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Summary: In the setting of a very simple probabilistic fertility model, net

and gross reproduction rates are defined and the connection between their

'continuous"and "discrete" age versions is brought out. It is shown that the

interpretations of the common definitions of the reproduction rates are

inconsistent, but that the numerical effect on the rates is probably negligible

in most cases. Maximum likelihood and some other estimators of parameters of

the model are set up and are compared with methods in common use.
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. Introduction

1.1. In common texts on demography, the net reproduction rate is

generally defined as

w2 R,
R

N	 f	 • "'"	 f
x 

dx,
k °wl	 0

where {2,
x

} is a decrement series, {f
x 

is a series of age-specific fertility

rates, and the ages between wi and w2 constistute the fertile period. We shall

call this a continuous age version of the definition. In addition, one may find

the discrete age version

w2 -1	 2,
xE	 T,-

X=W1 	 -
(1.2)

which is commonly used for purposes of numerical calculation.

Similarly there is a continuous and a discrete age version of the

definition of the gross reproduction rate:

(1) 2
	

(02 -1

R
B	 f f dx and RB 	E f

x
.

wl	 x=w1
(1.3)

The fertility rate f
x 

may be specified for a female or for a male parent,

and fertility may be defined with respect to live male children, to live female

children, or to live children of both sexes. To each of these specifications

of the fertility rate (and a consistent specification of the decrement series)

there corresponds a net and a gross reproduction rate.

It need not concern us here exactly which specification has been made,

nor does it matter whether decrement series and fertility rates are calculated on

a calendar or a generation basis. What we have to say, will be relevant to

any of these alternatives.

When we speak of parent and child, it will be understood that there is

a specified sex for the parent and a specified kind of live child. By births

we shall mean live births.
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§ 1.2. The accepted interpretation of the reproduction rates may be

formulated as follows:

R
N
is the average number of children

t hat will be born to a parent, 	 (1.4)

e valuated at the birth of the

paren t.

RB is the 	 same average number of

children, provided the parent 	 (1.5)

survives the fertile period, i. e.

provided there is no mortality

before age w2.

The averages are evaluated on

t he assumption that the mortality

(in the case of R
N
) and the

f ertility (in the case of both Rm

and RB) of the parent develops as

specified by the series 9,
x
1 and

{f

1.3. Several questions should have arisen up to this point:

(i) How are the two versions of the definition of each reproduction rate

reconciled ?

(ii) Are (say) (1.2) and the second member of (1.3) consistent ?

(iii) Is the formula for a reproduction rate consistent with its verbal

interpretation, as given in 1.2 ?

One purpose of the present paper is to answer these questions. We

shall introduce a very simple probabilistic model which will enable us to answer

question (i) directly. Within this model, which gives a reasonable inter-

pretation of the calculations made in connection with the reproduction rates,

we shall give the following answer to questions (ii) and (iii):
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Suppose that we make (1.1) and (1.2) consistent with (1.4). Then

the second member of (1.3) is inconsistent with (1.5). And vice versa.

We shall show, however, that in a certain sense the numerical effect

of the inconsistency on the reproduction rates is probably negligible in most

cases.

Finally, we shall set up maximum likelihood and some other estimators for

the parameters of the model, and shall see how these may be applied in practice.

1.4. Essentially the same model as the one presented here has been

briefly considered previously by Joshi (1954), and by Consaël and Lamens (1962).

2. The model

2.1. We shall let p(x) be the force of mortality and (1)(x) be the

force of fertility for an x year old parent. This will be taken to mean the

following:

Let us observe a parent alive at age x during the age interval

<x, x + Ax > with Ax > o. Then

(i) the probability that the parent will die in the age interval without

giving birth to any children, equals p(x)Ax + o(x), where o(Ax)/Ax 4- 0

as AA ± O,

(ii) the probability that the parent will have exactly one birth in the age

interval and survive to age x + Ax, equals ((x)Lx + o( åx),

(iii) the probability that the parent will survive to age x + Ax without

giving birth to any children in the age interval, equals

Px) + (x)] Ax + o(x), and

(iv) the probability that the parent gives more than one birth, or gives

at least one birth and then dies within the age interval, is o(Ax).

>
We shall assume that p(s) and (PC.) are continuous functions for x = 0,

with p(x) > 0 for 0 	 x < w, (1)(x) > 0 for wi < x < w2, (1)(x) = 0 otherwise.

Thus the fertile period is the period where gx) > O. Multiple births will

be taken care of at a later stage. (See 2.7.)
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2.2. It will be seen that in the present model, fertility does not

depend on the marital status of the parent, parity of the birth, time elapsed

since last birth, etc. We do not claim that this mcdel gives a realistic

description of all major aspects of true-life fertility in any sense. We do

believe that it has some of the essential features of fertility, however, and

what is even more important: it permits us to give a precise interpretation of

many of the measures commonly used in fertility and reproductivity analysis. It

is our belief that such measures have little meaning except within some model.

It can then do no harm to formulate it explicitly, and the formulation permits us

to make such important distinctions as the one between a parameter, estimators

for it, and estimates calculated. (For the terminology, see e.g. Kendall and

Buckland (1957)).

One further motive for choosing the model of § 2.1 is its simplicity,

which will permit us to make our points without expending too large an effort

on the mathematics of the problem.

§ 2.3. We shall need the following quantities:

x4-t
r- 	 eXP

tP x - f p(x + T) dT1
0

is the probability that a parent of age x will survive to age x + t.

tqx = 1	 tPx

P
k
(xt) is the probability that a parent of age x will give birth to

k children in the age interval LK, X -I- t > and will survive to

age x + t.

k
(x 0 is the probability that a parent of age x will give birth to k

children in the age interval [K, x + t > and will die in the interval.

R
k (xt) = Pk(xt) + Qk (x '

	 (2.1)

is the probability that a parent of age x will give birth to

k children in the age interval [K, x + t >.
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yx,t) = E k PI,(x,t) / tpx 	(2.2)
j'"

is the expected number of children to which a parent of age x

will give birth in the age interval Ei,x+t>, given that the

parent survives the interval.

f 2(x,t) = E k Qk(x,t) / tqx
k=l

is the corresponding expected number of children, given that -Ile

parent does not survive the interval.

f(x,t) 	 = E k Rk(x,t) = tpx fi (x,t) + tqx f2 (x,t) 	 (2.3)
kl

is the expected number of children to which a parent will give

birth in the age interval EX,x+t>.

