )t )/(v+p).

-PtIt may be shown that P13 (t) = P23 (t) = 1-e	 , and that

-PtP. .(t) = i"..(t)e	 for i and j = 1,2. (1)

Here P..(t) would be the probability that a person will be in state j at time t,

given that he starts in state i at time zero, provided there is no mortali -ty,

so that p=0. By analogy with the terminology from mortality investigations, we

may call the Pij (t) Lartial probabilities. In contrast to the P. .(t), the
2.3

Pii Wareinfluermedbythevalueofp,andwerreycallthePe) influenced

probabilities. (This terminology is a natural generalization of definitions due
less

to Du Pasquier (1913) and Sverdrup (1961). In more common but/fortunate terminology,

the Vt) and the Pij (t) would be called independent and dependent probabilities,

respectively.)

FormulaWshowsthatthel).
j
(t)arederivedfroffither).(t) by means of

a simple mortality correction. This nice property is due to the fact that we

consider mortality to be equal for the employed and the unemployed. When a

distinction is made between the mortality of the two groups, no such simple

relation exists.

§ 2.2° (A simalLSIE".5.1.41-tY212LLI )

In applications to a narrow age range, it may not be too unrealistic to

assume that fertility and mortality are age-independent. Various models will

then be applicable. Hoem (1968) studies in some detail a particularly simple

one, which we shall use more briefly as our second example.

Let Pk(t) be the probability that a parent will have k births during

time [0,1 and still be alive at time t, and let Qk (t) be the probability that

a parent will have k births during time [Q,t] and die within time t. We

assume that mortality is independent of the number of births experienced, and

let p be the force of mortality. Similarly we assume that fertility is

independent of the parity and spacing of the births, and designate the force

of fertility by 	 Thus, no matter how many births a parent has had during

[0, -0 and regardless of when they have arrived, the probability of another

birth during the time interval <t,t+A -6 is Ot+o(dt), provided the parent is

alive at time t. It may be shown (Hoem, 1968, §. 4.1) that
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N Ot)
k 

- OPk(t) = - e (P+t 	for k = 0,1,..., and
k!

k
1	 11 ,4) k+1	 1	 (p+0t v -(p+0t

}Qk et) = (-)	 n-E-7 ( 	  e	 for k = 0,1,...
(1)	 11+4)	 •

p
v=0

In the present model there is a double infinity of states. We may say

that a parent is in state (k,l) at time t if the parent has had k births during

E• ,t] and is alive at time t, and that the parent is in state (k,2) at time t

if he or she has had the same number of births during 10,i1 and is no longer alive

at time t. Then P
k
(t) = P

(0,1),(k,l)
(t)

' 
and Q

k
(t)	 P

(0,1),(k,2)
(t). One-step

transitions are possible from (kJ) only to (k+1,1) and to (k,2).

The forces of these transitions are (1) and p, respectively.

3. A general model

3.1. Let us study a time-continuous finite or countably infinite Markov

chain with constant forces of transition. To get a reasonable model, we shall
>

make the standard assumptions that E P. .(t) = 1 for all t=0, and lim P. .(t)6 ii,
t+0

whereS ii is a Kronecker delta,

The force of decrement from any state i will be defined by
<

11. 	 Lim {l- •Pi (t)}/t. We shall assume that for all i, 0 r. p < co andit+0

p. =	 E p...	 (2)j fi ij

Such assumptions automatically hold in a finite-state chain, but not necessarily

in a chain with a countable infinity of states.

A state is called absorbing if vi = O. It is impossible to leave an

absorbing state.

§ 3.2. Intuitively an individual sample path may be visualized as a

person moving through (some of) the states of the system. We shall consider a

situation where K persons are kept under observation, not necessarily

simultaneously, nor need the periods of observation of all persons be equally

long. For convenience we shall designate -11)22Elosl  of exposure of person no. k

by the time interval [01,z 3j, where theeppsurc 	 zk for the time being will

be taken as a preassigned finite positive number. This should be understood as

follows: At some time z (measured by "ordinary' time, e.g. in years and parts
k

of a year A.D.) we start observing what happens to this person, and we go on

observing right up to time zk• At this moment observation ends, either

because the observer decides to stop, or because the person under observation
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is removed from observation by some cause extraneous to our model. Periods

spent in absorbing states (e.g. after the death of the person observed) is

included in the interval Lz it( , z it( + zij, although of course no actual observation

is made after a person has entered such a state.

