


Summary: In the setting of a very simple probabilistic fertility model, net
and gross reproduction rates are defined and the connection between their
"continuous”and "discrete' age versions is brought out. It is shown that the
interpretations of the common definitions of the reproduction rates are
inconsistent, but that the numerical effect on the rates is probably negligible
in most cases. Maximum likelihood and some other estimators of parameters of

the model are set up and are compared with methods in common use.



1. Introduction

§ 1.1. In common texts on demography, the net reproduction rate is

generally defined as

w2 RX
R, = J =, f ax (1.1)
N w Yo Tx

where’{kx} is a decrement series, {fx} is a series of age-specific fertility
rates, and the ages between w; and wp constistute the fertile period. We shall
call this a continuous age version of the definition. In addition, one may find
the discrete age version

£, (1.2)
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which is commonly used for purposes of numerical calculation.
Similarly there is a continuous and a discrcte age version of the

definition of the gross reproduction rate:

(1)2 u)z—l
R = f = °
B o1 f dx and Ry xiwl fx. (1.3)

The fertility rate fx may be specified for a female or for a male parent,
and fertility may be defined with respect to live male children, to live female
children, or to live children of both sexes. To each of these specifications
of the fertility rate (and a consistent specification of the decrement Series)
there corresponds a net and a gross reproduction rate.

It need not concern us here exactly which specification has been made,
nor does it matter whether decrement series and fertility rates are calculated on
a calendar or a generation basis. What we have to say, will be relevant to
any of these alternatives.

When we speak of parent and child, it will be understood that there is
a specified sex for the parent and a specified kind of live child. By births

we shall mean live births.



§ 1.2.

The accepted interpretation of the reproduction rates may be

formulated as follows:

RN is the average number of children
tha will be borm to a parent, (1.4)
evaluated at the birth of the
parent,

RB is the same average number of
children, provided the parent (1.5)
survives the fertile period, i. e.
provided there is no mortality
before age w.

The averages are evaluated on
the assumption that the mortality
(in the case of RN) and the
fertility (in the case of both Ry
and RB) of the parent develops as
specified by the series ‘{lx} and
{£_}.
X
§ 1.3. Several questions should have arisen up to this point:
(i) How are the two versions of the definition of each reproduction rate
reconciled ?
(ii) Are (say) (1.2) and the second member of (1.3) consistent ?
(iii) TIs the formula for a reproduction rate consistent with its verbal

interpretation, as given in § 1.2 ?

One purpose of the present paper is to answer these questions.

We

shall introduce a very simple probabilistic model which will enable us to answer

question (i) directly.

Within this model, which gives a reasonable inter-

pretation of the calculations made in connection with the reproduction rates,

we shall give the following answer to questions (ii) and (iii):



Suppose that we make (1.1) and (1.2) consistent with (1.4). Then

the second member of (1.3) is inconsistent with (1.5). And vice versa.

We shall show. however, that in a certain sense the numerical effect
of the inconsistency on the reproduction rates is probably negligible in most
cases.

Finally, we shall set up maximum likelihood and some other estimators for

the parameters of the model, and shall see how these may be applied in practice.

§ 1.4. Essentially the same model as the one presented here has been

briefly considered previously by Joshi (1954), and by Consaél and Lamens (1962).

2. The model

§ 2.1. We shall let wu(x) be the force of mertality and ¢(x) be the
force of fertility for an x year old parent. This will be taken to mean the
following:

Let us obscrve a parent alive at age x during the age interval

<X, X + Ax > with Ax > o. Then

(i) the probability that the parent will die in the age interval without
giving birth to any children, equals p(x)aAx + o(Ax), where o(Ax)/Ax -+ 0

as Ax -+ 0,

(ii) the probability that the parent will have cxactly one Birth in the age

interval and survive to age x + Ax, equals ¢(x)Ax + o(Ax),

(iii) the probability that the parent will survive to age x + Ax without

giving birth to any children in the age interwal, equals
1-[ux) + ¢ (x)] ax + o(Ax), and

(iv) the probability that the parent gives more than one birth, or gives

at least onc birth and then dies within the age interval, is o(Ax).

>

We shall assume that u(.) and ¢(.) are continuous functions for x = 0,
with u(x) > 0 for 0 = x < w, ¢(x) > 0 for w; < x < wy, $(x) = 0 otherwise.
Thus the fertile period is the period where ¢(x) > 0. Multiple births will

be taken care of at a later stage. (See § 2.7.)



