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1. Introductioa and summary

Consider a time-ccutinuous Markov chain with a finite or countable
state space I and with time-dependent transition probabilities (Feller, 1957,
Chapter XVII.9). Assume that a number of independent sample paths of the chain
are observed over a period [0,x] with a view to statistical analysis of parameters
of the process. One may sometimes like to remove such sample paths as end up in
some closed subset R of the states in I by time x before carrying out the
statistical analvsis. We shall show that, on certain general conditions, the
remaining paths may be regarded as realizations of a new Markov chain over the

state space K=I-R, which we shall call the purged chain. By comparison to a

corresponding partial Markov chain, which we will define, we shall see that the
forces of transition of the purged chain generally differ from those of the
original one. If the original chain is time~homogeneous, the purged one need

not be so.

2. Blanket assumptions

If a sample path is in state i at time s, let Pij(s,t) be the probability
that it will be in state j at time t>s. Let PiA(s,t) = I Pij(s,t) for ASI,

.

J
The follewing ascumptions will be adopted to hold throughout the paper.

Assumpticn l: Ter =1l i and jeI,

P4j(s,t}33, Eoo(s,10ml for 0§s<t§x,
lim P,.(s,t} = P..(g,s) = 6., for any s¢|[0,x>
tvs 13 3 i3 y sefoe,
and P..{s,u} = I 2., {(s,t) P .(t,u) for 03s<t<usx.
ij ey K kj

Assumption 2: To every pair (i,j) of states where i#j there corresponds

a time-dependsnt force of tranzition

(1) uij(s) = lim 2,.(s,t}/(t-g) < » for sé[bsX>-

Assumpticn 3: To every state i there corresponds a time-dependent total

force of decrement

(2) p.(s) = lim {1-P,.(s,t)}/(t-s) < » for se[p,x>
1 tts 1L
(3) where ui(s) = I u,.(s).

jeI-i 3



We permit the possibility uij(s)->Oo (or ui(s)+m) as stx for some state
i and some j#i.

Let K and R be defined as in § 1, let H be the set of states in K from
which R cannot be reached,and let J=K-H. Of course H may be empty. Otherwise
H is closed. If H$@, we shall assume that also J$@ to avoid trivialities.

We wish to avoid that all sample paths end up in R by time x with prob-
ability 1. We also want to secure that some paths starting in K may enter R.

We therefore make

Assumption 4: TFor any it¢K and sg[b,x>, PiK(s,x)>0. There exists an

ieK and an sé[o,x> such that PiK(s,x)<l.

3. The purged chain

If all sample paths ending in R within time x are removed from the data,

the remaining paths have transition probabilities
(4) Qij(S,t,x) = Pij(s,t) PjK(t,x)/PiK(S,X)

for all i<k, jeK, 0Zs<t=x. Specifically

P..(s,t)/P. (s,x) for ieJ, j€H,

(5)  Qi(s,t,x) = ¢ 1K
J Py4(s5t) for i€H, jeK.

It is easily proved that the Qij(s,t,x) satisfy conditions similar to those in

assumption 1 with I replaced by K provided the following assumption holds:

Assumption 5: For any given jeX, PjK(.,x) is continuous from the right
in [0,x>.

Under this assumption, forces of transition satisfy

(6) Xij(s,x) lim Qij(s,t,x)/(t—s)

t¥s

. . <
uij(s) PjK(s,x)/PiK(s,x) for itj, i€K, jeéK, O=s<x.

As in (5), this formula simﬁlifies somewhat for ieJ, jeH, and for ieH, je¢K.

For each i€H a total force of decrement (relative to the Qij(s,t,x))
exists and equals ui(s). (Cf. the second member of (5).) To prove the existence
of a finite total force of decrement satisfying a relation similar to (3) in the
purged process for an i&J, more restrictive conditions seem necessary. Specifically,
if K is finite,
(7) Ai(s,x) = lim'{l—Qii(s,t,x)}/(t—s) = I .Aij(s’X)

t¥s jé€K-1
for all i¢K.

Obviousiy the sample paths removed from the data can be given a similar
treatment.



4, The partial chain

A third Markov chain can be derived from the original one in the following
way.
R is removed from the state space, which is thereby reduced to K. For

each i€K, j€R, the function uij(.) is substituted by 0. We make

Assumption 6: From the remaining forces of transition uij(.) with i and
j€K a Markov chain with state space K can be uniquely constructed.
We shall call this the partial chain corresponding to K. Its transition

probabilities will be designated ?ij(s,t). These functions constitute a
generalization of the partial probabilities of multiple decrement theory (Du
Pasquier, 1913; Hoem, 1968a). (Other names for the same concept are ‘'independent
probabilities" (Zwinggi, 1945), "absolute probabilities" (Jordan, 1952), and
‘met probabilities™ or ‘partial crude probabilities® (Chiang, 1961). Correspondingly
the Pij(s’t) are called “influenced probabilities’(Sverdrup, 1961), "dependent
probabilities™ (Zwinggi, 1945; Jordan, 1952), or ‘crudc probabilities’ (Chiang,
1961).)
It has some interest to compare the purged and the partial Markov chain.
Both are derived from the original chain, and both have state space K, but their
transition probabilities will generally be different. By (6) and assumption 6
the purged and the partial process are identical if and only if PiK(”X) is
independent of i for i¢K., In that case H must be empty, since otherwise
Aij(s,x) = uij(s)/PiK(s,x) > uij(s) for some iéJd, jeH, sé[b,x>, by assumption 4.
It is intuitively plausible that the two processes may be indentical

if the uij(s) are independent of i for ieK, je¢R. We prove

Theorem 1: Let K be finite and assume that for each jéR there exists a

function Yy (.) over [0 x> such that My ( ) = Yj(.) for all i€K. Let Yg =2 Yy

and assume that vg(+) is continuous in @ x>. Then Jer

(8) PiK(s,t) = exb{-é YR(T)dT}

for all i€k, 03s<t<x.

Proof: The Kolmogorov forward differential equation

8
e lj(s t) = “Hy (t) P (s t) + L Plk(s t)uk (t)
keK
holds for ieK, jek, 0Ss<t<x. Let ukA(t) = I ukj(t). Summat;on over all j
in K gives €A
)
5% Pik(sst) = - 2 u.(t) Pl (s,t) + I P, (s,tduy (1),

jex 3 kek *



Since Wy = MW = W vge We get

() -
T PiK(s,t) = YR(t) PiK(s,t),

from which the theorem follows. []

The partial probability §ij(s’t) need not have any interpretation at
all as a probability within the original process (Hoem, 1968a and b). In a
certain case this is different, however. Assume that the sample space has the
form I=MxN, where M is finite or ccuntable, and where Nﬁ{l,2,...,n} for some
positive integer n§2. Let N* ='{l,2,...,n—l} and assume further that the forces
of transition have the form

¢ij(s) for i,jeM,a=peN,

for i = jéM,aéNf B=a+l, and

H(1,0),(4,6)) 7 )"0l
0 otherwise.

(An cxample has been given by Hoem (1968b, § 3C).) We let P(i,a),(j,N)(s’t) =

BENP(i’a)’(j’B)(s,t), and have
Theorem 2: Let otN' and let R = {(j,B):jeM,B>a}. If the limit
¢ij(s) = tiz %(i,a)g(j’a)(s,t)/(t—s) exists uniformly in i&M, then

P(isa)s(jaa)(s,t) - P(i,a)s(jsN)(S,t).

Proof: Let ¢i(8) =1 ¢ij(s). By the assumpticns of the theorem we have
jeM
9
BE(E,0),(3,8) ) T P 0),(5,8) (S8 () T Py oy (,p)(Sot) O ()

keM-j

Pi,0),(5,8) 5 M50 + Py oy (4,8-1) (820005 g (1)

for all iéM, jeM, oeN, BeéN, with suitable interpretations when B=1 or B=n.

Summation over all B in N gives

)
B (1500, (3,00 T P00, (DO T L P ey e S0 (0

The theorem then follows from assumption 6. []



5. The time-homogeneous case

If the u; and the ujy are independent of s and Pij(s,s+t) = Pij(t), we have
Aij(s,x) = My PjK(x-s)/PiK(x-s),

which may genuinely depend on x-s. Even when the original Markov chain is

time-homogeneous, the purged chain may thus be time-dependent.

In this case, Qij(s,t,x) will depend on x-s and x-t, i.e. generally

not on t-s only.
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1. Introduction and summary

§ 1A. In the analysis of nuptiality it may be fruitful to regard a
marriage as a contract established in a "marriage market’ in which there is a
demand for partners and a supply of partners. In many respects the two sexes
enter symmetrically into this market. Rather than analysing marriage formation
unisexually, i.e. from the point of view of one sex only, a bisexual approach

therefore seems preferable.

§ 1B. In the present note we shall look into some of the basic concepts
relevant to such an approach. Our terminology will be quite similar to that
of birth-and-death processes. The most important concept introduced is a
function vij(m,k), called "the propensity to marry" for the age group conbination
(i,j), conditional upon a marriageable population with size paramters f and k.
We suggest that a bisexual theory of marriage formation be formulated in terms

of this concept.
§ 1C. Yntema (1954) has studied models closely related to ours.

2. A simple bisexual marriage-and-death process

§ 2A. Consider first a closed population observed during a period
[O,C]. Since real life nuptiality varies with age, any reasonably realistic
nuptiality model would incorporate an age concept in some form. For our
purposes it suffices to partition the population into suitable age groups.

Departing slightly from common terminology., we define an age group in
the following way. We partition the marriageable age interval [§O,w>

for males into intervals Exo,xl>,txl,x >,...,ExI_1,x >, with x.=w, and

let Eyo,yl>,Eyl,y2>,...,EyJ_l,yJ>with y = be corresponding i;iervals for the marri-
ageable females (As usual w is the highest possible live age.) The males who

at time zero have ages in the interval [xi_l,xi> will be taken to constitute

‘male age group i throughout the period [O,é]. At time £ "male age group i*

will then obviously consist of males at ages in the interval [xi_ 2% 4>,

1
Similarly for the females. In this way any person will remain within the same
“age group" throughout the period of observation. This approach is well

adapted to cohort analysis, and it will ease our presentation.