In many cases there is a certain state of the chain from which all

sample paths must start at time zero. In our fertility model (§ 2.2), for

instance, every path starts in state (0,1). This feature is not common to all

the models which we wish to cover by our theory, however, and we shall designate

by rk the state from which sample path no. k starts out. For the time being

we shall take also all r
k 

as preassigned.

The sample paths corresponding to the K persons will be assumed independent.

3.3. Under the assumptions mentioned above, it is possible to prove

that the number of states visited (and thus the number of transitions experienced)

by any person during his period of observation, is finite with probability 1.

Let N
k(i,j) be the number of transitions direct from state i to state j

experienced by person no. k, and let Uk (i) be the total time spent by him in

state i. Then

K
P{ f) 1)(1 k(i,j) nke,j) and uk (i) <Uk (i) < uka) + duk (i)J}
k=1 i j

=exp{- E p.u(i)} 	 111./(i'D du (i) ... du
K
(i)}

j ij 	 1

K 	 K
iwith n(i,j) 	 E nk (i,j) and u(i) 	 E u. (i). Here n(i,j)p.. 	 is ntepreted as 1

k=1 	 kra

whenever p.. 0. In what follows we shall disregard those p.. that are
13

identically equal to zero by the definition of the model, such as p31 and p32

in our model for work-force participation.

As shown in the examples of chapter 2, all p.. need not be distinct. We1.3
shall assume that there exists a finite system of parameters {X :a dm.. 1,2,...,AI,_ 	a
such that each p.. Eluals_22mE2 

a
 , and such that for eachatilliLL=tEl,—13 	 -

p.. —= A
a
 for some (i,j). For simplicity Aa and A 	 be assumed functionally—13 

independent when aia'. The specification of the Aa is not necessarily unique.

We let 	 {1,2,...,A}. For each a Ea there is a set of pairs (i ,j) such

that p.. A • We introduce13 	 a
K

Mk(a) =
E 	 Nk(i,j), and M(a) -` E M(a).

{(i,j):p...7- A } 	 k=1
13 a

( 3 )
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1 0 i)
Y], = vtp, and y2 

	• The matrix c = (c
ba

) may thus be written c = 0 1 1
Finally L(1) = V(1), L(2) = V(2), L(3) = V(1) + V(2).

3.7. In the fertility model of § 2.2, A = 2, u

	

'(k,1),(k+1,1) 	
cp, and

= p for k = 1,2,..., p ij = 0 otherwise. Thus Xi = (1), X2 = p. M(1)
P (k,1)(k,2)
is the number of births and M(2) is the number of deaths observed. We have B = 1,

and V(1) = L(1) = L(2) is the total lifetime observed. yi = p, and c = (0,1).

All states (k,2) are absorbing.

.§ 3.8. Without offering any "real-life" interpretation, we shall also

study the following simple example.

Figure 3.8.

There are four states. The possible direct transitions and the corre-

sponding forces are indicated by arrows and greek letters in figure 3.8. If

person no. k starts in state 1 at time 0, his likelihood is

N„(1,2)+Nkt, 3) Nk (2,4) Nk (3,4)
A
k
 - p 	a	 exp{-20k

(1)-aU
k
(2)-OUk(3)}. Thus-

A=3, Xl=p, 	 X3.743; 8=3, 1l=2p, y2=a, y3=a; 11)01(1,2)+N(1,3), M(2)=N(2,4),

M(3)=N(3,4); V(b)=U(b) for b=1,2,3; 	 and c =010• Finally L(I)=2U(1),
0L(2)=U(2), and L(3)=U(3). 	

0 1

3.9. If rk = r, the expected total time spent by person no. k in

state j equals
zk

E Uk(j) = f P .(t)dt,
0

and his expected number of transitions from state i to state j equals

zk
E Nk(i,j) = f P .(t)p.. dt 	 pijE tik(i).