2.4. Let us first consider Pk (x,t) and fi (x,t) for x < 	 To assume

that it is given that the parent will survive to age x+t, amounts to making

	

< 	 <
evaluations as if (x+T) = 0 for 0 = T t. (A formal proof will be given in

chapter 8.) In this case the births in the interval are generated by a Poisson
<

process with variable intensity (1)(x+T) for 0 = T t. As shown e.g. by

Khinchine (1960, pp. 18-21) we then have

k
(x,t) / 	

1
t
p
x 

= 	 { j(1)(x+T) dTlk exp{-f ep(x+î) dT}
k! 	 0 	 0

for k = 0, I, 2, .•• 	 Therefore,

f1(xt) = f ¢(x+T) dT0

rand 	 P
k(x,t) = 	 Lyx,t)]

k 
expl-f [11(x+T) + (x+T)] dr}

k!

(2.4)

(2.5)

for k = 0, 1, 2, ...
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Summation over k in (2.5) gives

00

t
p
x 	 k0

= 	 P
k (x,t)

(26 )

= 

as we ought to get.

2.5. By decomposing according to the moment of the last birth in the
>

age interval [ic, x + t > we obtain for k 1

Pk(x,t) = f Pk -1 (x,T) 4)(x 	 T) Po (x + T, t 	 T) dT,0

k(x,t) = f Pk-1(x,T) gx + T) 	 Qo (x + T, t 	 T) dT,0

and consequently

Rk(xt) = f P1(1 	 -
(x T) (1)(x + T) 	 R

0
 (x + T, t - T) dt.

- 
0

(2 .9)

If we multiply by k in (2.9) and add for all k 1, we obtain by the Lebesgue

monotone convergence theorem

f(x,t) = E> (k+1) Pk(XT) (P(x+t) Po (x+T, t-T) dT.
0 k=0

By (2.2) and (2.6) this gives

f(x,t) = 	 f 
Tpx 

Vi (xT) + 11 (1)(x + t) Po (x + T, t - T) dT,
0

which can be interpreted directly. Starting from (2.7) or (2.8) we may obtain

quite similar formulae for f1 (xt) and f2 (xt).

2.6. Since obviously for At > 0:

Qk (x, t + At) = Qk(x,t) + Pk (x,t) 	 p(x + t) At
	 o(t),

we get

3
1TE Qk(x,t) = p ( xk ,t) p(x +

and

Qk (x,t) 	 f P,(x,T) 1.1(( + t) dt.
0

(2.10)
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By (2.5), IhElyx,t) = -51(x + t) + gx + 	 Po(x,t),

so 	 Po(x,t)p(x + t) = -L -TT Po (x,t) + q (x + t) Po (x,t)]. 	 (2.11)

Letting k = 0 in (2.10), introducing (2.11) and making some trivial manipulations,

we get

R (x t) = 1 - 	
3

P (x TWx + T)dT,o 5 	 0 

which can again be interpreted directly.

Multiplying in (2.10) by k and adding, we get

f2 (x,t) . t
q
x 

= I f1 (x,T) Tpx p(x + T)dT
0 

f fl (x 'T)[P l dT
	o

I fl (x ' T)[ TPx1T T X

+ 	 p . 	 f (x,T)dT =
O T X 	 T 1

f,(x,t) . p + f p ()c + T)dT.tx 0 Tx

Combining this with (2.3), we get

f(x,t) 	 f p . cp(x 	 T)dT,
o TX

as we might have guessed. By the mean value theorem,

f(x,t) = 	
p .

 f
1 '
(x t) for a x

e< 0,t».
x 

In combination with (2.3) this relation gives

f2 (xt) < f(x,t) < f1
(xt)

(2.12)

(2.13)

(2.14)

as long as <x, x + t >r, < wl ,w2 > f 0, in correspondence with common sense.

(It is reasonable to expect that a parent who dies in the age interval Eic, x t>

will have fewer births in that interval than a parent who survives age x + t.)
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§ 2.7. (Multiple births.) Let B be the actual number of births in

the age interval EK, X t > to a parent of age x. Then B is a random variable,

with P'{ B = bl = Rb(x,t). Summation in (2.10) gives by (2.6)

00
E Q (x,t) = 	 p p(x + T)d-t-

k=0 k 	 T X

Thus 	 F P B = kl 	 = F 	 p.(x,t) + 	 Qk(x 	 = 1, so P { B < 	 = 1.k=0 	 k=0 	 K 	 k=0

If B > 0, let Ci be the number of children born in birth no. i. We

shall allow for multiple births, and shall let nk be the probability that any
K

birth will have the multiplicity k, for k = 1,2,....,K, with E H, = 1. (We
k=1

might have introduced stillbirths by permitting k = 0, but that is outside the

scope of the present paper.) The expected number of children in any birth

then equals

K
7. E k .

kk=1

It may be noted that in this model the Il k do not depend on the age of

the parent.

Given that B = b > 0, we shall assume that C C2'' C
b 

are independent,

each with the distribution Ill
k1. The total number of children born to the parent

in the age interval [. x + t > will be

C = 	 B
E C. if B > 0 .

Then P IC = 0 }= R
0
 (x,t), and p fc kiB 	 bl 	 Hbx for b 	 1, k b,

k

where the topscript bm signifies the b-th convolution.

k
Thus P'fC = kl = E 	 HbH R (x t). Furthermore E(C(B = b) = bil, 	 and the

k 	 b
expected number of cnildren born in the age interval ix, x + t > to a parent

of age x equals EC 	 H.f(x,t).

A quite similar relation holds if we take it as given that the parent will survive

age x+t. We may therefOre easily convert an expected number of births into an

expected number of born children by multiplication with the factor ff.

tqx .

0 	 if B = 0

tl I=



co1

w2 -
R
B 	

f gx)dx. (3.4)

10

. The reproduction rates

§ 3.1. We define the net reproduction rate as

RN "4: ilf(° ' w 2 ),
	 ( 3 .1)

w2
and get Rm r- f 	 -(1)-(x)dx 	 (3.2)

w1

•

by (2612), with -).(x) = Wx). Similarly we define

RB = Ilf1 (0,w2 ), 	 (3.3)

and (2.4) gives us

The definitions (3.1) and (3.3) corresponC with the verbal definitions (1.4)

and (1-5). The formulae (3.2) and (3.4) correspond with (1.1) and the first

member of (1.3). We see, therefore, that t h e fx 
of the two

integrals of 	 1.1 may be interpreted as a

force of fertility, multiplied by the

expected multiplicity of a birth .

Formula (3.2) may be written in the form

w2-1
RN = E 	 PA f p cF(x + T)d -c.

W1X 	 xvoTo1

We introduce

1
f
x	 x

f p  • (Ti(x 	 T)dT 	 Hf(x,1),
0 

(3.5)

and see that fx is the 
expected number of children born in the age interval

> to a parent of age x. Then

w2-1
RN = E 	 xpo • fx , 	 (3.6)

x=w 1

which is (1.2), and which corresponds to (1.4) •
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If we let

1
. $-- (x	 : Hyx,i), (3.7)

then ;: be the expected number of children born in the age interval [X,x+1x
to a parent of age x who survives to age x + 1. We see that

w2 -1
R
B 

= E	 f'x 'x=w1
(3.8)

in correspondence with (1.5) but in contrast to the second member of (1.3).