§ 2B. Let us concentrate for the moment on the subpopulation consisting
of all bachelors in a certain age group i and spinsters in an age group j.
The number of marriages formed within this subpopulation during [b,t] depends
on a series of factors, such as the number of marriageable males and females
in other age groups and the number of previously married persons in male age
group i and female age group j. To get a fairly simple mathematical model,
however, we shall disregard for the moment all such factors except the number
Mi of bachelors and the number Kj of spinsters in the subpopulation considered,

their mortality, and their propensity to marry.

§ 2C. As the period of observation progressecs, the number of bachelors
in the subpopulation will decrease because some bachelors marry and others die.
Similarly for the spinsters. Let Mi(t) be the number of bachelors left in
the subpopulation at time t, let Kj(t) be the similar number for the spinsters,
and let N,..(t) be the number of marriages contracted within the subpopulation
during the period [b,t].

We introduce a male force of mortality s, a female force of mortality

Yj’ and a "propensity to marry" vij(m,k). These will be defined as follows:
P{Mi(t+At)=m~l,Kj(t+At)=k, and Nij(t+At)=n|Mi(t)=m,Kj(t)=k, and Nij(t)=n}
=muiAt+o(At); (a male death).
'P{Mi(t+At)=m,Kj(t+At)=k~l, and Nij(t+At)=n|M_.(t)=m,Kj('t)=k, and Nij(t)=n}
=kyjAt+o(At); (a female death).
P{Mi(t+At)=m-l,Kj(t+At)=k-l, and Nij(t+At)=n+llMi(t)=m,Kj(t)=k, and Nij(t)=n}
=vij(mJ<)At+o(At); (a marriage).

The total probability for all other kinds of changes during <t,t+Af] is o(At)
when values for Mi(t), Kj(t), and Nij(t)have been assigned. (As usual
o(At)/At>0 as At>0.) Suppressing the indices i and j for the rest of this
paragraph, we let

P (t) = P{M(t) = m, K(t) = k, and N(t) = n},

P(t,x,y,z) = ¥ P (t) Xm yk Zn, and
mkn
m,k,n

k
Y(t,x,y,2) = I v(m,k)Pmkn(t)xmy z".

m,k,n
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Standard methods will then give the following relations:

d

at mkn ()

(v) = {mu+kY+V(m’k)}Pmkn(t) + (Ml)upm+lsk:n

+ (k+1)yP

m,k+l,n(t) + v(m+l,k+1)P (1), (2.1)

m+l k+l,n-1
2 9 9 z
E;P(t,x,y,z) =L&1—x)§§P(t,x,y,z) + Y(l-y)g-P(t,x,y,z) + (;; =1)Y(t,x,y,2), (2.2)

%iEM(t) -u EM(t)- SN () L EK(t) = -y EK(t)- ——EN(t)

* 4t
(2.3)
and g-mct) Iov(mkR (1),
t
m,k;n

The relations in (2.3) have an immediate interpretation in a deterministic

model.,

§ 2D. Our assumptions of constant forces of mortality are reasonably

realistic provided ¢ is not too large. To specify a set of values for v(m,k)

for the various (m,k) is in fact to give a theory of how people marry (in the

subpopulation under consideration). To establish such a theory must be one

of the main objectives of (bisexual) nuptiality analysis.

If such a specification were available, togcther with a specification
of the values of u and y, relations (2.1) and (2.3) would make it possible to find
the quantities EM(t), EK(t), EN(t), and Pmkn(t) for various (m,k,n,t) by
numerical methods, although this would in general be quite a task due to the fact
that there are four arguments in (2.1) (viz. m,k,n, and t).

If we wish to find closed mathematical formulae for EM(t), EN(t), etc.,
v(m,k) must be an exceedingly simple function of m and k,as is shown by the

following three examples.

§ 2E. Such a simple choice as v(m,k) = min(m,k) v, where v is a

parameter, is outside our reach as ¥ and giﬂN(t) will be too complicated for

serious treatment.

§ 2F. The choice v(m,k) = mkv makes (2.2) reduce to

2
d _ 3 ) 3
EEP(t,x,y,z) = u(l-x)ggP(t,x,y,z) + Y(l-y)§§P(t,x,y,z)+-y(z-xy)5;§§P(t,x,y,z), (2.4)

which appears insoluble by known methods. The last relation in (2.3) becomes
d

TeEN() = vE{M(t)K(t)}, which makes (2.3) equally insoluble.
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§ 2G. In case v(m,k) = I(mtk)v, (2.3) may be solved to give

EM(t) = {M cosh(}tx) - %I__VK'P(U‘Y)M]sinh(%tK)}e— Ft(vtuty)

a similar expression for EK(t), and

ENCE) = v(+){ (7 T-1)/r+(e%F-1)/s)

- %(v/n‘){u(mmar(u-y)(M-K)}{ (eFEo1)/p-(e5F-1)/s},

where Kk = ¢v2+(u-y)2 , = = 3 (v+ut+y)+k, and s = - L(vtut+y)-x. In this case,
(2.2) reduces to an expression quite as forbidding as (2.4), and no closed

expression for P_, (t) has thus been found.

mkn

§ 2H, These three choices for v(m,k) do not of course represent serious
attempts at formulating a theory of how people marry. We have presented them only

to give some indication of the mathematical difficulties involved.

3. Simultaneous analysis of all age groups

§ 3A. As we have already indicated, the model of chapter 2 has some
dcfects, the most immediate of which probably being the fact that it does not
take into consideration persons in age groups outside those on which interest
is focused. If bachelors and spinsters in the various age groups are regarded
as ‘goods" in a "marriage market”, we have thus left out of account the
possibility of substitution between the various kinds of "goods™. A more
realistic approach would consist in a simultaneous analysis of the nuptiality
of all age groups of bachelors and spinsters. (For ease of exposition we shall

disregard second and higher order marriages in chapter 3.)

§ 3B. Consider then our closed population with I age groups for
bachelors and J age groups for spinsters, and let the forces My and Yj of
mortality be defined as in chapter 2 along with the random variables Mi(t), Kj(t),
and Ni.(t), whose values Mi(O), Ki(o), and Nij(o) = 0 are known. Let
%(t) = {Ml(t),...,MI(t)},let ﬁ(t) = {Kl(t),...,KJ(t)}, and let ﬂ(t) be the
matrix (Nij(t)). Given that %(t) = m=(ml,...,ml) and 5(t) = §=(kl,...,kJ),
let Vij(m’k)At+°(At) be the probability of observing a marriage between a
bachelor in age group i and a spinster in age group j during the period <t,t,+Aﬁ].
We may call vij(m,k) the ‘propensity to marry’ for the age group combination
(i,j), conditional upon the values (ml,..., mI) and (k
vectors %(t) and 5(t).

l""’kJ) for the random
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To establish a theory for how bachelors and spinsters marry would then

be to specify values for vij(m,k) for the various Q,k,i, and j. Given such

a theory, one would be interested in finding quantities like the probability
distribution and expected values of M(t), K(t), and N(t).
V) n n

§ 3C. One may always give some more or less vague general statement
of probable effects of changes in the arguments ml,mQ,...,mI kl’kz""’kJ
If for instance mi‘°>mi' and kj">kj' for all i and j, one would expect each
Vij" = Vij(m",k") to be larger than the corresponding vij' = vij(g',k'),
simply because there are more marriageable people of both sexes in the larger
population. Similarly if mi"=mi' for all i while each kj" is considerably
larger than the corresponding kj', one would again expect each Vij' to be
smaller than the corresponding vij", because the marriageable men would have
greater difficulty in finding a wife in the smaller population.

These are scale effects. Substitution effects may be described
analogously: If mi" = mi“ for each i and kj"=kj? for each jts, while
kS">kS', each vis“ would be larger than the corresponding vis" while for
j%s cach vij" might actually be smaller than the corresponding vij" because in
the smaller population many bachelors who might have married spinsters in age

group s, must shift their demand for a wife to other (female) age groups.

§ 3D. Presumably a verbally formulated bisexual theory of marriage
formation would include +hese as well as subtler effects. In that case it
may be nice to have the aid of a precise concept like the function v, (m k)
when the theory is cstablished.

Perhaps such a theory is all that we can expect. It would not be
sufficient, however, if a probabilistic characterization of Q(t), %(t), and
N(t) is desired, as it would be e.g. in connection with a forecasting model.
ThlS would require the specification of a functional form for Vs (m k) To
give such a specification seems quite a task. In addition it is probably
outside our reach to overcome the mathematical difficulties involved in the
further analysis of I(t), K(t), and Q(t). It has scemed worthwhile nevertheless

to give the formulation above so that we can scewhatthe analyst is up against.

§ 3E. The concepts of § 3B invite a further interpreta%ion of some

functions of v, (m k) Let v, (m k) = I V..(mk), (m k) = £ v, (m k),
]=l 13 v l
r..(m,k) = V..(m,k)/ (m k) and s..(m,k) = Vs (m k)/v (m,k). Then
1] AT 1] A'n ij A’ N

vy (m,%)At+o(At) is the probablllty of observ1ng a marriage in <t,t+At] with
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the bridegroom in age group i, given that E(t)=m and 5(t)=§. rij(m,%) is the

probability that the bride belongs to age group j, given that such a marriage

has occurred and conditional on M(t)=m and K(t)=k. Vv .(m,k) and s..(m,k) have
N " LY 4 ] v 1] AT

similar interpretations.

§ 3F. An inspection of the argument in the present chapter shows that the
definition of an age group introduced in chapter 2 is not essential to the general
theory. If desired it may therefore be dropped in favour of the more common usage

of the term. (The results of chapter 2 build on our special definition.)

4, Extensions

In the previous chapter we consciously disregarded the fact that a person
who has been married, may return to the ''marriage market” in seach of a new spouse
after dissolution of the marriage. (Such a return would at the same time
constitute an offer to supply a new "good" in substitution of a bachelor or a
spinster, as the casec may be.) Introduction of such returns poses no real
difficulty for the concept formation. It is not essential to the theory that the
indices i and j refer to age groups, the main point is the distinction between
population groups with different mortality or nuptiality parameters. Thus i and
j may be chosen to simultaneously represent age group and marital status. In
principle other dimensions, like social status, area of residence, etc., may be
incorporated similarly.

The restriction to a closed population is superfluous and may be removed.