0 ri 	 13

The values of E Vk(b) and E Mk (a) are obtained by summation over the corresponding

values of E Uk (i) and E Nk (i,j), respectively. We get

E Mk(a) = X 	 E 	 E U, 	 a(i) = X E ciofi),aE Uk (i).
a-{(i,j ):

'i
-

j
. =X }	 ". 	 i a
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By (6), therefore,

E m ( a ) ...-: X
a 

E L(a)	 (8)k	 k

for all k and a.

3.10. In our model for work-force participation we get

• 	 -pz
f P

11
(t)dt = {p(1-e 	 )/p+v(1-e

-(v+p+p)z
)(v+p+1.01/(vtp)9

0

(-pz
P

12
(t)dt = v{(1-e	 )/11 - (1-e-v+P+P)z )/(v+p+01/(v+p), and

0

I P
13

(t)dt = z	 (l_eZ)/j.
0

Formulae for ir :P 23.(t)dt are obtained by exchanging v and p above. (8) also
0

gives the relation : E14(1) = v: EL(1), EM(2) = p . EL(2), and EM(3) = p. EL(3).

We shall not care to consider our fertility model at this point.

4. A further study of the derived model_ 

4.l. We shall now concentrate on the model defined by (5). TI . is is

a Darmois-Koopman class of distributions. To avoid unnecessary peculiarities,

we state as an assumption that all M(a) and V(b) be essentially linearly

independent. (This can always be achieved, by reparametrisation if necessary.)

We also assume that the matrix c = (c
ba

) has rank B. (We note that B=A, so the

rank of c cannot exceed B.) We introduce

f in X
a 
for a =

aa
-YŒ- 

forfor a = A+1,...,A+B,

where in stands for the natural logarithm, and let Ø= ca1 ,...,aA+13 ).

Theorem: The Ø are linearly independent.a
Proof: We wish to prove that if there exists a set of coefficients

MB
xi , x2 ,...,xke such that a=1Exa=0identically in	 then x1=x2= ...=xA+B=°.

a a
Equivalently this identity can also be written as an identity in the Àfa, in

the form

A	 A	 B
E x

a 
ln 

a 
E E X

a 
E cx

baA+ba=1	 a=1	 b=1

( 9 )
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Differentiation with respect to Aa gives

B
x

a
IAa E

b1 cba
xAfb

=

as an identity in Xa . Since the right hand side here is independent of Aa
, we

must have xa = 0, and

B
E

b=1 cba
xA+b = 0

for a = I,2,...,A. In matrix form this is

	

(xA+1'	 ' x A+b	)c = O.	 (10)

Since c has rank B, there exist B distinct elements i 'B 
in? such that

the matrix

c .	 .111	 1113
• • • • • • • • 0 • • • •

cBi ,...,cBi
	N..	 1 	

B/j

has rank B. (10) implies (x
A+1 '''''xA+B)c = 0, whereby xA+b 7' 0 

for all ba. [::
x

By general properties of Darmois-Kooppan classes of distributions,

I 14(1),...,M(A), V(1),...,V(B)} is then a minimal,--sufficient_statistic.-

4.2. It is typical for demographic models that they must account for

mortality. In our general model, this feature would be formalized by the

introduction of the requirement that for each non-absorbing state i there

exists an absorbing state :i' such thatP '. >O. In such a case, Nk (3.,I') equals
li

0 or 1 for each k.

Obviously i 7 need not be uniquely defined. We may for instance distinguish

between various causes of mortality, between mortality and emigration as causes

of decrement, etc., in which case i may be chosen at will from a number of

states.

The model of Ç 3.8 does not fulfil this requirement, since from state 1

one may pass direct only to states 2 and 3, none of which are absorbing. On

the other hand any sample path may pass from state 1 to state 2 (or state 3)

at most once during any period of observation. It will turn out (in the proof

of the theorem of Ç 4.4) that we shall frequently prefer such a feature in our

models to the more restrictive requirement that it always be possible to pass

direct into an absorbing state.

C "4

N
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Passing to the Aa
, we shall therefore often make the following

Assumption: For each bathere exists a known, finite integer K(b) and
>

an a Œ, , say a(b), such that cb,a(b) = 1 
and such that Xa(b) 

only represents one

or more forces of transitions that can be made at most K(b) times altogether

in any sample path. In other words 0 Mk(a(b)) K(b) for any k.