§ 2.2, It will be seen that in the present model, fertility does not
depend on the marital status of the parent, parity of the birth, time elapsed
since last birth, etc. We do not claim that this medel gives a realistic
description of all major aspects of true-life fertility in any sense. We do
believe that it has some of the essential features of fertility, however, and
what is even more important: it permits us to give a precise interpretation of
many of the measures commonly used in fertility and reproductivity analysis. It
is our belief that such measures have little meaning except within some model.
It can then do no harm to formulate it explicitly, and the formulation permits us
to make such important distinctions as the one between a parameter, estimators
for it, and estimates calculated. (For the terminology, see e.g. Kendall and
Buckland (1957)).

One further motive for choosing the model of § 2.1 is its simplicity,
which will permit us to make our points without expending too large an effort

on the mathematics of the problem.

§ 2.3. We shall need the following quantities:

L. t
p. = 't exp {- / u(x + 1) at}
ttx R'X 0

is the probability that a parent of age x will survive to age X + t.
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Pk(x,t) is the probability that a parent of age x will give birth to
k children in the age interval [x, X + t > and will survive to

age x + t.

Q (x,t) is the probability that a parent of age x will give birth to k

children in the age interval Ex, X + t > and will die in the interval.
Rk(x,t) = Pk(x,t) + Qk(x,t) (2.1)

is the probability that a parent of age x will give birth to

k children in the age interval Ex, x+t>.



fl(x,t) = kél k Pk(x,t) / Py (2.2)
is the expected number of children to which a parent of age x

will give birth in the age interval E{.,x+t>, given that the

parent survives the interval.

f2(x,t) =1k Qk(x,t) / +9
k=1
is the corresponding expected number of children, given that tte
parent does not survive the interval.
f(x,t) = I k Rk(x,t) = P, fl(x’t) * 9, f2(x,t) (2.3)

k=1
is the expected number of children to which a parent will give

birth in the age interval [x,x+t>.

§ 2.4, Let us first consider Pk(x,t) and fl(x,t) for x < w,. To assume
that it is given that the parent will survive to age x+t, amounts to making
evaluations as if u(x+t) = 0 for 0 = 1 = t. (A formal proof will be given in
chapter 8.) In this case the births in the interval are generated by a Poisson
process with variable intensity ¢(x+t) for O % t. As shown e.g. by

Khinchine (1960, pp. 18-21) we then have

i t
d(x+1) ari¥ exp{-é o(x+t) dt}

O t

_ 1
Pk(x,t) / P, " {
for k=0,1, 2, ... . Therefore,

t
fo(x,t) = J olx+t) dr (2.4)
1 0

t
and P (x,t) = L [fl(xgt)]k exp{-f [u(x+1) + ¢(x+t)] dt} (2.5)
ki 0

for k =0, 1, 2, ... .



Summation over k in (2.5) gives

oo

Px T L, P, (x,1t) (2.6)

as we ought to get.

§ 2.5, By decomposing according to the moment of the last birth in the

. . >
age interval [%, x + t > we obtain for k = 1

t

Pk(x,t) = é Pk—l (%,7) ¢(x + 1) Po(x + 1, t -~ 1) drt, (2.7)
t

Qk(x,t) = é Pk_l(x,r) d(x + T) Qo(x + 1T, t - 1) dT, (2.8)

and consequently

t

Rk(X,t) = 7 Pv_l(xar) d(x + 1) RO(X + 1, t -~ T)dr. (2.9)
0 )

If we multiply by k in (2.9) and add for all k 2 1, we obtain by the Lebesgue

monotone convergence theorem

t
f(x,t) = / (k+1) Pk(x,r) d(x+t) Po(x+T, t-1) dr.
0

>
=0

L
k
By (2.2) and (2.6) this gives
t -
f(x,t) = [ Py Lfl(X,T) + l] d(x + t) Pb(x + 1, t - 1) dT,
g T3
which can be interpreted directly. Starting from (2.7) or (2.8) we may obtain

quite similar formulae for fl(x,t) and f2(x,t).

§ 2.6, Since obviously for At > 0:

Qk(x, t + At) = Qk(x,t) + Pk(x,t) . u(x + t) At + o(At),
we get
T 0G0t = PG ux + 1),
and N
Qk(x,t) = [ Pk(x,r) p(x + t) dr. (2.10)



By (2.5), 2= P Go,t) = =[u(x + 1) + §(x + )] P (x,t),

3o Po(x,t)u(x +t) = - %%- Po(x,t) +o(x + t) Po(x,ti]. (2.11)

Letting k = 0 in (2.10), introducing (2.11) and making some trivial manipulations,

we get

t
Rofx,t) =1-17 Po(x,r)¢(x + t)dT,
0

which can again be interpreted directly.