5. Acknowledgement
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1. Introduction

§ 1A. In the present paper a hierarchic time-continuous age- and
duration-dependent Markov process will be suggested as a nuptiality model.

In the model each person is characterized at each moment by age, marital status,
duration of current status, and number of marriages cxperienced.

We shall proceed as follows: The complete nuptiality model will be
presented in chapter 2. Various sections of the model will then be described
and discussed in chapters 3 to 5. In chapter 6 some further results on this
model will be listed. Finally chapter 7 contains a suggestion for modifications
of the model to comply with common data, as well as an indication of how
nuptiality and fertility could be studied simultaneously.

Estimation problems have been treated in previous papers (Hoem, 1968a

and b) and will not be considered here.

§ 1B. The model presented is unisexual, i.e. only ane sex is explicitly
considered, except in one segment (marriage dissolution), where both sexes
enter symmetrically during part of the argument. For the most part it is not
necessary to specify which sex is considered, and we shall generally consider
“persons" without further qualification. It is then understood that this refers

to persons of a single but unspecified sex.

§ 1C. In a unisexual model the opposite sex enters only indirectly
as a kind of shadow factor. In rezl life, however, the two sexes of course
play rather symmetric parts in the marriage process. It would therefore be
conceptually more satisfactory if this could be taken care of in the nuptiality
model as well (Henry, 1959, pages 12-13). We have previously made an attempt
at investigating a bisexual model for marriage formation (Hoem, 1968c).
Unfortunately the technical difficulties involved proved insurmountable.

The bisexual approach led to '"collective’ treatment of the marriageable
population in the sensec that all persons of the population were considered
simultaneously as interacting units. In contrast to this we shall now regard
the individual person (or in one segment the individual married couple) as a
unit operating independently of the other individuals in the population. Under
this approach many of the real problems met with in the bisexual theory are
glossed over in the hopz that they may prove less important after all. In
return the mathematics involved are greatly facilitated, and we are actually
able to find a solution within the unisexual model to many questions which went

unanswered or even unasked in the biszexual theory.
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§ 1D. Among the many previous authors who have studied similar problems
we may mention Winkler (1922), Wicksell (1931), Hyrenius (1948), Henry (1959,

1963), and Mertens (1965).

2. The complete nuptiality model

§ 2A. We classify the population by marital status and number of
marriages experienced in the following way:

Spinsters and bachelors will be said to be in state MO' Persons in
their k-th marriage will similarly be classified as being in state Mk’ for
k=1,2,...,m. We will alow at most m marriages to a person, in the sense
that marriages after the m-th will not be registered. Of course m will be
chosen high enough to cover most marriages.

Persons divorced after their k-th marriage will be classified as in
state Dk’ and widows and widowers after the k-th marriage are in state W, ,
for k = 1,2,...,m. Persons who have reached Dm or Wm will be registered as
staying there until death or emigration.

Let A be any of the states defined so far. A persons who dies while
in state A will be said to move to a state DA. Similarly an emigration while
in state A will be reflected in a registered transition into a state EA. Once
a person has been registecred as entering a state DA, he or she will obviously
stay' there forever after. Transitions into a state EA will be treated in
the aame way. Thus all states DA and EA are absorbing. All other states are
transient.

Immigration into the population will be permitted, but will be determined
extraneously to the model. For ease of exposition and although this is not
always realistic immigrants will be assumed to have the same properties as
the natives, and no distinction will be made in the model. Reimmigration of
a previous emigrant is possible and will be treated on a par with an “ordinary"

immigration.

§ 2B. As indicated already in connection with states of the form DA
and EA, transitions between certain states of the system are possibleé.
In fact this is what makes the model dynamic.

If a person marries for the first time, a transition from M0 to Ml
will be recorded. A subsequent divorce will be recorded as a transition from

state Ml to Dl‘ Similarly for the other kinds of events registered.
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Let B and C be two distinct states of the system. If it is possible

to experience a transition direct from B to C, such as from M

0 to Ml’ we

shall designate this by writing B+C. Otherwise B+<C,
The states of this system may be represented graphically as in diagram
2.1, where arrows indicate possible direct transitions. (Immigration has not

been indicated, but it may occur into any transient state.)

M %Never {__Dead DMO
married [————JEmigrate EMO

M 4 First = —»»)‘__P_?_a_,g__—i DM]_
marriage -~————-—aﬁmiggatem EMl
N
PN
S 1 & !
DDl L.lEfEl.,;‘ IDivorced | IWldowed EE:EEEE::] 1
ED, Emigratedi— | — BN
2 t’?‘econd DM2
arrlage [————Enigrated EM2
[ ] * ®
® e [ ]
] < f——————3 Dead DM
Mm m-th — ! m
ﬁml rate EMm
D W
m D . m
| e . — | DW
DDm [:EE%%E::]* Divorced Widowed Dead | m
ED_ [Emigratedé—— ———(Emigrated EW_

Diagram 2.1.
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§ 2C. Even when B74C it may be possible to reach C from B by transitions
via one or more intervening states. If B#C and C can be reached from B,
whether direct or not, we shall write B~»C. Otherwise B/(:C.

If B~2C in our model, then C%B. Thus we may call the system of

states hierarchical.

§ 2D. Consider a person who at age y+u is in a transient state B and
who entered this state at age y. We define PBB(y,u,t) as the probability
that this person will stay in state B at least until age y+ut+t. For any state
C where BasC we define PBC(y,u,t) as the probability that this person will
be in state C at age yt+ut+t. (If C is absorbing, this will be taken to mean that
state C has been entered within age y+u+t.)

Here y>0 unless B=M In the latter case, y must obwviously equal O.

O.
It is then superfluous and will be suppressed, so that we write e.g. PM C(u,t)

for PM C(O,u,t).
0

§ 2E. If B»C, we shall assume that the limit

lim P__(y,u,t)/t

tvo °C
exists and is a continuous function of u for any y and u with O§y<y+u<w, where
w as usual designates the highest possible live age. The limit will be

called the force of transition from state B to state C at age y+u and duration u.

We introducc the following names and dcsignations for the forces of
transition:

vo(u) is the force of primary nuptiality, i.e. the force of transition
from state Mo to Ml'

ka(y,u) and\@k(y,u) are the forces of remarriage in states D, and W,
respectively, for l§k<m.

6k(y,u) is the force of divorce and wk(y,u) is the force of widowhood,
respectively, in state M, , for lgkém.

uo(u) and no(u) are the forces of mortality and emigration, respectively,
in state MO.

Uk(Yau)s ﬂk(Y,u), uDk(y,u), nDk(y,u), MWk(y,u), and nwk(y,u) are the

. ~ . <, <
corresponding forces for states Mk’ Dk’ and W, ,respcctively, for 1l=k=m.

We interpret vo(u)Au+o(Au) as the probability that a u-year old un-

married person will marry within age utAu and stay in M, until this age. The

1
other forces have similar interpretations.
Forces of transition which depend on y and u, separately, rather than

on age attained (y+u), will be called select.
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§ 2F. Let B be transient, let B+ C, and let 5 be the set of states

consisting of C and all states that can be reached from C. We introduce

P .(y,u,t) = ¢ P_ (y,u,t).
BS pel BA

Dividing by t, letting t+0, and using the fact that %%8 PBC(y,u,t)/t =0
if BAAC but B#C, we see that %%8 PBﬁfy,u,t)/t equals the force of transition
from B to C. We shall need this result at several occasions in later paragraphs.

§ 2G. For any transient state B the limit

lim'{l—PBB(y,u,t)}/t
t+0

exists and equals the sum of the forces of transition out of B, by the

assumptions of § 2E. We shall call this limit the total force of decrement

from state B at age y+u and duration u., We introduce the symbols ao(u),
ak(y,u), aDk(y,u), and aWk(y,u) for the total forces of decrement from M,
Mk’ Dk’ and Wk, respe Then

ao(u) = vo(u)+n0(u)+u0(u),
ak(y,u) = dk(y,u)+wk(y,u)+nk(y,u)+uk(y,u),

and similar relations hold for ap, and an . We interpret ak(y,u)Au+o(Au) as
the probability that a person in Mk at age y+u and duration u will have left

Mk within age y+ut+Au. Similarly for the other total forces of decrement.

3. First marriage

§ 3A. The section of the model relevant for the never-married persons

is given in diagram 3.1, where Ml and all states which can be reached from Ml

Ja

"o

Never Dead | DN
arrled 0

Emigrated EM

Diagram 3.1.
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have been combined into a single state calledJ(l. We may regard this section

as a four-state Markov chain with the transient state 1, and the absorbing states

M

probabilities of this chain are

0
DMy, and EMO. If we use the symbol x for age attained, the transition

t t
(x,t)=exp{- (x+1)dt}, P (x,t)= [ P (x,1)v (x+t1)dT,
expi=f ag o MM 0

P
M OM 0 oMo

MO&i

t t
P, . (x,t)= S P, ., (x,7)u.(x+1)dT, and P (x,t)= 7 P, .
MODPIO 0 I‘JOL‘IO 0 MOEMO 0 MOL'IO

By § 2F the forces of transition are VosHoe and n

(x,T)no(x+T)dT.

0
Since the values of each of these probabilities are influenced by
all three forces of transition, we shall call them influenced probabilities.

(Sverdrup, 1961).

§ 3B. The sectional model of § 3A represents a common net nuptiality
table (Spiegelman., 1955, g.%.i; Grabill, 1945; Jacobson, 1959, pp. 76-82;
Schwarz, 1965) with the addition of emigration as a cause of decrement. The
various columns of a nuptiality table arise as follows.

From a cohort of 100 000 persons born alive,100 000 P (0,x) will

M M
00
be expected to remain alive and single at ag= x. Out of these, a proportion

P (x,1) will be expected to die while single, a proportion P (x,1)

MoPH, MEM,

will be expected to emigrate while single, and a proportion Py (x,1) will be

expected to marry for the first time during the age year following age x.

Of single persons at age x an expected proportion of PMdu.(x,w-x)
1

will ever marry (where w is the highest possible live age). Similarly a

proportion PM«%i(O’X) of the new-born will be expccted to marry within age x.
0
This quantity must not of course be confused with the expected proportion of

cver-married persons at age x, nor with the probability of being ever-married

at this age.