In the examples of §§ 3.6 and 3.7, p has this property. In 3.8, both

p, a, and $ have this property. In 	 3.6, a(1)=n(2)=3; in 	 3.7, a(1) = 2; and

in 	 3.8, a(b) = b for b = 1,2,3. In each case, all K(b) = 1.

Under the above assumption,

0 = M(a(b)) = KK(b) for all b. 	 (11)

§ 4.3. In the proof of the theorem of 4.4 it will also turn out that

we shall sometimes want to make the following

Assum -atin: For each b and 134'63, cbT,a(b) = 
cb,a(b) .

Thus we assume that it is possible to choose each a(b) in such a way

that cb,a(b) is the maximal member of the column (c1,a(b) ' c2,a(b)"*" CB,a(b)
This is obviously the case in our three examples.

Many of the results below do not use the assumptions of §§ 4.2 and 4.3.

We shall therefore explicitly state when a proof is based on these assumptions.

§. 4 •4. As can be seen e.g. in (3), the likelihood in (5) is a density

with respect to some measure a over the sample space Q. We will take it to be a

proper probability density so that

A 	 B
f n m(a) 

exp {- E yl,v(b) }da. = 1
a=1 a 	b=1

for all Aa > 0, a E. a.. Introducing

M(a) 	 for a = 1,2,...,A,
W(a) =

V(Œ-A) for a = A+1,...,A+B,

we see that (12) may also be written in the form

A+B

f exp { E 	 w(a) }dc = 1
a=1 a

(12)

(13)

for all aE where is the parameter space of the present model. Thus is    

the part defined by (9) and (4) of the Euclidean space RA.03 . Let us now dis-

regard (9) and (4) for a moment. The integral in (13) may converge (not

necessarily to 1) also for ß+13. We definer as the set of those ßERA+B for

which the integral converges. Obviously r H
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Theorem: Under the assumptions stated in §§ 4.2. and 4.3, all points

are interior points inl.

for all ba.

(i) Let 13 = 03
l'

...,e,
A+B

), within A for all aea, a
A+bo 

< a
kfb0

for a
a 	 a 	

b
o
6-13,

A+B 	 <a
Ilifb 

..1. 0' 	 otherwise. Then exp { E 13 w(a)} = exp { ,E 	 8 1.100-0' 	 w(ili-b0
)}.

A+b 	 a=1 a 	 aA+bo cl 	 A+bot 

As the right hand side here is integrable with respect to a, so is the left hand

side, and a me .
(ii)Then let a!!, = fo 	 and let (3 be as) Aa(b ) = - E 	 cb a Äa'Ai-b0 	A-030 i. cbo,a(b0 	 0 	 afa (b0 ) 0

under (i) with the single exception that a lUb0 >

It 	 -a 	 V
Ai-b0 	Ai-b0 cbo,a(b0)

., At .,-- A otherwise, and let * = Aa(b0)/X;(1)0) .
a 	 a

	

A 	 AA m(a) _ Trita(b0)) n (v)m(a) :...and exp { E a w(a)} = H X a.

	

a=1 et 	a=1 A 	 cbalo; 
(P)4(a) , by (11). Furthermore, E c X'a 	 ba a 	 Ai-b0 A+b )- -A+b

a=1 	 cb a(b ) 	 0 	 0 	 0
A+B 	 <

the assumption of § 4 • 3. Thus exp { E a w(Œ)} =

m(a)

	

B 	 A 	 a=1 a 	 A 	 A
P

.0) 	 exp{ - E w(A+b) E c, a a
XI} since $1043 = -

b=1 	 a=1 D a=1 	 a=1E cba Xa= - E cba X;a

. By (i) above we therefore get (3613 N. From this the theorem

§ 4.5. The following result is a simple consequence of theorem 2.7.9

by Lehmann (1959, p. 52):

Theorem: Let h be any bounded real integrable function over the sample

space 0, and let

A+B
M
(8) =EJi = f h(w) exp { E a

w(a0)1da(w)
a=1

be considered as a function of the complex variables kt = a ct i-

(for a = 1,2,...,A+B) with 13,El m. Then lam( ) is an analytic function in each

argument for which 0 is an interior point ofr. The derivatives of all orders

with respect to the -0- ci may be computed under the integral sign.