Multiplying in (2.10) by k and adding, we get

t
=/ fl(x,T) Py u(x + t)dr

£o(x,t) +3y !
t 5 t

= é fl(x,r)[ " 5T Tpg] dr = é fl(x,r)[ - Tpg]
t t

+ J 2 f (x,t)dt = - £ (x,t) + f (x + T)dt
0 Px * 37 T1'%> - 1% © Py 0 Pedx + T)dT.

Combining this with (2.3), we get

f(x,t) D oz + t)dt, (2.12)

"
O St

as we might have guessed. By the mean value theorem,
f(x,t) = EXPX . fl(xﬁt) for a £ £< 0,t>>. (2.13)

In combination with (2.3) this relation gives
f2(x,t) < f(x,t) < fl(x,t) (2.14)

as long as <x, x + t >\ < Wy s Wy > # @, 1in correspondence with common sense.

(It is reasonable to expect that a parent who dies in the age interval [%, X + t>

will have fewer births in that interval than a parent who survives age x + t.)



§ 2.7. (Multiple births.) Let B be the actual number of births in

the age interval Ex3 X + t > to a parent of age x. Then B is a random variable,
with P { B = b} = Rb(x,t). Summation in (2.10) gives by (2.6)

I Q (x,t) =
k=0 K

O rt

Py w(x + 1)dt = 9

Thus T P{B=k}@ =F% P. (x,t) + T Qk(x,t) =1,s0 P{B<w} =1,
k=0 k=0 K k=0
If B > 0, let Ci be the number of children born in birth no. i. We
shall allow for multiple births, and shall let Hk
birth will have the multiplicity k, for k = 1,2,....,K, withk§lnk = 1. (We

be the probibility that any

might have introduced stillbirths by permitting k = 0, but that is outside the
scope of the present paper.) The expected number of children in any birth

then cquals

It may be noted that in this model the Hk do not depend on the age of
the parent.

Given that B = b > 0, we shall assume that C are indcpendent,

1> 20 0 G
cach with the distribution'{nk}. The total number of children born to the parent

in the age interval Eks x + t > will be

0 ifF B=0,

1
=
~

1"
va

. >
Then P {¢c = 0 }= Ry(x,t), and P {C = k|B = b} = nix for b =

where the topscript bx signifies the b-th convolution,

Thus P {C = k} = ; Hix R ,(x,t). Furthermore E(C|B = b) bll,  and the
expected number osz%ildren born in the age interval Eg, X + t > to a parent

of age x equals EC = T.f(x,t).

A quite similar relation holds if we take it as given that the parent will survive
age x+t. We may therefére easily convert an expected number of births into an

expected number of born children by multiplication with the factor II.
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3. The reproduction rates

§ 3.1. We define the net reproduction rate as

R, = T£(0, ), (3.1)
®2
and get Ry = S po . o(x)dx (3.2)
w 0
1
by (2.12), with ¢(x) = I¢(x). Similarly we define
Ry = 1£,(0,0,), (3.3)
and (2.4) gives us
UQ -
R, = J7 ¢x)dx. (3.4)
B W
1

The definitions (3.1) and (3.3) correspond with the verbal definitions (1.4)
and (1.5). The formulae {3.2) and (3.4) correspcnd with (1.1) and the first
member of (1.3). We sce, therefore, that t h e fX of the two
integrals of § 1.1 may be intecrpreted as
force of fertility, multiplied by the
expected multiplicity of a birth.

Formula (3.2) may be written in the form

(1)2"'1 1
Re = L  p S b (x + T)dr.
N T, x50 g tRg ¢(x + e
1
We introduce
1 —
£, ° é Py » ¢ (x + 1)t = Mf(x,1), (3.5)

and see that fx is the expected number of children born in the age interval
Eg, x + 1 > to a parent of age x. Then
(.02-—1
RN - E XPO . fxg (3.6)
X=wy

which is (1.2), and which corresponds to (1.4).’

a
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If we let

o K

f; = [ 6(x + 1)dT = Hfl(x,l), (3.7)

*

then fé will be the expected number of children born in the age interval [g,x+l >

to a parent of age x who survives to age x + 1. We see that

wz-—l
R, = % £7 . (3.8)
B x=wl X

in correspondence with (1.5) but in contrast to the second member of (1.3).
We see that onme should not use the same
measure of fecrtility 1in the Se cmg_E d member

of (1.3) as iwn 1 (1.2). In fact, (2.14) gives Ry > 5 f> and on
27 =
the other hand R_< I p £ X201
N X0 x"

X=wy

§ 3.2. In mortality investigations with several causes of mortality,
a distinction is made betwcen partial and influenced probabilities of deathl).
Thus, if there are s causcs of mortality and the force of mortality of cause
(v)

v is He s then

(a)

x+0

. T s
() exp {-/ T ¥
X+T 0 a=1

deldr

(V)
U

o+

is the (influenced) probability that a person of age x will die before age x + 1
of cause v, and

1
- (v) ' (v)
IY,v ~ é Hxet expi- uxﬂ}dT

is the corresponding ‘partial probability'. The value of qiu) is obviously
influenced by the forces of mortality of causes a#v., hence the terminoclogy.
qx’vis the probability that would be effective if all causes other than cause v
were removed.