§ 3C. Although emigration plays some part in the life of most
national populations, this fact is commonly disregarded when marriage tables
are set up. In fact all published tables known to this author implicitly

(x,t) =

build on a model where n.z0. If we let ao(x) = vo(x)+uo(x), P
0

0
t

t MOM
expl{- é ao(x+T)dT}5 PMG&i(xst) z é L (x,T)VO(X+T)dT, and

00

P, . (2,0)u.(x+1)dr, the P,_(x,t) will represent the
1 OM 0 0 AB

P, (x,t) =
M ODM 0

O et
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transition probabilities of this implicit model. Since the values of all
§AB(x’t) are influenced by both Vo and Ho» but not by Ngs We shall call them
semi-influenced probabilities. If the nuptiality and the mortality among the

emigrants do not differ from those of the persons remaining in the population,

the ﬁAB(x,t) may be given an interpretation in the modcl scction of § 3A. While

Pmdgi(x,t) is the probability of marrying within age x+t while a member of the

population, §M0&i(x’t) is the probability of marrying within age x+t, no
matter whether this occurs before or after a possible emigration. The other
semi~influenced probabilities have similar interpretations. (For a proof, seec
Hoem (1968d).)

§ 3D. In a theory for the formation of first marriages, interest centers
on transitions from MO toJkl, and the decrements duc to death and emigration
represent elements of nuisance (Henry, 1959, 1963; lMertens, 1965). One
may wish to produce some measure of nuptiality which is free from the influence
of mortality and emigration. For this vo(x) is an obvious choice. It is
sometimes desired to have a measure with the dimensions of a probability,
however. Since both PM - (x,t) and fMdkl(x,t) are obviously inadequate, multiple

decrement theory then orffers the partial probability

t -
PMdkl(x,t) = l-exp{- é vo(x+T)dT}: 1-B, ¢ (x,1),

OMO
which represents the chances which a single x-year-old has of getting married
whitin age x+t provided mortality and emigration are inoperative in the meantime.

Gross nuptiality tables are based on this function.

Unfortunately PMdmi(x,t) has no interpretation as a probability in the

nuptiality model of § 3A. Instead it is a transition probability in a different

Markov chain, viz. one with the two states M andJkl only, and with v, as the

0 0

force of transition from MO toJ(l,

§ 3E. Let T be the remaining lifetime in state M, of a single person

0
of age x. Then T is a random variable. Its probability distribution is

F(x,t) = 1-P (x,t) in the model of § 34,
M OM 0

F(x,t)

1 (x,t) in the model of § 3C, and

-p
oM,

%(x t) = 1-P (x,t) in the model of § 3D.
2 MOMO

Since ?MOMO(x,w-X) will presumably be positive, F(x,t) is an improper

probability distribution.
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We shall designate the mean values of T in the two first of these distri-
butions by %O(X) and So(x), respectively. Then
w-x w=x
€y(x) = 1 By Ge,tdat = (1-F(x,t)ldt,

0 00 _ 0
and a similar formula holds for eo(x). Specifically 80(0) is the expected lifetime

as a single person for a new-born baby. A mean value for T in the distribution

F will be introduced in § 3F.

§ 3F. The mean age at first marriage (of a given sex) will be calculated

from population data by adding together ages at first marriages registered and
dividing by the corresponding number of first marriages. The quantity ensuing
is best interpreted as an estimate of a corresponding quantity within our
probability model. One might perhaps believe that this estimand is either
80(0) or 50(0), since mean age at first marriage is obviously equal to mean
waiting time until first marriage for a new-born. It is noteworthy that neither
of these suggestions is correct.

To get at the right estimand, we start by noting that PMO&E(Xaw-X)
represents the probability that an x year old single person will ever get

married. Given that such a person ever does get married,

»
F(x,t) =P (x,t)/P, .
MYy My

is the probability that this happens within age x+t. Thus Fx(x,.) will be the

(x,0-x)

distribution function of the waiting time until the marriage, and
w-x
eg(x) = S {1-F (x,t)}at
0

is the mean value of this distribution. The quantity estimated by the observed
mean age at marriage is eg(o).
Correspondingly, the median age at marriage x+m;(x) for an x-year-cld single
person who will marry, is defined by the relation Fx{x,mg(x)} = }, or equivalently
PMdMi{X,mg(x)} = %PMdkl(x,w—X).
eg(x) and mg(x) are influenced measures. Corresponding partial measures

are go(x) and ;O(X), defined by

éo(x) = w;x{l_é(x,t)/f(x,w—x)}dt,
0

and 3 (x,; (x)) = %5 C(x,w-x).
M 01(1 () Mg

§ 3G. Considerations like those of §§ 3C to F apply in each of the
sectional models of the chapters below. To avoid being repetitive we shall

not formulate them in each case.
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4, Marriage dissolution

§ 4A. We shall open this chapter by suggesting a bisexual model for
marriage dissolution, both because such a model has some independent interest,
and also because it provides an introduction to the unisexual model, to which
we shall return in § 4B,

If we want to preserve the feature of emigration in a bisexual model,
we must take account of the fact that the spouses need not emigrate simultaneously.
This will cause some trivial complication which have nothing to do with our
present argument. We shall therefore disregard the possibility of emigration in
§§ 4A and B.

Consider then a married couple where the husband is in his k-th and the
wife is in her n-th marriage. Let ut describe this by saying that the couple is
in state (Mk,Mn). If the husband dies while they are still married, the couple
will be said to move to state (DMkJD;). Similarly they move to state (ui;DMn)
if the wife dies and to state GDkfig) if they get divorced.

Let x and y denote the age at marriage of the husband and wife,

respectively, and let u denote thc current duration of their marriage. Transition

(MM ), (A,B

following forces of transition from (Mk,Mn):

probabilities will now have the form P )(x,y,u,t). We define the

to (DMk;wfn):uk(x,u),
to (ﬂE,DMn):ué(y,u), and
to @kS’Dn):ohl(x,y,u).

Thus the male force of mortality u, is assumed to be independent of

characteristics of the wife. Similarly foi the female force of mortality ug.
Forces of mortality are well known to depend on marital status, (see
e.g. Jacobson, 1959, p. 139), so we should at least distinguish between the
forces of mortality for the single, the married, the widowed, and the divorced.
Intuitively one would expect such forces to depend on the number of previous
marriages as well, as we have specified.
The common explanation of the lower mortality generally observed in
the married population than among single persons is twofold. In the first
place, marriage is thought to be selective as regards both physical constitution
and social adaptability. Secondly married life is considered to provide a
better environment due to the greater regularity of living (Thompson and Lewis,
1965, pp. 364-368).
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To the extent that the second explanation is correct, one would expect
the effect of married life on mortality to be gradually more pronounced as the
marriage proceeds. Thus there is a reason to use select forces of mortality
for the married persons. No harm is done in doing so even if these forces prove
to be non-select, for in that case one simply has uk(x,u) = uk(x+u), and
similarly for ué.

There is every reason to believe that the force of divorce %N is
select (Jacobson, 1959, p. 149).

Formulae for the transition probabilities are established quiite easily

and will be omitted.

§ 4B. We now turn to the unisexual model. For an arbitrary woman
in Mn whose age at last marriage was y and whose current marriage duration is
u we define a random variable X as the age at marriage of her present husband,
and another random variable K as the number of marriages which he has experienced.

The P ,¥sust) defined in § 4A may now be regarded as conditional

(M) 5 (2, 8)
probabilities,given that X=x and K=zk.

To characterize K and the age difference X-y we introduce the distribution
. <
Gkn(Z,y) = P{X-y=z,K=k}.

We then see that the transition probabilities for the wife have the form
m
4, = -
(4.1) PMnB(y’u’t) 2o T P ,Mn),(A,B)(x’y’u’t) dy Gyn (X7Y5Y)

where A is taken as M, if B=M_, A=DM, if B:ﬁ), A=W, if B=DM_, and ASD if
k n k n k n k
Béz%. The integral is taken over all possible values of x.

Dividing by t in (4.1) and letting t+0, we get

(4.2) wn(y,u)

Lm0 6 GeyLy) | and

1]

m
kgc S oo (xysu) 4 G (x-y,y),

(4.3) Gn(y,u)
while the force of female mortality will naturally turn out to be the ué(y,u) of
§ LA,

In the general case, these forces will be sclect, as one would expect.

One may be more surprised to find that the forcc wp of widowhood may be select

even when the male force of mortality is nonselect and independent of marriage

number, as we now proceed to show:
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m
Let G (z,y)=P{X-y§z} = £ G,_(z,y), and assume that p, (x,u)=u(x+u). Then
n k=0 kn k

(4.4) wn(y,u) = J u(y+u+z)dz Gn(z,y),

which will depend on y and u, separately, rather than only on y+u, as long
as the distribution function Gn genuinely depends on y. As long as the age
difference X-y at marriage has a distribution which depends on the age y of

the bride (Backer, 1965, p. 49), w will therefore be select.

§ 4C, Of course the roles of the two sexes may be interchanged in the
unisexual model of § 4B. The introduction of emigration is trivial. This
gives the section pertaining to the persons in Mn in the general model of chapter
2.

5. Remarriage

§ 5A. For the persons divorced or widowed after their k-th marriage

(k<m) the relevant model section is given in diagram 5.1.

/ Dead DDk
D

k _—

— 1
Divorced- 4Emigrated ED,
X(k+l
W —
|
Widowed : sEmigrated Ewk
\\\\\\\\
~> Dead DWk

Diagram 5.1.

The transition probabilities of this chain are

) t
PD D (y,u,t) = exp{-g aDk(y,u+r)dT},

k7k +
Pl (y,u,t) = S F (y,u,t)v,, (y,utt)dr
Dy o DD T Dk ’
P (yaust) = F P (youpdu - (y,ube)
ysu, = ysugdu y,utt)dr,
W, D, o W kY

and so on.
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§ 5B. There is a lot of evidence to the effect that forces of remarriage
depend on age at dissolution of (latest) marriage and duration since dissolution
separately (Roeber and Marshall, 1933; Pressat, 1956; Niessen, 1960; Clarke,
1960). There arc also many reports that remarrige rates among divorced men
and women differ from those of widowed persons (Spiegelman, 1955, p. 137 ;
Jacobson, 1959, pp. 70, 83-86; Backer, 1965, p. 60; Schwarz, 1965). Together
with mortality considerations similar to those of § 4A this has notivated our

model.