Proof: As proved by Lehmann (1959, p. 51),1 m is a convex region. We
A

choose a fixed set of positive values for the Xa , and let qt.]) = 	 E c, Aa=1 Da a

BA+bo 	
(3 ,4130 . Let

XI (B
a(b0 )

Then * > 1,

AKK(b0 )* 	 n
a=1

".. 11+b by
A

KK(130) 
n (

a=1

when b f b
o

follows. El
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By introducing various choices of h, differentiation of hN may give a

series of interesting formulae. We shall restrict ourselves to the case of

h E 1. By (7), formula (12) may also be written in the form

AA
f

m(a)
exp{- E ÀÌ 	 E 1.

R 	 a=1 a 	a=1 a

Under the assumptions of §§ 4.2 and 4.3, differentiation with respect to the

X
a then gives

E M(a) = A
a 

E L(a), 	 (14)

E {M(a) - A
a
L(a)}

2 
= E M(a), and 	 (15)

E {M(a) - X
a
L(a)1 {M(av) - A

a
v ii(e)} = 0 for a f a'. 	 (16)

Formula (14) also follows from (8), which holds under more general

assumptions.

5. Estimation of the A
a

§ 5.1. If we take all M(a) and L(a) as given, Œ. may be partitioned

into the set CL of those aE 0,, for which L(a) = 0, and the seta
IF 
of those

0
a for which L(a) > O. Since M(a) = 0 if L(a) = 0, the A of (7) may be written

in the form

A 	 II 	 XM(a) exp {- E 	 A L(a)}.
a6a a 	 a

, a
6J,

Thus A is maximized by

A
A
a 

= M(a)/L(a) 	 for all aEa, ,

while for a.a. there is no particular value for Xa which maximizes A. We
0

shall arbitrarily choose Aa = 0 if a6:Ct0 .
If for an a6 a there exists a k such that A ::: p for some j, -dam

a 	 rkj
PfL(a) > 01 = 1, and the possibility that aé:0,0 poses no real problem. In

A
this case X

a 
is a maximum likelihood estimator. Otherwise we may find that

1){1,(a)>0 } < 1, in which case a maximum likelihood estimator for A
a 

is not

defined.

The following paragraphs study asymptotic properties of the Aa as

K co under the blanket assumption that no zk exceeds some finite positive

number z0 .
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§ 5.2. Let ka) = M(a)/K and 1(a) = L(a)/K. For each a, Li (a),...,LK(a)

will not generally be identically distributed unless all zk have the same value

and all r
k 
are equal. We shall not make such an assumption. Nevertheless the

following theorem holds.

Theorem: Let aat. Assume that

(i) a finite positive limit L= lim E(a) exists, anda	 K4.00

Then Aa is consistent as K ÷ 00. B 	 B‹ 	 <
Proof: By (6), Lk (a) = zk E cb 	zo E cb , so EL(a) and var Lk (a)

b=1 a 	b=1 a

exist and the latter is majored by some finite value 0
2
. By Tchebycheff's

inequality,

i3{1L(a) 	 EL(a)1 < e } 	 1- var L(a)/c 2 > 	 - (7 2/(Ke 2 )

for any C > O. For K Ko(c), IEE(a) - La i < 	 a 	 then

PfIL(a) 	 La l < 	 NIL(a) 	 d(a)1 < i4 	 1 - 4a2/(Ke 2 ).

Letting K -+ 00 we see that plim L(a) = L.

It is possible to show that also var Mk (a) will exist for any k. We

invc,-ke (a) to sec that ER(a) 	 À
aEE(a). Thus M = lim'ER(a) = AaLa 

existsa• 	

K.+*. 
as a finite limit. Tian argüfféfit -quite similar to the -inie above, - -

plimji(a),= XaLa .

Thus, for arbitrary positive n and 6, 'Pill > 1 - 6/3 and P{G} > 1 - 6/3

for K > K1 (n,6), where F is the event that 11(a) L
a
i < n and G is the event

that iii(a) 	 AaLa l < n.