We see that one should not use the same

measure of fertility in the secuq_yd member

o f	 (1.3)	 as	 in, (1.2). In fact, (2.14) gives R > Z f ' 
and on

-xU2 -1.	 x=w1
the other hand R

N
< E	 p fq .

X 0 X
X tiï

§ 3.2. In mortality investigations with several causes of mortality,

a distinction is made between partial and influenced probabilities of death.

Thus,Thus, if there are s causes of mortality and the force of mortality of cause

v is p ( y) , then

1 , 	 T s	 ( a )
qx	f P

(v) exp {- f E Px+edeldT
X+T 	0 a=1

is the (influenced) probability that a person of age x will die before age x + 1

of cause v, and

,
0)) 	 r 	 (01A

X,V 	
f p	 ex { - p 	 JuT0 	XII	 X-f-T

is the corresponding "partial probability". The value of ci. v) is obviously

influenced by the forces of mortality of causes afv., hence the terminology.

qx,ois the probability that would be effective if all causes other than cause v

were removed.

In analogy with this, one may regard fx as a measure of influenced

fertility at age x, i.e. fertility as influenced by actual mortality.

Similarly, f)ft may be taken as a measure of partial fertility at age x, i.e.

fertility as it would have been if mortality was inoperative.

I) This terminology is due to Sverdrup (1961). In less fortunate but more
common terminology, one speaks of independent and dependent probabilities,
respectively.
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E	 PnE,Pn x=wi x u fx
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Similarly, RB may be regarded as a summary measure of partial fertility

and RN as a summary measure of influenced fertility (for all ages taken together).

Behind much of what has been written on the theory of fertility

investigation seems to be the notion that one should soak for a "pure" fertility

measure cleansed of any influence from mortality. (A particularly clear

formulation of this position has been given by Matthiessen (1967, pp. 76-77).)

The force (gx) of fertility readily points itself out as an excellent measure of

this kind. If for pedagogic or other reasons one cannot work with a concept such

as the force of fertility, f; is an obvious substitute. Since real-life fertilityx
actually is influenced by mortality, I am not at all convinced that one should be

content with measuring partial fertility in all cases, however, but would favour

employing fx as well as f); to get a fuller picture in cases where mortality is

not negligible.

§ 3.3. Formula (2.13) gives

f	 p .f" for some E
x	 <0,1>.

X 	
X
 x x

Using the common approximation I - p	 in 	 0,5 q
x , we get

x 
X 	 -IX

f
x	 (1 - 0.5 .	 ) f'.x

( 3.10)

In many populations, and certainly in the present Scandinavian ones, 0.5 . qx

is so small for all fertile ages

implied by (3.9) is negligible.

the world, however, and where it

For the net reproduction

finite sums imply that

w2 -1
RN = E 	 Pr) r P 'f l =

X=Wi X w e t, X X
X .

(at least for females) that the correction

This is not the case for all ages all over

is not, (3.10) should be used.

rate, (3.9) and the mean value theorem for

(3.11)

for some C E <0,1> and some n 	 <w l ,w 2 >. We may probably use e.g. 0.5 . qx
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for some x in the range between 25 and 30 as an indicator of the value of 
E

g
n

.

Values of this indicator for females in various selected countries are given

in table (3.12). The impression is that q will be negligible for many populations,
n

but not for all of them.

In a later chapter we shall show that avrrent pratice may be interpreted

as consisting in quoting the value of R' = E	 p . f' for R
N 

and the value
N	 x 0	 x

of 1-1 	
x=wi

f' for
B. While R

B 
is therefore correctly

x=col x
e stimated, R

N 
will currently be slightly

o verestimated as is brought out by (3.11). Evenaoll of 25 0/00

and an Rt as high as 3.10 will only produce a correction of q . R
N
 = 0.08,

N	 E 
however. (The value R' = 3.10 is quoted for Costa Rica for the year 1960 by

N
van de Walle (1967), and is the highest value for R given in his list,) The

numerical error caused by the practice mentioned is therefore in most cases

certainly of no consequence in comparison with the other sources of error en-

countered in the process of furnishing values for the reproduction rates.

Nevertheless it has some theoretical interest to note the difference

between f
x 

and f', and to be aware of the fact that it represents a slight
X

approximation not to make this distinction.

Table (3.12)
	••••••■■

Values of 0.5 . q for some age between 25 and 30 for females
in various populations

Country
Age	 0.5 qxPeriod group	 in 0/00

Congo (Leopoldville), African population ............ 1950-52

	Mexico .. 00 ,00041,000•0000000000•000 000 OOOOO • 0000000M 	 1940

Argentina 041/000OOO ..... 41016•0040 ,0 • 0 • 0 •• 	 •0 0/0 ..... 0,00, 00 	 1947

India 00.00.000 	 0 •IPOOO.000000 	 1941-500 	 *0 	 •O 00000 	 000 ..... • 00 	 0 	 00	. 	 .

Japan ..... ................ . 	 •

	

. .. ........ ..... ........ 	 1959

	Israel ................ 0000000600•0000 40•40.41000 40000 .0 	 1960

Cananda ........... ........................... .. . .. 1955-57	. 	 .

Norway .............................. 1951-551951-55...........0. . . ..... ... .

England and Wales ................ ........ ....	 .	. . 4— 	 .. 1950-52

	Poland ........................ ...e..... OOOOO ...... .. 	 1958

	25-29
	

24.5

	

25-29
	

22.7

	

25-29
	

8.3

30
	

6.4

	

25-29
	

4.3

	

25-29
	

2.2

30
	

0.5

30
	

0.5

30
	

0.7

30
	

0.7

Source: U.N. Demographic Yearbook 1961, Table 25.
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4. Maximum likelihood estimation

§ 4,1. (Simplification to constant forces.) Let x be an integral age.

For the purpose of estimating the forces of mortality end fertility for ages

in the age interval E,, 	 >, we shall let the constant parameters p and 0
< 	 <

represent the values of the functions p(x + 0 and (gx + t) for 0 = t = 1. This

has practical interest provided sup Ip(x + 	 - pl and sup Igx + t) - 01 are not
< < 	 < <

too large. 	 0=t=1 	 0=t=1

Under these circumstances we have for 0 t < 1

tPx
-pt(t)

k 	
-(11+0)te f

1
(x,t) = Ot, P

k
(x,t) = ----- e for

and f(x,t) = j- (1 - e
li

Similarly by (2.10) and after some arithmetic

k+1 k
Qk(x,t) 	 P 	1q5Ç+1

(p+0)

k

v=0

(p+Otliv 	 -(11+0)t
e 	 } for 0 

< 	 <= t = le  

We introduce (pk

interpreted as the probability

of k children before age x + t

E
k 

=
k=1

and see that OkAt + o(At) for At > 0 may be

that a parent of age x + t will have one birth

+ At, and survive to this age. We have

(4.1)

We shall assume that all 0
k 
and P are functionally iniependent.