6. Some further results on the hierarchical model

§ 6A. While we have hitherto studied only scctions of the nuptiality
model of chapter 2, we shall now list a few results pertaining to the complete

model. These results are self-evident, and they will be given without explanation.

§ 6B. For any C inJK .

t
- AN -
OC(x,t) = é PMOMO(X,T)vO(x+t) PMlC(x+T,0,t T)dT.

For k=1,2,...,m,

t
p. . (¥ou,t) =/ Py (y,u,t)é (y,u+T)P (y+u+r 0,t-t)dT,
0, o MM Dy Py

and similarly if W, is substituted for D, . For any C which can be reached

k k
from Dk or Wk,

MkC(y,u ,t)= fPMkMk(y,u ,T){8 (y u+T)P ,C (y+u+T,O,t—r)+wk(y,u+r)Pwkc(y+u+r,O,t—T)}dT.

Similar relations arc easily established for all reclevant PD C(y,u,t) and

k
P (y,u,t).
WkC

§ 6C. Consider a person who is in state A at age y+u and who entered
this state at age y. The probability that this person will experience k marriages

altogether within the population equals

pk(y,u,A):PA,DMk(y,u,w—y-u)+PA’EMk(y,u,w—y-u)+PA?DDk(y,u,w-y—u)+PA’EDk(y,u,w-y-u)

(y,u,w-y-u)+P (y,u,w-y-u),

A Dw A Ewk
and the corresponding mean number of marriages equals ﬁkpk(y,Uﬂ\). Various kinds

of'partial means' corresponding to the reasoning of §§ 3C and D may be defined.

This concludes our study of “he hierarchical nuptiality model.
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7. Suggestions for modifications of the model

§ 7A. The model of chapter 2 may be modified in many directions to
serve various purposes. To indicate some of the possibilities, we shall suggest

two sets of such modifications, although without going into any detail.

§ 7B. It is one of the nice features of the above model that it is
easy to establish simple formulae for the transition probabilities, and that
one easily sees the intuitive content of these formulae. Some further simplifi-
cation willresult if the feature of select forces of transition is dropped so
that the attained age y+u may be substituted for the pair of variables (y,u)
everywhere., In fact non-select forces will probably be used more often (even
though this gives a less "realistic" model) becausc it is more expedient or
because the data contain no information about duration and thus make estimation
of select forces impossible.

The simplicity of the mathematics of this model rests heavily on the
fact that it is hierarchical. In a nuptiality model where marriage dissolution
and remarriage may occur,this feature is provided by the registration of the
number k of marriages experienced for each person. If this variable is deleted,

a non-hierarchical model results, and in such a model no closed formulae can be

established for the transition probabilities in the general case.

The sample space of such a nuptiality model has been indicated in figure
7.1. The forces of transition of this model may be regarded as averages of
corresponding forces in an underlying, more refined model, much in the same way
as Gn and 0 in § 4B (Stolnitz and Ryder, 1949).

ey
Never e
married ——Emigrated |

9 Pead ]
Married

Jzéf/;// )

Divorced Widowed
N M2 ~
go | J
Q b}
) ]
© ©
& [
e ARE:
0] (=] Q =
[=) | a o

Figure 7.1.
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§ 7C. One often wishes to study nuptiality in conjunction with some
other phenomenon, such as fertility, migration, social status, or religious
denomination. As an example we shall suggest some basic concepts of a
simultaneous study of nuptiality and fertility. For simplicy we shall use
non-select forces of transition, although in the case of fertility there are
stronger arguments than ever for using select forces.

Let some nuptiality model with state spacc I be given. Although I

will contain states like ‘‘dead” and "emigrated', we shall call any state in I

a marital state., We define Pij(x,t;k,n) as the probability that a person who
at age x has had k births and is in marital state i, will have n-k further
births withinage x+t (ngk), and will be in marital state j at that age.

We introduce the force of fertility at age x in marital state i and with

k births as the quantity

(x) = lim Pii(x,t;k,k+1)/t§

6.
ik 40

and a corresponding force of change of marital status

(x) = lim Pi.(x,t;k,k)/t.
o M

will be identically equal to zero, since direct transition

5k
Of course many Aijk
is impossible between many marital states.

A simultaneous analysis of nuptiality and fertility then consists in
a study of the forces ¢ik and the positive Aijk'
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1. Introduction

§ 1.1. Time-continuous Markov chain models with a finite or countably
infinite number of states can be applied to many problems in demographic
analysis. If i and j are two states (not necessarily distinct) of such a
chain, let Pij(x,t) be the probability that a person who is in state i at age x,
will be in state j at age x+t. For i}j we define

.. (x) = 1lim Pij(x,t)/t

1]
t+0
provided a finite limit exists. We shall call this quantity the force of

transition from state i tc state j at age x. Then uij(x)Ax+o(Ax) may be inter-
preted as the probability that a person who at age x is in state i, will move
to state j within age x+Ax.

As indicated by the notation, the force of transition may depend on the
age of the person in question. In demographic applications of models which
should be realistic over broader age ranges, it is probably nearly always
necessary to use age-dependent forces of transition. In applications to a
restricted age interval, however, it may often be possible to remove the
technical complication of age-dependence and to work with models where the
forces of transition arc constant parameters. In fact, even the calculation
of such quantities as age-specific fertility and mortality rates may be regarded
as an application of agc-homogeneous time-continuous Markov chain estimation
techniques to each of a number of age classes. The parameter values are then
assumed to be constant within each age class, but they may differ from one
class to another. After the estimation of the parameter values of each class,
they are sometimes graduated by some method, such as the Gompertz-Makeham
procedures in mortality investigations.

In the present paper we shall concentrate on age-homogeneous models.
Omitting the age x from our notation, we let Pij(t) be the probability that a
person will be in state j at time t>0, given that he is in state i at time zero.
Similarly the forces of transition are u.. = lim Pi.(t)/t for i$j. (For

existence theorems, see Chung (1960).) o

§ 1.2. We shall start by giving two examples of simple age-homogeneous
Markov chain models with applications in demography. We shall then formulate
a general model which will have these examples and a great many others as special
cases. In the general model we shall derive maximum likelihood estimators and
shall investigate some of their large-sample properties. Finally we shall give

some consideration to parameter transformations.
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§ 1.3. Estimation of the forces of transition has been studied by Zahl
(1955), Meier (1955), Billingsley (1961), Albert (1962), Sverdrup (1965), and
others. Many of our results are straightforward generalizations of similar
results given by Sverdrup (1965) for the special case of a three-state dis-
ability process.

2. Introductory examples

§ 2.1. (Work-force participation.)

1. In Out 2.
<
Y
\, //
Figure 2,1. \\ /
/
3.
- Dead

Our first example will be a three-state time-homogencous Markov chain, which we
suggest as a model for work-force participation. A person is said to belong to
state 1 if he is a member of the work-force, he will belong to state 2 if he
does not work, and he moves to state 3 if he dies. Possible transitions are
suggested by arrows in figure 2.1. We assume that all forces of transition
between the states may be regarded as constant parameters for the age range

studied. These forces are

the force of ‘unemployment"” v,
the force of ‘re-employment" p, and

the force of mortality u.

It will be understood that the names of these parameters have been introduced
as mnemotechnical devices only, and that e.g. the definition of an unemployed
person does not have to coincide with that of ordinary labour force statistics.
For various reasons we have defined a single force of mortality valid for
persons both in state 1 and 2. Thus we assume that there is a common mortality
for the employed and the unemployed. It is not difficult to generalize to a
model in which a distinction is made between the mortality of the two groups
(Sverdrup, 1965).
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We introduce

P..(t) = (p+ve_(v+p)t)/(v+p), 512(t) = v(l_e-(v+p)t)/

11 (v+p)>

-(vtp )t

(t) = p(1-e

Pa1
It may be shown that Pls(t) = st(t) = l—e_ut, and that

)/ (vt+p), and ?22(t) = (v+pe-(v+p)t)/(v+p)-

P..(t) = P,.(t)e "Y'  for i and j o= 1,2. (1)
ij ij

Here §ij(t) would be the probability that a person will be in state j at time t,
given that he starts in state i at time zero, provided there is no mortality,
so that u=0. By analogy with the terminology from mortality investigations, we

may call the ?ij(t) partial probabilities. In contrast to the §ij(t), the

Pij(t) are influenced by the value of W, and we may call the Pij(t) influenced

probabilities. (This terminology is a natural generalization of definitions due

to Du Pasquier (1913) and Sverdrup (1961). In more common %%%%Tbrtunate terminology,
the ﬁij(t) and the Pij(t) would be called independent and dependent probabilities,
respectively.)

Formula (1) shows that the Pij(t) are derived from the §ij(t) by means of
a simple mortality correction. This nice property is due to the fact that we
consider mortality to be equal for the employed and the unemployed. When a
distinction is made between the mortality of the two groups, no such simple

relation exists.

§ 2.2. (A simple fertility model.)

In applications to a narrow age range, it may not be too unrealistic to
assume that fertility and mortality are age-independent. Various models will
then be applicable. Hoem (1968) studies in some detail a particularly simple
one, which we shall use more briefly as our second cxample.

Let Pk(t) be the probability that a parent will have k births during
time [0,t] and still be alive at time t, and let Qk(t) be the probability that
a parent will have k births during time [b,t] and dic within time t. We
assume that mortality is independent of the number of births experienced, and
let u be the force of mortality. Similarly we assume that fertility is
independent of the parity and spacing of the births, and designate the force
of fertility by ¢. Thus, no matter how many births a parent has had during
[0,t] and regardless of when they have arrived, the probability of another
birth during the time interval <t,t+At] is ¢At+o(At), provided the parent is
alive at time t. It may be shown (Hoem, 1968, § 4.1) that
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k
P (t) = ﬁg&%_ et e 0,1,..., and
k
_ 1, uok+l _ 1 (u+)t\v ~(u+d)t -
Qk(t) = E'(i?E) {1 vzo VT'(__E—'") e } for k = 0,1,... .