Let H be the event that L(a) > O. By assumption, P(H) > 1

for K > K2
(6).

Since the real function 4(x,y) = x/y is continuous in (x,y) for all

y 0, the event rnGnH implies the event Ha with I= . {1R(a)/L(a) - Aa l < el,

if n n o (c) for any e > O. With such a choice of n, therefore,

NIXa-Xa < El 	 NL(a) > 0 and Iii(a)/f,-(a) - Aa l < El = P{HnI} 	 P{FtIGnH}:

1 - iqTvatAl l - {P() + NE) pap} 	 p(F) p(G) 	 p(H) - 2 > 1 -6,
provided K > K3 (6,6) = max" {K1(1 0(0,6), K2(6)}.

§. 5.3. In all previous paragraphs the exposure times z1 ,. ..,z K were

regarded as fixed numbers. In certain situations it is possible to interpret the

zk as values of random variables ZZ2''ZK which are 
stochastically independent

and identically distributed with some distribution function G, where G(0)=0 and

G(z0 )=1 for some finite z 0 >O. We will then say that the zk
 are G-random for brief.

A special case is the situation where it is known beforehand that all z k will equal

some preassigned positive number z, as we may then let i{Zk=z}=1 for all k.

(ii)PfL(a) > ol -+ 1 as K -+ 00.
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§. 5.4. When the zk are G-random while the rk are preassigned, 
the

likelihood will have the form A
m 

= AdG(Z1 )dG(Z2 )...dG(ZK
), where A is given

by (7). If G is completely specified, the "maximum likelihood" estimators of

the Äa are still given as in 5.1. If G is only partly specified, maximum

likelihood estimators for the Aa may or may not exist. 
As long as G is independent

of the Ä
a hawever, 'partial maximation" of A

m with respect to the h
a 

may be

carried out as in 5.1.

{M(1),...,M(A), V(1),...,V(B), Z...,ZK} 
will be sufficient, but not

necessarily minimal sufficient, no matter what is known about G.

5.5. Even when the zk are preassigned, it may be possible to interpret

the initial states r1,'rK as values of random (not necessarily real-valued)

variables R...,R
K which are stochastically independent and identically distri-

buted with some distribution
r 

= P{Rk = r } . We will then say that the rk are

Tr-random. Again rk E r is a special case.

Finally the pairs (Zk ,Rk ) may be independent and identically distributed
<

random variables with a distribution given by H(z,r) = PfZk = z and Rk =

in which case we shall say that the (zk ,rk ) are H-random.

Considerations quite similar to those of § 5.4 pertain if the rk are

Tr-random and if the (zk'rk) are H-random.

We note that formula (8), the results of §§ 4.4 and 4.5, and the theorem

of § 4.1 hold as stated even when the zk are G-random, when the rk are Tr-random,

and when the (zk' rk ) are H-random. So does the theorem of § 5.2, but in the case

of H-randomness its assumptions (i) and (ii) hold almost automatically, and under

G-randomness they follow from some other assumptions, as we shall see below.

The two first formulae of § 3.9 give conditional expected values.

In the two following paragraphs some effects of G- and H-randomness are

investigated. We shall not give 7r-randomness any further consideration.

5.6. (G-randomness.) In the case of G-random zk and preassigned rk'
we shall assume that there is a finite number of possible initial states si ,...,sc

so that each rk must equal some sc . We letk = . 1k:rk = sc 1 and let Sc (K) be the
number of elements in -ie when there are K sample paths in all. We note that for

each a60,, and each c, all k (a) with k 636 c will be identically distributed.
Similarly for the Mk (a).

We shall assume that a
c 

= lim S
c
(K)/K exists for all c.

K+æ
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A

Theorem 1: Under the assumptions stated above, X
a 

is consistent as K400

provided there exists a c for which PILk(a)'> 01 > 0 if )(6 -J
c 

and where Sc
(K) 4- c0

as K 	 cc.