4.2. (Further definitions.) Assume that a given number n of parents_

whose lives are independent, are observed as they pass through the ages in the

interval rx, x + 1 ›. In order to avoid unnecessarily restricting the generality

of our results, we shall not assume that we are able to observe all parents

throughout the age interval. Let the length of the period of possible observation

in rthroughagesnuc,x+1 > ofparentno.jbez..<=1. For this parent, we

shall start measuring time at the start of his (or her) personal interval of

observation, and shall thus keep track of him (or her) during a time interval

[0 Zj ›.
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Perhapsweshouldstressthat[0,z.>is the interval of possible

observation. If the parent dies at time u while under observation, the

actual interval of observation will be D,u>, withu<z..
3

In our model zl , z2 , 	 , zn will represent given positive numbers.

LetB.bethenumberofbirthsandletD.be the number of deaths experienced

(Note that B. is not necessarily the number of

childrenbornifffultiplebirralsarepernitteMObivouslYD-= 00r 13 - =1
T.(B.) be the moments when births

	J 	J 	3 3
occurtoparentno.j(intimeorder).IfD.=l, let T (B.	 1) be the moment

3
when the parent dies. We let

if D. = O. and

U.
3	 T.(B.f.1)	 if D. = 1 .

J

Thus <0, 'U
]
. is the actual period of observation for this parent.

3
If B. > 0, let C.. be the number of children born at time T.(i), for

<. <	 3	 J1 Bi	 3

	

1 = a. = B., and let C. =	 E - C.. -be the total number of children born to parent3	 3	 i=1 J 1
no.jduring[0,z.›. For typographical reasons, we shall sometimes write

3
4)(k) for

4.3. (The likelihood.) We shall find the likelihood for parent no. j.

We get

	P'{ B. = 0 and D. 	0 }	 e 3.

Furthermore, for b. > 0,

b.+1
P { Bi=	 bj ,Dj = l,	,-A 	 [t.0.) < rr.(i) < t.(i) + dt.(01

	i=1	 3	 3	 3	 3
b-3

and r\ (c. ... C. )1
	i=l	 3 1-.	 Ti

..	 e - (11+(0t.(1)	 -(p+0 [t.(2) - t.(11_	 3	 . gc. )dt.(1) . e	 3	 3	 gc. )dt.(2) .

	

31	 3	 32	 3

- (P+0 [t.(b.) - t.(b. - 1)• ...	 e	
3	 J	 3	 J	 Jcp.(c.h )dt.(b.) .

	

3-j	 3 3

e -01+0a.(b.+1) - t.(h)l
3 Pdt.(b.+l)

3 3

	

b-	 b.+1

	

3	 3... e -01+40t .(b.+1)

	

3	 3	 ,p , Ft (1) (c..) n 	 dt.(i)._
	i=1	 31 i=1 	 3
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By treating the other cases similarly, we see that the likelihood for parent

no. j amounts to

F. = e-01+0U. 	 D.
] • IA 	 33

	B. 	 B.
3

.	 ( C..)	 with	 1.	 if B.= O.

	

i=1	 31	 i=1	 3

Let Njk. be the number of the B. births that have multiplicity k. We then
3

get

K
ln F. = - (pi)U. + D. ln p+ EN ., in

3 	 3 	 k=1 3 '

where in denotes the Napierian logaritm. The total log-likelihood for all

n independent parents is therefore

K
ln F 	 -(p+)u + D ln p +	 E N, 	 (I) k

k=1
(4.2)

where U = EU. is the aggregated lifetime observed, D = ED. is the
3 	 n 	 3

total number of deaths observed, and N
k 

= E N. is the total number of
j=1 3k

births observed of multiplicity k. We shall also need the total number

of births observed, B :7-- E B.
j

By the properties of Darmois-Koopmans classes of probability

distributions, the random vector (U, D, N1 , ...' 
N
K
 ) is minimal sufficient.

WenoteinparticularthatneitherthebirthtimesT.(i) nor the numbers

C..
31 

of children born in the various births enter directly into (4.2).

It is now easily seen that the maximum likelihood estimators for

the various parameters are

N
k	 B	

N
k-	 D -

= 1T- 5 	 = 1-5, and fik B
(4,3)

All of these are natural estimators. From (4.3) we derive the maximum
A 	 A

likelihood estimators tpx = e -Pt , fl ( x,t)	 4,
A

K A4', (1 - e -Pt ), and 11	 E kilk:... C/B, where C	 EEC.. is the total

P	 k=1 	i i31

number of children born during observation. We shall call 1̂1 the (age-

specific) mortality rate to distinguish it from the corresponding force p,

which it estimates.

EN
kk
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4.4. (M.1 estimators for fx and fy.) 
By (4.3) and the definitions

of fx and f', maximum likelihood estimators for these two parameters areX

A.Aff = 'if
1
(x

'
1) =x

A
and fx = Ilf(x,1) 	 110((p) = f)9(K(p)

with 	 K(p) = 	 (1 - e -P ).

(4.4)

(4.5)

A

Thus f' is the common age-specific fertility rate. By (4.4) we may regardx
K(11 ) as a correction factor which transforms the estimate of partial fertility

into an estimate of influenced fertility. We shall call f the (age-specific)
x

partial  fertility rate, and we shall use the term (age-specific) influenced

fertility rate for ix o

A 	 A

As K(p) 	 - lp, we get fA 	f' (1 - 311), which is quite similar
x

to (3.10).

§ 4.5. (Probability limit of U/n.) The distribution of U. may be...___ 	 3
found as follows: We see that NU. = z.} = P{DL = 0} = e -lizj.

7 	 3 	 J

Furthermore , for C) <: t <: 2:. Flt < U. < t -i- dtl ::: 	 e-Pt .p dt. Thus var U.
3' 	 3 	 7

exists, and

z-
-pz. 	 3 	 -pt 	 1 	 -pz.

EU. = z..e 	 3 -F. f pt e 	 dt = -41 - e 	 3).
J 	 3 	 P

0

-

	

U 	 -
Therefore, plim 	 = 	 Pz=

	

.4„), n 	
P (1- e 	 ) with z defined by

n 

n
-Pz 	 . 	 i 	 -pz.
e 	lim --	 E e 	 3,

n±c° n

(4.6)

provided the right hand limit of (4.6) exists.