In the present model there is a double infinity of states. We may say
that a parent is in state (k,1) at time t if the parent has had k births during
[0,t] and is alive at time t, and that the parent is in state (k,2) at time t
if he or she has had the same number of births during [b,f] and is no longer alive

at time t. Then Pk(t) = P(O,l),(k,l)(t)’ and Qk(t) = P(O,l),(k,Z)(t)' One-step

transitions are possible from (k,1) only to (k+l,1) and to (k,2).

The forces of these transitions are ¢ and u, respectively.

3. A general model

§ 3.1. Let us study a time-continuous finite or countably infinite Markov
chain with constant forces of transition. To get a reasonable model, we shall

make the standard assumptions that I Pij(t) = 1 for all téo, and 1lim P..(t) = ¢
3 t+0

ij?
where Gij is a Kronecker delta.
The force of decrement from any state i will be defined by
w. = 1im {1-P,.(t)}/t. We shall assume that for all i, O z U, < » and
40 1 .

H. = I HU...
Pk

(2)
Such assumptions automatically hold in a finite-state chain, but not necessarily
in a chain with a countable infinity of states.

A state is called absorbing if w, = 0. It is impossible to leave an

absorbing state.

§ 3.2. Intuitively an individual sample path may be visualized as a
person moving through (some of) the states of the system. We shall consider a
situation where K persons are kept under observation, not necessarily
simultaneously, nor need the periods of observation of all persons be equally

long. For convenience we shall designate the period of exposure of person no. k

by the time interval [b,zk], where the exposurc time 2) for the time being will
be taken as a precassigned finite positive number. This should be understood as

follows: At some time z' (measured by ‘ordinary" time, e.g. in years and parts

k
of a year A.D.) we start observing what happens to this person, and we go on

observing right up to time zﬁ tz . At this moment observation ends, either

because the observer decides to stop, or because the person under observation
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is removed from observation by some cause extraneous to our model. Periods
spent in absorbing states (e.g. after the death of the person observed) is
included in the interval [ié, zi + zk], although of course no actual observation
is made after a person has entered such a state.

In many cases there is a certain state of the chain from which all
sample paths must start at time zero. In our fertility model (§ 2.2), for
instance, every path starts in state (0,1). This feature is not common to all
the models which we wish to cover by our theory, however, and we shall designate
by Py the state from which sample path no. k starts out. For the time being
we shall take also all p

k
The sample paths corresponding to the K persons will be assumed independent.

as preassigned.

§ 3.3. Under the assumptions mentioned above, it is possible to prove
that the number of states visited (and thus the number of transitions experienced)
by any person during his period of observation, is finite with probability 1.

Let Nk(i,j) be the number of transitions direct from state i to state j
experienced by person no. k, and let Uk(i) be the total time spent by him in

state i. Then

K
n n n . . - . . . - .
PLA NN [N GLI) = n61) and u (1) <O (1) <y (@) + dy ()]}
k=1 1 j
(3)
zexp(- 2 w1 123 au (1) ... au (i)
. 1 . . 1] 1 K
i i 3
K K n(i,j)
with n(i,j) = £ n (i,j) and u(i) = ¢ uk(i). Here y0.%237 is intepreted as 1
-4 K - 1]
k=1 k=1
whenever “ij = 0. In what follows we shall disregard those uij that are
identically equal to zero by the definition of the model, such as Moy and Hao

in our model for work-force participation.
As shown in the examples of chapter 2, all “ij need not be distinct. We

shall assume that there exists a finite system of‘parameters’{ka:a = 1,2,...,A},

such that each uij equals some A_, and such that for each a€ {1,2,...,A},

Hij

independent when a%a’. The specification of the Aa is not necessarily unique.

= Aa for some (i,j). For simplicity Aa and Aag will be assumed functionally

We let 4= {1,2,...,A}. For each a € & there is a set of pairs (i,j) such

that v.. = 2 . We introduce
ij a

K
(a) = b) N (i,3), and M(a) = I (a).
B {(i,j):u.j=la} k k=1 g
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§ 3.4, By (2) and the assumptions of § 3.3 thcre exists a finite system
of parameters'{Yb:b=l,2,...,B} with B§A, such that each My equals some Yy 0 and
such that for each b¢ B ='{l,2,...,B}, MooT Y for some i. Each parameter g

will be the sum of a selected number of the pgrameters Xa. We may write
A
Yo T LMy for each b, (%)
a=l
where each %a equals the number of times (possibly zero) which Aa is a member

of the sum constituting the My that equals Yy, - We shall assume that for any
given specification of the Aa’ the Cp, are uniquely defined finite numbers. The
matrix (cba) will be designated by c.

For each i, let b(i) be defined by My T Yoy Then cb(i),a is the
number of times that “ij = %a when j runs through all its possible values while
i and a are kept fixed.

For each b€ B we introduce

K
Vi (b) = z U (i), and V(b) = v, (B).

i M=) k=1

§ 3.5. Passing to random variables, we secc that the likelihood in (3)

may be written in the form

A ua) B
A= I Ay . exp{- ¢ YbV(b)} (5)
asl b=1
It will prove convenient to introduce
B
l i
B
and L(a) = Z Lk(a) L ey V(b) whereby
l
A A
A= T M=) . exp{- I L(a)}
a=1 a=1 @

The next three paragraphs contain examples for illustration.

§ 3.6, In the model for work-force participation (§ 2.1) A = 3, Hyp = Vs
= 0. (State 3 is absorbing.) Thus the

Ho1 T P> Mg = Hog 31~ Va2
set of parameters Xa consists of v, p, and u. M(1) is the number of transitions
(among the K persons) from state 1 to state 2, M(2) is the number of transitions

in the opposite direction, and M(3) is the total number of deaths observed.

=y, and u

We have B = 2, V(b) is the total living time observed in state b (for b = 1,2),
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) _ . . (lo1
= v+, and v, = p+u . The matrix ¢ = (c, ) may thus be written c “(é 1 ;)'
V(1) + v(2).

Y
1
Finally L(1) = V(1), L(2) = V(2), L(3)

§ 3.7. In the fertility model of § 2.2, A = 2, u(k,l),(k+l,l) = ¢, and
M(k,1)(k,2) = M for k = 1,2,..., Mg = 0 otherwise. Thus A; = ¢, X, = M. M(1)
is the number of births and M(2) is the number of deaths observed. We have B = 1,

and V(1) = L(1) = L(2) is the total lifetime observed. = u, and ¢ = (0,1).

y
1
A1l states (k,2) are absorbing.

§ 3.8. Without offering any “real-life" interpretation, we shall also

_
-
]J (0

Figure 3.8. 1 : 2 y

study the folloWing simple example.

There are four states. The possible direct transitions and the corre-
sponding forces are indicated by arrows and greek letters in figure 3.8. If
person no. k starts in state 1 at time 0, his likelihood is

Nk(1,2)+NkCL53) Nk(2,4) Nk(3,4)
A, = o B exp{-2uUk(l)-aUk(2)-BUk(3)}. Thus

A=3, M3, A,Ta, A =B3 BE3, ¥o72M, v,70, Y,=B3 M(1)=N(1,2)4N(1,3), M(2)=N(2,4),

M(
M(3)=N(3,4); V(b)=U(b) for b=1,2,3; and :(?
0

)=N

00
c 1 0f. Finally L(1)=20(1),
01

L(2)=0(2), and L(3)=U(3).

§ 3.9. If =T, the expected total time spent by person no. k in
state j equals
Zk
E Uk(j) = g Prj(t)dt,
and his expected number of transitions from state i to state j equals
Zx
E Nk(i,j) = é Pri(t)uij dt = “ijB Uk(i).

The values of E Vk(b) and E Mk(a) are obtained by summation over the corresponding
values of E Uk(i) and E Nk(i,j), respectively. We get
E Mk(a) = ) T E Uk(l) = Aa i cb(i),aE Uk(l).

a ;.. - _
{(1,] ).uij—la}
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By (6), thereforec,

EM(a) =) EL(a) (8)
for all k and a.
§ 3.10. In our model for work-force participation we get
z . -uz =(v+p+u)z
I Py (0)dt = {o(2-e ) urv(i-e TP A vro ) 1 (vh0)s
0
z : -uz =(vtp+u)z
I Plz(t)dt = vi(l-e "T)/u-(1-e PTHIZY / (vip+u)} /(v4p), and
0
z -uz
[P ()dt =z - (e ")/
0
Z
Formulae for [ PQj(t)dt are obtained by exchanging v and p above. (8) also
0

gives the relation | EM(1) = v. EL(1), EM(2) = o EL(2), and EM(3) = u EL(3).

We shall not care to consider our fertility model at this point.

4. A further study of the derived model

§ 4.1. Ve shall now concentrate on the model defined by (5). Tris is
a Darmois-Koopman class of distributions. To avoid unnecessary peculiarities,
we state as an assumption that all M(a) and V(b) be essentially linearly
independent. (This can always be achieved, by rcparametrisation if necessary.)
We also assume that the matrix c = (Cba) has rank B. (We note that BéA, so the

rank of ¢ cannot exceed B.) We introduce

J-ln A for a
o

g =
@ .1\-~ for a
/a-A

where 1n stands for the natural logarithm, and let B= (B

1,2,..4,4,
(9)

A+1l,...,A+B,

l""’BA+B)'
Theorem: The 8u are linearly independent.

Proof: We wish to prove that if there exists a set of coefficients

A+B
X1s RpseeesX, o Such that azl xasa = 0 identically in 8, then X1=x2""-xA+B_0'

Equivalently this identity can also be written as an identity in the Aa in
the form
A A B

I ¢, X R
a b=1 ba A+b
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Diffcrentiation with respect to Xa gives

B
/A S ¢ X
a b=1 ba A+b

as an identity in Aa. Since the right hand side here is independent of Aa’ we

X
a

must have xa = 0, and

B

I ¢ X =0
b=1 ba A+b

for a = 1,2,...,A. In matrix form this is

( )c = 0. (10)

TS AR %
Since c has rank B, there exist B distinct elements il,...,iB in B such that

the matrix

Co. 50ee3Co.
" 11l llB

C - soeve0 000000

c s )C..’C e
Bll B1B

has rank B. (10) implies (x et = 0, whereby x = 0 for all béf. E]

A+1°° " "A+B A+b
By general properties of Darmois-Koopman classes of distributions,

M), ..., M(A), V(1),...,V(B)} is ‘then a minimalosufficient_statistic...