Proof: Letting

cc (a) = ELk(a) for kkc 	(17)

we get
C 	 C

EL(a) = E c (a) S(K)/K 	 E a c (a) 	 L 	 (18)
C 	 CC 	a'

c=1 	 c=1

so (i) of the theorem in S 5.2 holds. Let pc(a) = N(a) = 0 } for ke 74-c .
C

Then WL(a) .7. 0} r. ii{p (a)} Sc (K) (with 0° interpreted as 1). Let c be given as
c=1

in the theorem. Then p (a) < 1. If PC 	 = 0, then L(a) = 01 = 0 for large

enough K. If pc(a) co,Apc(a)}Sc(K)% 	

N

 0 as K44:0 • In any case P{L(a) 0}

4 1 as K 4. 00 • Theorem 1 then follows from the theorem of Ç 5.2. El
A

We now turn to the asymptotic distribution of the Aa as K-* 00 • Let 02

consist of those aE. a, for which P{L(a) > 0}-*1 as K400. By a suitable enumeration

we may assume that 17 ='{1,2,...,A'}, with A' = A. We shall not consider the

X
a for which a a,- CU.

Theorem 2: Under the assumptions stated above theorem 1, the vectorA 	 A

/R ( X1-A1 ,...,Apo -ÄA ,) is asymptotically multinormal with mean 0 and some

covariance matrix E.

Proof: Let L(a,c) = E L
k
 (a), let ii(a,c) = 0 if S (K) = 0, L(a,c) =

30-11(c

L(a,c)/Sc(K) otherwise, and let Wa,c) and R(a,c) be defined similarly. Then

/R{R(a) - X
aL(a)} = 

c
E S (K) -(ka,c) - XaE(a,c)1K- c

= E{s
c
00/10 3 . {Sc (10} 3 {(a,c) - XaE(a,c)}.

Since Sc (K) -+ 00 as K 4.00 for the c where ac 
0, the central limit theorem,

combined with (8) and a limit theorem due to Cramgr (1946, Chapter 20.6), gives

the result that the simultaneous distribution function of the vector

/R {R(1) - A1L(1),...,R(A) - xi(A)1

converges at all points to the distribution function of a multinormal distribution

with mean 0 and some covariance matrix E.
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By (18) and the first part of the proof of the theorem in §, 5.2, plim L(a)La

for all a E cv, with La given in (18). Since

1/17(X
a 

- A
a

)	 1/7 0(a) - XaL(a)}/E(a) for L(a) > 0,

a new application of the Cram6rian limit theorem gives the theorem. El

When the assumptions of §§ 4.2 and 4.3 hold, we may üse (15) and (16)
A

to assert that the variables 1/17(X
a 

- A
a
) for aEa,are asymptotically independeftt

and normally distributed with means 0 and asymptotic variances,

as. var 1/R(X
a 
- X) = A /L

a 	 a a
(19)

for a.E.W, with La given by (17) and (18).

All these results are independent of any specific assumptions on the

distribution G.

5.7.(H-randomness.) In the case of H-random (zk ,rk ), the variables

LI (a),...,LK(a) are independent and identically distributed for each aéCt. In

this case, therefore, La = d(a) = ELk (a), and plim L(a) = La by the law of

large numbers. Similarly for the Mk (a).

To avoid unnecessary peculiarities, we shall assume that P{Lk (a) > 0 } > 0

for all aE0,..
A

Theorem 1: Under the assumptions stated above, all A a are consistent.

Proof: By the teorem of §5.2 it suffices to show that HL(a) > 01 -÷ 1

as K 4- co. Let p(a) Pak(a) = 0}. Since p(a) < 1 by assumption, P{L(a) = 0}

= {p(a)} 1( -* 0 as K 4. oo.

Theorem 2:Under the assumptions of the present paragraph, the vector
-A.--

1R(X1 X1 ,...,XA XA ) is asymptotically multinormal with mean 0 and some covariance

matrix E.

The proof is a simplified version of the proof of theorem 2 in 5.6.

The remarks after that proof still hold with a} replaced by O and with La = ELk (a).

When in addition to this H is completely specified, results duc to .,
A

Sverdrup (1965, Appendix B) may be used to show that the rates Xa have asymptotic

variances at least as small as any other Fisher-consistent estimators.