18

	

§ 4.6. (Consistency of P.) 	 Since P{D. = 0 } = e -lizj and....................._______
-pZ. 	 3P{D. = 1} = 1 - e 	 3, ED. = 1 - ej,  and we get plim D/n =

J._ 	 3 	 n.+0.
D 	 -Pz 	 A 	 plim .2 	 A

E---- = 1 - e 	 . Therefore, plimP = 	 n = p. Thus p is consistent.n 	 n4.0° 	pliml!
n

A	 (I)
.§ 4.7. (Consistency of (1).) Since EB. = f(x,z.) = ---(1 - e -Pzj),

	

......._._................_ 	 3	 3	 P
	_ 	 plim. 	 B ci)we have plan-- = D11 = — ( 1 - epz ), and plim 	 .-= 	  tr+co n 	 n 	 P	 n4.0

so cp. is consistent. 	

Dlim in-)

,. Nm—Nk 	Nk 	 4) 	 -pz
-

A 	 pia.m --
that plim --- = E 	 = H • -- ( 1 - e 	 ). Thus Dlim Hk --r. 	 n 	 IT

).00n- n+.0 	 plim --1-3-- 	 k'
n

so also each Hk is consistent.

A 	 A 	 A

§, 4.9. By the results above, the estimators xpx , fi (x,t), f(x,t),
A 	 A 	 A.

f fv, H, and the <)k are all cons isten as n -±
x x

likelihood estimators in the present kind of model have certain additional

optimal characteristics which makes one prefer them to other natural

estimators. We shall give one example.

4.8. (Consistency of Ilk .) 	 Given that Bj = b, Nil( will be

binominally distributed (b,11k ). Thus E(N. k IB.) 	 B..11k and it follows3 	 3 	 3 	 '

co Beside this, maximum
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Assume in this paragraph that all z
k
 have the same value z. By Hoem

A
(1968, § 5.6), (1)1 ,..., x , and p are asymptotically independent and normally

distributed with means 
K' 

and p, respectively, and with asymptotic

variances

1 	11
2	

1	 "k as.var p= T;  • 	  and as. var	 =	 for k = 1,2,...., K.-pz	 k n

	

1- e	 1

By Sverdrup (1965, Appendix B), these rates are furthermore optimal among Fisher

consistent estimators.

Similar results hold for the other estimators above. Asymptotic properties
A A

of 4 , f,(x,t),	 f;c, and the Hk will be studied in chapter 7. The asymptotic
AA

properties of p
t x have been studied by other authors, notably Sverdrup (1961)., 	 A

The properties of fi (x,t) and H easily follow from the results for cl> and the Hk

and will not be considered here.

§4.10.0neoftheadvantagesofarlapproacherethelengthz.of the

period of observation of parent no. j may depend on j, is the possibilities it

gives for permitting entries into the group of parents studied after the start of

the observations. In certain cases it is natural to regard zl , z 2 ,..., zn as

values of independent and identically distributed variables. The estimators
A 	 A 	 A

will still be consistent, and	 (1( and p will again be asymptotically

independent and normally distributed with means 4)
1 '	 K'(p and p, and with
* 

asymptotic variances

	2 	 P
11as.var p = —

1	
as.var (I) = —1 •n • 1 -	 k n 1 - I for k = 1,2,..., K,

0
is the maximal lenght of possible observation, so that G(z 0 ) = 1. The optimality

of our rates among Fisher-consistent estimators is preserved at least if G is

fully known.

These aspects have been discussed by Hoem (1968) in a wider context.

The idea of introducing random z k is due to Sverdrup (1961, 1965).

-pz- e

0
with I = f -Pz dG(z), where G is the distribution function of the z

k 
and z

oe
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§ 4.11. It is also possible to allow for several causes of decrement from

the group of parents considered by splitting p into a corresponding number of

forces p.. This will leave unchanged such formulae as (4.3) and (4.4) as well as

the properties of those estimators. (Note that p will then be the total force

Ep. of decrement from the group.)

Such procedures will make possible moresophisticated methods of fertility

analysis than the ones sketched in previous paragraphs, as well as a simultaneous

analysis of nuptiality. This is not the subject of the present paper, however.

5. Further notes on estimation
-

5"1-Intilepresentchapter'itwillbeassturiedthatallz.equal 
a

3
preassigned value z. A natural estimator for f(x,z) is then the average number of
births per parent:

= —1 E(x,z) 	 B..= B n j= 3

A corresponding estimator for f x if z = 1, is the average number of children per
parent:

74 	 1 n 	
i K

fx = u = 	 .E C. = 2t 	 kNn 3=1 J n k=1 k

where C. = E C. still is the number of children born to parent no. j. By
3	 ji

§§ 447 and 4.8, both of these estimators are unbiased and consistent. We shall

find their variances in §§ 5.3 and 5.4 below.

g 5.2. If z ::: 1, a natural estimator for f is similarly the average

number of children born to parents who survive age x -i- 1:

n1
f'	 r 	 f,

	j1 	 ]	#.	 kJ. - D.) C. 'X 	n-D 

provided D < n. In the (improbable) case where D = n, some other formula must

be found, e.g. f; = C. Comparison of fx and f)s again brings out the distinction

between f
x 

and f'.
X
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By previous results, E(B.I D. = 0) = fi (x,1) = (P. Moreover,
K 	 3 	 3

C. --: 	 E k.N.,.. Thus by § 4.8,
3 	 k=1 ]"

KA, 	 ,
E(f'ID=d)=E(C.ID.=0)=EkE(N 	 1D = 0) =

X 	3	 3 	 k 	
j

=1 	
k

K 	 K 	 K

	

E k E{E(N. 1B. D. = 0) } = 	 E k.E(Ball D. = 0) = (t) E la, = (pH,
k=1 	 31( j 	3	 k=1 	 3 k 3 	 k=1 '

so E(f ID = d) = f' 	 for d = 0,1,..., n-1. D will be binominallyx 	 x
	-11	 -undistributed (n,p) with p= 	 e , so P(D = n) = e 	 . Thus

E?' = f' .(1 - e -Pn ) + E(f' I D = n) .e-Pn ,
X 	x

rx,
and f' is generally at least asymptotically unbiased as n -4- 00.x

-11
Since E(1 - D.) C. = E(C. I D. = 0) P(D. = 0) = (p. e, we get

3	 3 	 3 	 3

1 n
?Um 	 E (1 -D.)C.	n j =1 	3 3

plim f' =  	 (:)
X

plim (1 - —n )

so f' will also be consistent. We may find its variance, but the

mathematical formula is ugly and probably of little use. One should prefer

f' to f' in any case ,
X 	x

§5.3.Sincevarf(x,O=.117.-var13- ' we need a formula for var B..
3

We are then primarily interested in g(x,t) 	 E k
2 Rk(x,t) = E B?.