§ 4.2, It is typical for demographic models that they must account for
mortality. In our general model, this feature would be formalized by the
introduction of the requirement that for each non-absorbing state i there
exists an absorbing state i' such that uii,>0. In such a case, Nk(i;i‘) equals
0 or 1 for each k.

Obviously i’ need not be uniquely defined. We may for instance distinguish
batveen various causes of mortality, between mortality and emigration as causes
of decrement, etc., in which case i' may be chosen at will from a number of
states.

The model of § 3.8 does not fulfil this requirement, since from state 1
one may pass direct only to states 2 and 3, none of which are absorbing. On
the other hand any sample path may pass from state 1 to state 2 (or state 3)
at most once during any period of observation. It will turn out (in the proof
of the theorem of § 4.4) that we shall frequently prefer such a feature in our
models to the more restrictive requirement that it always be possible to pass

direct into an absorbing state.
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Passing to the Aa’ we shall therefore often make the following
Assumption: For each b¢éBthere exists a known, finite integer k(b) and
2 1 and such that A

an a¢ (L, say a(b), such that only represents one

°b,a(b) a(b)
or more forces of transitions that can be made at most «k(b) times altogether
in any sample path. In other words 0 : Mk(a(b)) S «(b) for any k.

In the examples of §§ 3.6 and 3.7, u has this property. In § 3.8, both
u, o, and B have this property. In § 3.6, a(1l)=a(2)=3; in § 3.7, a(1l) = 2; and
in § 3.8, a(b) = b for b = 1,2,3. In each case, all «(b) = 1.

Under the above assumption,

0 = M(a(bd)) £ Ke(b) for all b. (11)

§ 4.3. 1In the proof of the theorem of § 4.4 it will also turn out that
we shall sometimes want to make the following

. ) s
Assumption: For each b and b e, ®b1,a(b) - “b,a(b)’

Thus we assume that it is possible to choose each a(b) in such a way
. . 0
that cb,a(b) is the maximal member of the column (clsa(b)’ c2,a(b)’°"’CB,a(b)) .
This is obviously the case in our three examples.
Many of the results below do not use the assumptions of §§ 4.2 and 4.3.

We shall therefore explicitly state when a proof is based on these assumptions.

§ 4.4, As can be seen e.g. in (3), the likelihood in (5) is a density
with respect to some measure ¢ over the sample space @, We will take it to be a
proper probability density so that
B

A
S 1 Am(a) exp {- Z vy, v(b)}lo =1 (12)
a b
 a=l b=1

for all Aa > 0, a€¢0. Introducing

M(e) for o = 1,2,...,A,

W(a) =

1]

V(a-A) for o = A+l,...,A+B,

we see that (12) may also be written in the form

A+B
Jexp{ & Baw(a) }do
Q aszl

for all 6613, where/b is the parameter space of the present model. ThusTB is

1 (13)

the part defined by (9) and (4) of the Euclidean space RA+B' Let us now dis-~
regard (9) and (4) for a moment. The integral in (13) may converge (not
necessarily to 1) also for B éf?. We defineBx as the set of those Bé‘RA+B for
which the integral converges. Obviously BQQ\JX.
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Theorem: Under the assumptions stated in §§ 4.2. and 4.3, all points
1n1§ are interior points 1nj§x.
Proof: As proved by Lehmann (1959, p. 51), XB is a convex reglon. We

choose a fixed set of positive values for the A 2’ and let BA

for all bék/.
(i) Let B = (Bl,ooo,B

+b a= lcba a

7
A+B atby < Pas bof°r a b0673’

A+B .
B8 = B!'  otherwise. Thenexp { I B w(a)} Sexp{ = ‘Kd)+B
A+b A+b - P a:l:A+b0

As the right hand side here is integrable with respect to o, so is the left hand
. ®
side, and BE?

(ii) Then let B'' = B7 +c A A_, and let B b
Atby T Atbg bO’a(bO) a(bg) ~ a* (b ) b aa’ € as

), with Ba = 1ln Aa for all a€(, B

itbyg w(A+b0)}.

' Le
under (i) with the single exception that BA+b0 8A+b0 BA bO t
1 - - = 1 =
Aa(bo) = (BA;bo 6A+bo)/cbo,a(b0)’ A A otherwise, and let ¥ Aa(b )/Aa(bo)
A
Then ¢ > 1, and exp { I B w(a)} it 7 am@) m(a(bo)) (A,)m(a) z
a=1l a=1 a=l a
K (bp) m(a) b a(bo) 19 X
o0 (A') , by (11). Furthermore, z M T (sA+b “Bpsb )-BAD
a=1 a=l1 bO’a(bO) 0 0
A+B )
: “Bash by the assumption of § 4.3. Thus exp { L 8 w(a)}
wKK(bO) (A,)m(a) p{ - g w(A+b) ? c. A'} 51nie B = - g c, A= - g c, A!
o= e*P N “ Cpa’a’l SIMCE Payp  ®pata “ Chata
=1 b=1 a=l asl a=

when b # bO' By (i) above we therefore get Bé}3x. From this the theorem
follows. []

§ 4.5, The following result is a simple consequence of theorem 2.7.9
by Lehmann (1959, p. 52):

Theorem: Let h be any bounded real integrable function over the sample
space £, and let

A+B
hY(B) = f h(w) exp { 2 B w(a,u)}do(w)
B o=l
be considered as a function of the complex variables B Ba + isz

(for o« = 1,2,...,A+B) with BC—‘Bx Then h™(8) is an analytic function in each
argument for which 8 is an interior point ofﬂgx. The derivatives of all orders

with respect to the Ea may be computed under the integral sign.



43

By introducing various choices of h, differentiation of n* may give a
series of interesting formulae. We shall restrict ourselves to the case of
h = 1. By (7), formula (12) may also be written in the form

A m(a) - A
S m o exp {- £ Aazca)}do = 1.
Q a=1 a a=l

Under the assumptions of §§ 4.2 and 4.3, differentiation with respect to the

Aa then gives

E M(a) = A E L(a), (14)
E {M(a) - AaL(a)}2 = E M(a), and (15)
E {M(a) - kaL(a)} {M(a?) - AaqL(a')} =0 forata. (16)

Formula (14) also follows from (8), which holds under more general

assumptions.

5. Estimation of the Aa

§ 5.1. If we take all M(a) and L(a) as given, L may be partitioned
into the set Gb of those a¢ (. for which L(a) = 0, and the set O,+ of those
a for which L(a) > 0. Since M(a) = 0 if L(a) = 0, the A of (7) may be written

in the form

A= I Ag(a) exp {- I AaL(a)}.
aéﬂ_.+ aéﬂ;

Thus A is maximized by

A, = M(a)/L(a) for all ae(l;,

while for aéfab there is no particular value for la which maximizes A. We
shall arbitrarily choose A, =0 if aéfab.

If for an at& & there exists a k such that Aa =y 3 for some j, thzn
P{L(a) > 01 = 1, and the possibility that aélLb poses no real problem. In
this case Aa is a maximum likelihood estimator. Otherwise we may find that
P{L(a) >0} < 1, in which case a maximum likelihood estimator for A is not
defined.

The following paragraphs study asymptotic properties of the ;a as
K =+ « under the blanket assumption that no z, cxcecds some finite positive

number ZO'

k
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§ 5.2. Let M(a) = M(a)/K and I{a) = L(a)/K. For each a, Ll(a),...,LK(a)
will not generally be identically distributed unless all 2z have the same value
and all r, are equal. We shall not make such an assumption. Nevertheless the
following theorem holds.

Theorem: Let aé{l. Assume that

(i) a finite positive limit La = 1im EL(a) exists, and
. (ii) P{L(a) > 0} » 1 as K » =, Ko

Then Aa is consistent as K + «
Proof: By (6), Lk(a)

B B

z, bfl s = 2o bil Cha® SO ELk(a) and var Lk(a)

exist and the latter is majored by some finite value 02. By Tchebycheff's

HA o
HA

inequality,

P{|L(a) - EL(a)| <€ } 2 1- var i(a)/e2 231 - 02/(Ke2)

for any € > 0. Fopr K = K€, |EL(a) - Lal <-§, and then

A

UL - 1| < e} 2 p{|ia) - BL(@)| <5} 21 - 402/ (Ke?).

Letting K » » we see that plim L(a) = La'
It is possible to show that also var Mk(a) will exist for any k. We

invcke (8) to sec that EM(a) = AaEﬂ(a).‘ Thus Mé= lim EM(a) = A L_ exists
aa
ol 1seta- : L Lo AT T
as a finite limit. By an argumént quite similar to the one abovc, -

plim M(a) = A L .
aa’

Thus, for arbitrary positive n and 6, P{F} > 1 - &/3 and P{G} > 1 - §/3
for K > Kl(n,G), where F is the event that |L(a) - Lal < n and G is the event
that |M(a) - AaLal < n.

Let H be the event that L(a) > 0. By assumption, P(H) > 1 - §/3
for K > KQ(G).

Since the real function ¢(x,y) = x/y is continuous in (x,y) for all
y ¥ 0, the event FAGNH implies the event HNI with I = {|M(a)/L(a) - Aa] < e},
if n

HA

n no(e) for any € > 0. With such a choice of n, therefore,
?{[Aa-AaI < €} 2 P{L(a) > 0 and |M(a)/i(a) - xal < g} = P{HAI} 2 P{FnGnH}=
1 - P{FuGUR} = 1- {P(F) + P(G) + P(H)} = P(F) + P(G) + P(H) - 2 > 1 -8,
provided K > K (€,8) = max {K (n (€),8), Ky(8)}. ]

v

§ 5.3. In all previous paragraphs the exposure times zl,...,zK‘were
regarded as fixed numbers. In certain situations it is possible to interpret the

z, as values of random variables Zl’z2""’ZK which are stochastically independent

and identically distributed with some distribution function G, where G(0)=0 and

G(zo)=l for some finite z >0. We will then say that the z are G-random for brief.

A special case is the situation where it is known beforehand that all 2y will equal

some preassigned positive number z, as we may then let P{Zk=z}=l for all k.
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§ 5.4. When the z, are G-random while the r, are preassigned, the

likelihood will have the form A® = AdG(Zl)dG(ZQ)...dG(ZK), where A is given
by (7). If G is completely specified, the "maximum likelihood" estimators of
the Aa are still given as in § 5.1. If G is only partly specified, maximum
likelihood estimators for the Aa may or may not exist. As long as G is independent
of the Aa’ however, ‘partial maximation® of A* with respect to the Aa may be
carried out as in § 5.1.