5.8. It is possible to construct confidence intervals for the Aa and to

test hypotheses about them e.g. by simple extensions of methods described by

Sverdrup (1965). We will not take up these questions here.
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5.9. All previous results hold with Only obvious modifications if the

values of some of the parameters Xa happen to be known. If for some a, X 1

has a given positive value and P{L(a) > 0 } > 0, formula (8) shows that our

family of probability distributions is not complete.

6. Transformations_oftkurfts_skace

§. 6.1. It may sometimes be convenient to Consider transformations of the

parameter space. (Examples of this are abundant. See e.g. Hoem (1968).) Although

we have applications to demographic models specifically in mind, we shall give

a more general formulation of our reasoning and results, as there is no need to

unduly restrict their scope.

Let A(0) be a random (scalar) variable, the value of which depends on the

parameter vector (3 =( 	 •, es ) E 0. Assume that

)ageE 	 0 	 for i = 1,2,...,s, 	 (20)De.

a 2A
and let E = O 	 M..), with a.. = -E ao.ae. , where all a.. are assumed to exist

13	 13	 13
1

as finite functions of O. We introduce a new parameter vector a =

by a one-to-one transformation tP from(Xto 0, so that O. = 4).(a
I ... a 

s
 ) for

a	 I i = 1,2,...,s. The differential quotients ---- in.,(a 	 ..,a ) are assumed toaaj 3. 1 	 s

41(a) 	 911) (a)1
a ct
	 •••• 	aa

1

Let 	 J= 	 • • • • • • • • • • • •

exist for all i and j and for all aECC.

a*s (a) 
5 Das

, 0.00490

be the matrix of differential quotients. We define Al (a) = 41401,

3
2
A
1
(a)

y.. = - E aa.aa. , and r = t y ..).13	 13
3.]

Theorem: Under the above assumptions, r = JIEJ.

Proof: The formula of the lemma is equivalent to

s 	 s 	 34)
k

] 	
3y

Y1.. r. E 	 E T4T: avk -577 for i and j = 1,2,...,s. 	 (21)

	

v=1 k=1 i 	 J
This is what we proceed to prove. By the deVnition of Al(a), we get

s 	
a*v3 	 a-57 yet) = E -73— A [fp(a)] 7-1.- , and

i 	 v 	 1=1 v , 

a 2 s s a 2
	) 4v 4k 	

s 	 3
2

1pvact aa 	Al to ..= E	 E ae ae Arip(a,"I aa aa -1- E a ae Atik(c)l aa.aa. e
i j 	 v=1 k=1 v k 	 i j 	 v=1 v 	 3. j

Using (20) and the definition of avk , we get (21). El
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-ives 1.1 22some simple arithmetic 	 j2 	 22 j22 	 = Ir22 I/1 11 1 =Z" Thus y

1j22 12.1E22 1/1j12.1E1 	IE 22 1/1ZI =a11 ,since 1J1 = Ij221"

where the zero stands for a lx (s-1) matrix of zeroes ,J21 stands for some (s-1)xl matrix,

and J22 stands for some (s-I)x(s-1) matrix. Partitioning E and r in the same way,
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The obvious application of this theorem is to transformations of parameters
A,

01 ,...,0
r 

for which maximum likelihood estimators01 ,...,0
r 
exist. Under very

A
general conditions, 0 will be asymptotically multinormal with mean e and a

. 1 -1covariance matrix-R 	 , where E is as defined above with A(0) as the logarithm

of the likelihood function. Applications to our Aa are immediate. Relation (20)

becomes E WO - X
a
L(a)1 0 for all aEa., which follows from (8).

6.2. It may often occur that one of the parameters, say el , is actually

not changed at all by the transformation 4), and thus 01 = al . It would be rather
A

unfortunate if in such a case the asymptotic variance of the estimator 01 were
A

different from the one of al . In fact it is easily shown that they are equal.

We let a
11 

denote element no. (1.1) in E-1 , and similarly for y11 .

Theorem: If in § 6.1 yal ,...,as ) 	 al , then y11 = a11 .

Proof: In this case J has the form

J
J
21 	j2

The results of the present chapter have been used in Hoem (1968), but it

has seemed preferable to present them in the more general setting of the present

paper.
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