k.->=1

If gl(x,t) = 	 k2 Pk(x,t)/tpx' and g2(x,t) = 	 E k
2 

Qk (x,t)/tqx'>k=1 	 k=1
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then 	 g(x,t) = tpx gi(x,t) + q . g
2 '
(x t). The formulae of§ 4.1 give

t x 

c° 2 (cpt)
k

(x,t) = E k 	 ------ e -(1)t = (#)
2 
+ (Pt.gl 	 k=1 	 ki

The combination of this result with (2.10) gives

g2 (x,t) 	 tqx = 	
*1-

g,(x 	
TX

,T) . p •pdT.
0 

(2-1+ 1) - e -Pti f ( t) 2 + (2 ±+ 1) G sbt +
V

Thus 	 g(x,t) = (1 - e -Pt ) 	 (2 ± + 1) - 2 e -Pt 1(1 (pt = EB,
V

and 	 var B. = g(x,t ) 	 (± ) 2 (1 	 e
3

It is possible to show that, VgleT1 all z. = z,

% >
var f(x,t) = as.var f(x,t),

(5.1)

(5.2)

so f(x,t) would be preferred. (Cfr. Everdrup (1965, Appendix B).) f
x 

is Fisher-

consistent.) The combination of (5.1) and (5.2) gives an upper bound for

as.var f(x,t). A formula for this asymptotic variance will be given as (7.4).

(‘)

§ 5.4. To find var f 	 2i var C. we return to § 2.7 and note thatX 3'

> 	 K 0
var (C. 1B. = i) = E k' 11 	 112.

35. 3 	 k=1	 k

K 2
Thus if T

2 
=E k il

k' 
var (C.IB. = b) = b(T

2 
- 11

2
). In 2,7we similarly

k=1 	 3 3

found E(C.
3

1B. = b) = NI. Thus
3 

var C. = E var (C.IB.) +var E(C.IB.) = (T
2 

- 11
2
)EB. + II

2 
var B.

3 	 3 3 	 3 3 	J	 3

-,or 	 var C. --L—r 2 ± (1	 e -P ) + (-111 ) 2 (1 - 2p . e 	 e 
2p ).

3
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. Some a lications to estimation in demogra h_111

6.1. The application of the results of the previous chapters to demo-

graphic estimation is fairly straightforward. We shall give three examples

to indicate how this may be done. Adaption to other situations can be made

ad hoc.

To fix our ideas, we shall concentrate on a situation where it is desired

to investigate female fertility with respect to (live) children of both sexes

in a population. Let x be an integer. We define

Figure 6.1

Section of the Lexis diagram.

/
A

Ag: 	 x-1 :-1
1/1 year N

	,
Calendar time

B 	 C
1/1 year N+1 	 1/1 year N+2
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as the number of women of age x in the population on January 1 of

the year N,

as the number of women who experience their x-th birthday in the

population in the year N,

as the number of live children born in the year N by mothers who experience

their x-th birthday in that year and who have the birth no earlier than

this birthday, and

who have the birth before their own birthday in that year1) .

Thus L(N) ix 	
s the number of female lifelines that cross the line DG in

figure 6.1, and M(N)
x 

is the number of female lifelines that cross DE. Similarly,

C 	 i
N)+

x 	
s the number of children born "in the triangle DEH', and C (N)- is thex

( 

corresponding number of children in ADHG.
riN)+

Quantities 
D(N)+ and D(N)- will be defined quite similarly to t; 	 ane
X 	x	 x

C
N)- 

respectively, and will signify numbers of female deaths. Similarly j?).1.
(1-0-and lix 	 will signify aggregated female lifetimes.

(N)+
Thus e.g. Ux 	

is the total lenghts of the female lifelines in DEH in

figure 6.1.

We shall consider the estimation of fertility in the parallelograms

DEKH, AEHD, and DEHG. As a side result we will simultaneously get mortality

estimates.

§ 6.2. (Age year method.) It may be desired to analyse fertility in
(N)the parallelogram DEKH. Let .1

,c
x 

be the quantity corresponding to the fx of (3.5)
(N)?for a woman whose lifeline has points in the parallelogram, let fx 	 be the

(N)
quantity corresponding to the f of (3.7), and let px be her force of mortality

x
(regarded as a constant parameter throughout the parallelogram). By (4.3) and

one would estimate these three quantities by

D(NH- + D (N+1)-
^(N) 	 x 	 x 
x (N)i- 	 9

U 	 "f" U 

(N+1)-C (N)+ + Cx^ (NP 	x (6.1)  

ux 	 + U
(N+1)-(N)+
X

"(N) 	 "(N)7 	 "(N),
K(px J,and 	 fx 	

f
x 

1) At this birthday, these mothers will become x+1 years old. 

(N)-
Cx 	 as the number of live children born in the year N by x-year old mothers

4.4
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If the data are not available in a form which gives the relatively detailed

information required in these estimation formulae, various approximation

techniques can be used. For example

2
[I(N) 	 -
M
x 

+ 
(N+1)

 may be chM
x+1 	 osen as an approxim 	

(
ation to U

N)+ 
+ U

xx
(N+1)-

If not even the M
(N) 

are available, their values again ma be approximated by

x-1  x
similar techniques. One may e.g. choose ; L(N) L(N+1) as an approximation

to M
(N)

. In this case, U
(N)+ + will be approximated byU (1\1+1)-
X 	x

1 
L
(N) 	 1 (N+l) 	 1 T.(N+2)
x-1 	 Lx 	 + TA: -x+1 •

The quantity corresponding to the f
x 
of § 5.1 will be

c
(N)+ 	 (N+1)-

+ C
xX (6.2) 

N 

(N) m 	 '
§ 6.3. (Calendar year method.) Let

 Mf
	, f(N)
x 	 x 	

and 
m

II
(N) be thex

quantities corresponding to the f
x 
of (3.5), the f' of (3.7), and the forceÇ

of mortality, respectively, for a woman whose lifeline has points in AEHD. Then

D
(N)- 	 (N)+

' 	
+ D,

x(N) 	 x-1 	 x
P
x 	

u
(N)- 	 (N)+ 9+
X-1 

	li
x

F"(N) I
-X

	c (N)- 	 (N)+
Cxx-1

	(N)-	 1,(N)++ .) x

(6.3)

HA(N) 	 x-(N ) 	x (N)and 	 fx	 . K( P
x 

).= f
X
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(N)-	 (N)+ 	 (N) 	 (N) 	 (N+1)iIf necessary, Ux-1 + U
x 	

may be approximated by Mx or by 	 Lx-1 + Lx 	.