{M(1), ... MCA), V(1),...,V(B), Zy5eees2 ) will be sufficient, but not

necessarily minimal sufficient, no matter what is known about G.

§ 5.5. Even when the z, are preassigned, it may be possible to interpret

.,r,, as values of random (not necessarily real-valued)

1°°° K

the initial states r
variables R which are stochastically independent and identically distri-

l,...,RK

buted with some distribution L P{Rk = r}. We will then say that the r, are

m-random. Again v = r is a special case.

Finally the pairs (Zk,Rk) may be independent and identically distributed
random variables with a distribution given by H(z,r) = ?{Zk S 2 and R = r},
in which case we shall say that the (zk,rk) are H-random.

Considerations quite similar to those of § 5.4 pertain if the r, are
T-random and if the (zk,rk) are H-random.

We note that formula (8), the results of §§ 4.4 and 4.5, and the theorem

of § 4.1 hold as stated even when the z, are G-random, when the ry are T-random,

and when the (zk,rk) are H-random. So ]c;oes the theorem of § 5.2, but in the case
of H~randomness its assumptions (i) and (ii) hold almost automatically, and under
G~randomness they follow from some other assumptions, as we shall see below.

The two first formulae of § 3.9 give conditional expected values.

In the two following paragraphs some effects of G- and H-randomness are

investigated. We shall not give m-randomness any further consideration,

§ 5.6. (G-randomness.) In the case of G-random Z) and preassigned r ,

we shall assume that there is a finite number of possible initial states SpseeesS

c

k
number of elements ijﬁk% when there are K sample paths in all. We note that for

each aé{, and each ¢, all Lk(a) with ké&]ﬁc will be identically distributcd.
Similarly for the M (a).

We shall assume that a, = lim SC(K)/K exists for all c.
K>

so that each r, must equal some s5,. We letlz; ='{k:rk = Sc} and let Sc(K) be the
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Theorem 1: Under the assumptions stated above, Aa is consistent as Ko
provided there exists a ¢ for which P{Lk(a)‘> 0} >0 ifl<61% and where SC(K) > @
as K > o,

Proof: Letting

e,(a) = EL (a) for ke X, (17)
we get

_ c c

EL(a) = cil Ec(a) SC(K)/K *’czl acec(a) =L, (18)
so (i) of the theorem in § 5.2 holds. Let p_(a) = P{Lk(a) = 0} for kEE?f;.

c
Then P{L(a) = 0} = Hl’{pc(a)}SC(K) (with 00 interpreted as 1). Let c be given as
cs

in the theorem. Then'pc(a) <1l. If pc(a) = 0, then P{L(a) = 0} = 0 for large
ecnough K. If pc(a) > O,'{pc(a)}SC(K) + 0 as K+~ ., In any case P{L(a)> 0}
+ 1 as K+ », Theorem 1 then follows from the theorem of § 5.2. []

We now turn to the asymptotic distribution of the ;a as K+ o, Let AV
consist of those a¢ (. for which P{L(a) > 0} +1 as K »=, By a suitable enumeration
we may assume that &' = {1,2,...,A'}, with A' S A. Ve shall not consider the
Xa for which ae¢ Q.- Q.

Theorem 2: Under the assumptions stated above theorem 1, the vector
VK (Xl—xl,...,iA,—AA;) is asymptotically multinormal with mean 0 and some
covariance matrix I.

Proof: Let L(a,c) = I L (a), let L(a,c) = 0 if S (K) = 0, L(a,c) =
— ké.Yc k [od

L(a,c)/Sc(K) otherwise, and let M(a,c) and M(a,c) be defined similarly. Then

YK{M(a) - Aaﬁ(a)} = I SC(K){ﬁ(a,c) - Xai(a,c)}K- }
[

. 1. -
= xs 0/ L (s 00} GiGa,e) - A @)l
c
Since SC(K) + © gs K+ « for the ¢ where e, > 0, the central limit theorem,
combined with (8) and a limit theorem due to Cramér (1946, Chapter 20.6), gives
the result that the simultaneous distribution function of the vector

/K {M(1) - Ali(l),...,ﬁ(x) - AHE(N)}

converges at all points to the distribution function of a multinormal distribution

. . . ®
with mean 0 and some covariance matrix I .
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By (18) and the first part of the proof of the theorem in § 5.2, plim ﬁ(a):"La
for all a¢@! with L, given in (18). Since

/ﬁ(ia - 2)) = /K {iia) - A L@)}/i(a) for L(a) > 0,

a new application of the Cramérian limit theorem gives the theorem. [:1
When the assumptions of §§ 4.2 and 4.3 hold, we may use (15) and (16)
to assert that the variables /K(Aa - Aa) for a€ (X are asymptotically independent

and normally distributed with means 0 and asymptotic variances.
as. var VK(A_ - A_) = A_/L (19)
a a a'"a
for ac ', with La given by (17) and (18).

All these results are independent of any specific assumptions on the

distribution G.

§ 5.7.(H-randomness.) In the case of H-random (zk,rk), the variables
Ll(a),...,LK(a) are independent and identically distributed for each a¢(l. In
this case, therefore, La = EL(a) = ELk(a), and plim L(a) = L by the law of
large numbers. Similarly for the Mk(a).

To avoid unnecessary peculiarities, we shall assume that P{Lk(a) >0} >0
for all a€¢(Q.

Theorem 1: Under the assumptions stated above, all ia are consistent.

Proof: By the teorem of §5.2 it suffices to show that P{L(a) > 0} -~ 1
as K+ », Let p(a) = P{Lk(a) = 0}. Since p(a) < 1 by assumption, P{L(a) = 0}
= {p(a)}K >0as K>o, []

Theorem 2:Under the assumptions of the present paragraph, the vector
/K(;l - Al""’AA‘- AA) is asymptotically multinormal with mean 0 and some covariance
matrix I.

The proof is a simplified version of the proof of theorem 2 in § 5.6.

The remarks after that proof still hold with I' replaced by (L and with La = ELk(a).

When in addition to this H is completely specified, results duc to .
Sverdrup (1965, Appendixk B) may be used to show that the rates Xa have asymptotic

variances at least as small as any other Fisher-consistent estimators.

§ 5.8. It is possible to construct confidence intervals for the Aa and to
test hypotheses about them e.g. by simple extensions of methods described by
Sverdrup (1965). We will not take up these questions here.
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§ 5.9. All previous results hold with only obvious modifications if the
values of some of the parameters Aa happen to be known. If for some a, Ad
has a given positive value and P{L(a) > 0} > 0, formula (8) shows that our

family of probability distributions is not complete.

6. Transformations of the parameter space

§ 6.1. It may sometimes be convenient to consider transformations of the
parameter space. (Examples of this are abundant. See e.g. Hoem (1968).) Although
we have appliéations to demographic models specifically in mind, we shall give
a more general formulation of our reasoning and results, as there is no need to
unduly restrict their scope.

Let A(8) be a random (scalar) variable, the value of which depends on the

parameter vector 6 = (Bl,.u.,BS)E:G. Assume that

E%%-(-‘il = 0  fori=1,2,...,s, (20)
i
- . - 320(0)
and let £ = (0,.), with 0., = -E ——=, where all o,. are assumed to exist
ij ij ae 36. ij

as finite functions of 6. We introduce a new parameter vector a = (al,...,as)éﬁi

by a one-to-one transformation ¥ from & to 0, so that 6 wi(al,...,as) for
i=1,2,,..58. The differential quotients — ¥, (al,.,,,a ) are assumed to
exist for all i and j and for all a€0£k j

awl(a) 3wl(a)

——a—a-;- 5 coeses o aas
Let Jz tr e e e

3y (a) ap_(a)

L—i;;;—— > sevesr o aas )
be the matrix of differential quotients. We define Al(a) = A[w(a)],
32Al(a)
Yij = ~-E 33;3;; ,and T = (Yij)'

Theorem: Under the above assumptions, I = J'rdJ.

Proof: The formula of the lemma is equivalent to

s s 30y, Bwk
Ysi = L Lm0, w— foriandj =1,2,...,s. (21)
1 sy ke 0% VR ’
This is what we proceed to prove. By the definition of Al(a), we get
s )
v
?&-— A (a) = Zl 36 f\[lb(a)] -a—(g , and
2 s s 2 Bw Y s 8 w
3 _° _k 9 -
— A (a) = I Ap(e)] == ==+ & == Af§(a)] ——— .
Baiaaj 1 v=l k'l 36 96, aek Ba Ba v=1 aev da. Baj

Using (20) and the definition of O x> We get (21). [:]
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The obvious application of this theorem is to transformations of parameters
61,,..,6r for which Taximum likelihood estimatorsg)l,...,ér exist. Under very
general conditions, 6 will be asymptotically multinormal with mean 6 and a
covariance matrix-% Z—ls where I is as defined abeve with A(6) as the logarithm
of the likelihood function. Applications to our Aa arc immediate. Relation (20)

becomes E {M(a) - AaL(a)} = 0 for all a€d, which follows from (8).

§ 6.2. It may often occur that one of the parameters, say el, is actually

not changed at all by the transformation ¥, and thus Bl = 0. It wouldAbe rather
unfortunate if in such a case the asymptotic variance of the estimator 61 were
different from the one of & . In fact it is easily shown that they are equal.
We let ot denote element no. (1.1l) in Z—l, and similarly for Yll.

Theorem: If in § 6.1 d}l(al,...,as) = a,, then \,'ll = oll.

Proof: In this case J has the form

1 0

I ngJ

where the zero stands for a 1x(s-1) matrix of zeroes ,J,, stands for some (s-1)x1 matrix,

and J22 stands for some (s-1)x(s-1) matrix. Partitioning I and I in the same way,
. . . . I - Ao -

some zlmple arltgmetlc gives F22 = J22 222 J22. Thus 4 = IF22|/‘Fl

| l 222}/|J| Jzl o= |222l/lzlzoll,since |g| = IJ22]. ]

<
1l

22
The results of the present chapter have been used in Hoem (1968), but it

has seemed preferablc to present them in the more general setting of the present

paper.
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