The relation corresponding to (6.2) is

c
(N)- 	 (N)+

+c
x-1

(6.4)f
X T(N)

-x-1

6.4. Let t
f
x

(N) t

fx
(N)Ý 	 t (N)

and II
x 

be the quantities corresponding to

the f
x 
of (3.5), the f of (3.7), and the force of mortali -ty, respectively, for

a woman whose lifeline has points in DEHG. Then

(N)+ 	 (N)-
t^(N) 	 Dx 	D x
Px 	 (N)+

y 	 u

(N)+	 (N)-+ C
xtA,(N)? 	

cxr
x	

-,z ........_._........................._. ,
U (N)+ + U

(N) -
X 	x

tA(N)	 tA(N)2 	 t(N)and 	 f
x 	

f 	 K( p
x 

).
X

(6.5)

(N)+ 	 (N)-An approximation to U
x 	

+ U
x 	

suggested by Sverdrup (1961) is

1 (N)	 1 (N) 	i (N+1)	 1 T (N+1)+ -3- Lx 	+	 Lx	
-ET -x+1 •

It is an essential feature of the present situation that not all z. are equal

so there is no formula corresponding to (6.2) and (6.4).

6.5. It appears that fertility rates are commonly estimated by

formulae like (6.1), (6.3), and (6.5), generally with some approximation included.

This amounts to estimating partial fertility. (Cfr. 	 3.2).
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1...__LEELatilinoperties of maximum likelihood estimators

A
§. 7.1. Let 0 = (9 1 ,... ,0s ) ? be any parameter vector, let 0 = (01 ,..., Os )?

A
be a maximum likelihood estimator for 0, and assume that 1(5 (0 - 0) is asymptotically

multinormal with mean 0 and some covariance matrix E. (This will generally

though not always be the case for maximum likelihood estimators.) We introduce

a new parameter vector a = (a
' 

a
s
) by a one-to-one transformation tp of

	

the form 0
k

aa 	1, •.. as
) are assumed to exist and be continuous. 	 We introduce

=
k
(a
1' 

..., a
s
) for k = 1,2,..., s. The differential quotients

	ip ( a
j 	t

3q)
1

Ba ' 	 • 	 ' 3a
1 	 s

J = ) 	 • 	 • 	 .

alPs s

3 	 ' 	 • 	 ' 3a
s

and let a be the maximum likelihood estimator for a. It may then be shown that

(a - a) is asymptotically multinormal with mean 0 and some covariance matrix

	F = (i..). Hoem (1968,	 6.1) shows that

	s 	 s vk 	 alPy
	7 - j = E 	 E 	° -5-07 • -5-77 ' 

for all i and j,
v=1 k=1 	 3

( 7.1 )

-1 	ii	 -1-1 	 -1where F 	 = (7) and E 	 = (a
ij
). This formula may also be written 1' 	 = J'E J.

§ 7.2. We studied asymptotic properties of the estimator 0 = 01 ,...,(1)K ,p)t
A

in §§ 4•9 and 4.10, and found that VE (O- 0) will be asymptotically normal with

mean 0 and asymptotic covariance matrix 13,8,, where

p1(1 - e -1-1z ) under the assumptions of 4.9, and

i-1/11 	 e -11z dG(z) 1 under the assumptions of §
0

and A 7: diag 

In the present chapter it does not matter which one of these two sets

of assumptions apply. Our results hold in either case. Formula (7.1) will now

reduce to

ij 	 1 K+1 3\1)k
Y 	k-1•1 3 cti

where (1)1(+1 = P°

aq)k
/Da. 	4)<'

3

(7. 2 )
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A A 	 A

§, 7.3. (ProLEtiELILL,I,JITLIIIII ...) We have defined K to be the
maximal multiplicity possible of a birth. The special case of K = 1 is rather

trivial and will not be considered here. In the rest of this chapter, we shall

let K :7-- 2, so that it is possible to get at least twins in any birth.
K

Since E
-
 = 1, there are K - 1 "free' parameters H, . In the present

k=1 	 A 	 A K 	 A

	paragraph we shall study asymptotic properties of H 	 11K-1 along with (1) and

P .

Since cp = E (1)	 II 7:	 / (I) we have the situation of .§ 7.1 withk=1 k' k 	 k 	 ' 	 K-1

a r" 	 (1),P) 
and ipk (a) = cprik for k = 1,2,.... K-1, ya) = 441 - k El Hk ),

)K+1 (a) P. Thus fri (a- a) will be asymptotically multinormal with mean 0 and4 	r.
some covariance matrix A which we intend to find. We have

p.

o, o, 	 , o, 	 H
1, 	 0

0, (1), 0, 	 , 0, 	 n 2' 	 0

0, 0, 0, 	 004 	 (119 	 HK-1' 	 0
K-1

	OQO 	 -cp,1-EH0
k.7.1 k'

0, 0, 0, • 	 , 0,	 o, 	 1

Applying (7.2), we get:

n, ( 6, + 1
a E.

K
for 1 = i < K, 1 = j < K,

, ij 

1
(I) for i = j = K,

for i = j = K -i- 1, and

otherwise.

(7.3)     

f3P

0    

Here 6.. is a common Kronecker delta. If Al is the (K-1) x (K-1) matrix

of the X ii of the first line of (7.3) and ra = diag 	 40, then2
-1	 0A
1 3 O 	

A1
1 = \,-1 j 	

and 	
, A0[0 	 5 A 2
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A

Thus the three random variables (II 	 H
K1 "

) 1 0 and p are asymptotically- 
independent, and

A

as.var
A

 = oa /n, while as.var 1. 1 = PB/n as in 7.2.

Inverting A -1
1 we also find after some calculation:

as.var 11k 
= 11k(1 - Hk ) f3/(n), 

and

A

as.cov (n. H ) =3 ' k •
H. H V(n0).
] k

§ 7.4. Now let e .T. (TI ... 	 K-1 '
II 	0, PP. To study the properties ofA 	 1 

(1) 	 - 	 ef(x,t) we introduce a
K 

= 11
k 

for k = 1,2,..., K-1, ŒK = f(x,t) :-- (1 -e 
Pt ), nd

u

aK+1 r. P. In the terminology of § 7.1, IPk (al , 1 	 am.1 ) = ak for k = 1,..., K-1,
-Pt -

and K+1, while Iii (a , ..., K+l
a 	 a a) = 

K Kt1
(1 - e 	 K+1) . We let a = 1(1-e 

)1,_ fl
0
	r 1

b = —(1 - at 	 ) and
11

ra

A 	,	 and get J
, 4,

where I is a (K - 1) x (K - 1) identity matrix. Thus

A

4;
1 - n 	 ' 11K-1 11K-l' f(x,t) 	 f(x,t), u 	 u)

is asymptotically multinormal with mean 0 and

where A is given as in § 7.3. Since J' A-1 J
A 	 A

h- 	 - 	 -1c 	 49variance matrix - (J It A 1 J) ,
, 0_ 	 -1 , we see that

0 , A'A2 A
A 	 A

(II n 	 ) and (f(x,t), 11) are asymptotically independent, (IIl' ... 	 n 	 )1' —• ' K-1

	

	 ' K-1
1has the asymptotic covariance matrix-- A as in § 7.3, and (f(x,t), P) has then 1

asymptotic covariance matrix !(AI ic;1 A)-1 . Some trivial arithmetic gives

A
as.var f(x,t) = (4) + pb

2 ) 8/(na
2
), and (7,4)

A

as-cov (f(x,t), u) 	 -1.43bgna),

A
while as.var p = pO/n as before.
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§ 7.5 0 With 0 = (n ... HK-1 (1) 10' we now introduce a
k 

=
k1 	 "

for k = 1,2,..., K-1, a K = ç, and œm1 = fx . We shall conclude this
A 	 A

chapter by studying the asymptotic properties of f' and fx .X

In the terminology of § 7.1, IPIc(al,..., ŒK+1 ) = ak for 
k = 1,2,..., -1,

K-1
1PK(al' ... ' ŒK+1 ) = aK/{K - 	 E (K-k) ak}, and ti) 	 (a..., a 	 ) =

k=1 	 K+1 l' 	 K+1

-1,
K kaK+1/aK). Letting

1(-1, K-2,...,

, 	 0 , • • • ,

1

10(1-1)f ?

0
ri

KG) 	 1

x

we g.et J
I ,

D G
where I is a (K-1) x (K-1) identity matrix and

0(p) = fKG) =	 [e-K( 	 Defining H = J A -1 J, we have
1-1

+ D' A-1 D, D' A-21 G
2

TT =
A-1 D 	 G9?-1
2 

Here ,

(K-I) 2 	, (K-1)(K-2), (K-1)(K-3),..., K-1

(K-2)(K-1), (K-2) 2 	, (K-2)(K-3),..., K-2 1 
D'A

-1
D =2

an
2 • • •

K-1 	 (K-2) (K-3) ,...,

D

G

and
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with c= 1/ [1( 1(p) 	 2 and d = K 2(P) + 4[0(0] 2 	(7.5)

The vector11K-A ,)will be asymptotically multinormal with

mean (11 	 , n 	 f' 	 f ) and covariance matrix 1- H-1 .K-1' x ' x 	 n
We shall not invert H for general K, but shall be content with the case

K = 2. We then account for twin births but rule out triplets and births with

even higher multiplicity. In human populations, such births are rare in any case.

When K = 2, A-1 = 	 - 	 DI A-1 D = 	 4) 	d D' A-1 G =2 , an 	 21 	 P H 	 H 	 - 13H H ' 	 2
1 	 1 	 2 	12	 an

( 1,0). Thus
fin4

(1)g

H = 1 	cd/ii
-2 	

cd/,

L 0 ,	 -K ( P) c/P

with

Thus

g 1 	 1
H
1

11
2 

+ 112 •
( 7 .6 )

r
	14 ,	 1 , 	 K(p)

1 -1 -.: $11
1
H
2 • 	 1 	 , 	 IT

2 (Og 	 , 	 11 2 cpu(11)

t

For K = 2 we therefore get

1as.var f' = 	 . f' ff(1 + H
1 

II
2 

/ H 2 ),
X n 	 x

A 	1ras.var f = 	 fElLf
x
(1 +

1 
H
2 

/11
2 )K(O + f O(K(P)) 21X n

A 	 A 	 1and an asymptotic covariance between f' and f equal to-- (Of (1 + H
1 

H
2 

/
X 	

H 2 ).
	X 	n	 x

K (t ), n 2 (1)1g K(P), P 2 rgic 2 (11 ) -1-4160 (p)‘ 2 " ."
) /"Lln
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. Appendix  

§ 8.1. In 2.4 we considered a parent known

studied conditional probabilities of events occurring

given that the parent would survive to age x + t. We

probabilities and the corresponding mean values could
< 	 <

letting p(x + T) = 0 for 0 = T = t.

to be alive at age x, and

in the interval DC, 	 ,
asserted that such

be evaluated by simply

8.2. Although intuitively plausible, such an assertion is not obvious

and it needs a proof, all the more so as a seemingly corresponding assertion is

not correct in ordinary multiple-decrement theory. Specifically the "partial

probability" c 	 § 3.2 may not be interpreted as the probability that a person

of age x will die before age x + 1 of cause v, given that he will not die of one

of the other causes before age x + 1. The latter, conditional probability in fact
(V) 	 • 	 (V )quais 	 / fq

x 	
p
x 

}, which is generally quite different from

A proof of the assertion of §. 8.1 is given below.

§ 8.3. The model of chapter 2 is a time-continuous age-dependent Markov

chain with a double infinity of states. A parent is studied over the age interval
< 	 <

›c t], say. In the following let 0 = T = t. The parent will have a

number k of births at ages in the interval 	 x ei]. If the parent is still

alive at age x + T, we shall say that he then belongs to state (k,1). Otherwise

he belongs to state (k,2). Designating his state at age y by S(y), we define

Pl
. (y, u) = P'IS(y + u) = j J S(y) = i, S(x) = (0,1)1 for y = x.i

The force of transition from state i to state j at age y is defined as

P..3.] (y) = lim P.. (y, u) / u 	 for i f j.
u+0

Then 	 P
k
(xt) = P

(0,1),(k,l)
(x,t), Qk (x,t) 	 P 	 (x,t), P(x) =

(0,1)(1( 3 2)
>

(x) for all k = 0, and P.. = 0 otherwise.
P(k,1),(k,2) 

(x), 4)(x) = P
(k,1), (k+1,1) 	 13

Probabilities conditional on the assumption that the parent will still be alive

at age x + t, are introduced by
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A.. (y, u) = 	 { S(y + u) ---: (j, 1) I S(x) ::: (0,1), S(y) = (i,1), B },

forx<y=y+u=x+ t, whereBis the event that the parent actually survives

age x + t. For j i we get

S(y) =L. (i, 1), S(y . + u) = (j, 1), B I S(x) ::: (0,1) 	 :...-

Pi (x, y - x) P. . (y, u) . x+t -(y+u)Py+u

and P'{ S(y) = (i,1), B I S(x) = (0,1) 	 = Pi (x, y - x) . x+t-yPy.

Thus

A..(y, u) = P. . (y, u) .1] 	 J-1 	 x+t-(y+u)Py+u / x+t-yPy .

We therefore get

limil—(Y, 10/ 11 .7-6.—gy) for j f i.
u+0 13 	 3,1+1

This means, however, that the A..(y, u) may be regarded as the transition13
probabilities of a simple age-dependent birth process with intensity ( y),

as was our assertion.
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