In analogy with this, one may regard fx as a measure of influenced
fertility at age x, i.c. fertility as influenced by actual mortality.

Similarly, f; may be taken as a measure of partial fertility at age x, i.e.

fertility as it would have been if mortality was inoperative.

1) This terminology is due to Sverdrup (1961). In less fortunate but more
common terminclogy, one speaks of independent and dependent probabilities,
respectively,
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Similarly, RB may be regarded as a summary mecasurc of partial fertility
and RN as a summary measure of influenced fertility (for all ages taken together).

Behind much of what has been written on the theory of fertility
investigation seems to bec the notion that one should scak for a 'pure® fertility
measure cleansed of any influence from mortality. (A particularly clear
formulation of this position has been given by Matthiessen (1967, pp. 76-77).)
The force ¢(x) of fertility readily points itself out as an excellent measure of
this kind. If for pedagogic or other reasons one cannot work with a concept such
as the force of fertility, f; is an obvious substitute. Since real-life fertility
actually is influenced by mortality, I am not at all convinced that one should be
content with measuring partial fertility in all cases, however, but would favour
employing fx as well as fé to get a fuller picturc in cases where mortality is

not negligible.

§ 3.3. Formula (2.13) gives

f = .£
£ b

' for some & € <0,1>. (3.9)
L XX X

Using the common approximation 1 - E-px:::%qxiu 0,5 Q. We get
x

£,/ (1 - 0.5 . q ) £, (3.10)
In many populations, and ccertainly in the present Scandinavian ones, 0.5 . q,
is so small for all fertile ages (at least for females) that the correction
implied by (3.9) is negligible. This is not the case for all ages all over
the world, however, and where it is not, (3.10) should be used.

For the net reproduction rate, (3.9) and the mean value theorem for
finite sums imply that

wo=1 wy~1

= !z
R px'fx EP

. f! 3.11
N xgwl XPOG gx po fX ( )

n X=wy X

for some £ € <0,1> and some n ¢ <wy 50, >. We may probably use e.g. 0.5 . q, -
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for some x in the range between 25 and 30 as an indicator of the value of £qn'
Values ©f this indicator for females in various selected countries are given
in table (3.12). The impression is that Eqn will be negligible for many populations,
but not for all of them.
In a later chapter we shall show thag gfrrent pratice may be interpreted
as consisting in quoting the value of R& = xgwl <Po ° f; for RN and the value

Wy-1

of § £ forR. While R is therefore correctly
x=wy X B B

estimated, RN will currently be slightly

overestimated as is brought out by (3.11). Even a £y of 25 0/00

and an R! as high as 3.10 will only produce a corrcction of gl R, = 0.08,

N N
however. (The value R' = 3,10 is quoted for Costa Rica for the year 1960 by

van de Walle (1967), agd is the highest value for Rﬁ given in his list,) The
numerical error caused by the practice mentioned is therefore in most cases
certainly of no consequence in comparison with the other sources of error en-
countered in the process of furnishing values for the reproduction rates.
Nevertheless it has some theoretical interest to note the difference
between fx and f;, and to be aware of the fact that it recpresents a slight

approximation not to make this distinction.

Table (3.12)

Values of 0.5 . q, for scme age between 25 and 30 for females
“ in various populations

Country Period giiup gﬁso3§o
Congo (Leopoldville), African population ......e..... 1950-52  25-29 2u.,5
MEXICO cuvoessensaosososoconsssssassossnssscassnssnss 1940 25-29 22.7
APGENTING tevevesenesosesosecascsosassassscssacsosnassas 1947 25-29 8.3
INA1@ vevesevessoconconssosssesosssnsscsssasssanseeso 1341-50 30 8.4
JADAN ceoescoscesosccanssconossessessesssnces cesenocs 1959 25-29 4.3
ISracl .oveeoeeecacscooenscoconacnsassonnsssssessnsss 1960 25-29 2.2
Cananda eeeecsosocessossoocsvoessosscocassnsssesnasscoss 1355-57 30 0.5
NOYWAY cevecerooscssscooossaoorsessssssosacssscssnssose L351-55 30 0.5
England and WaleS ceeeeesonosesosscossossssssssaasces 1950-52 30 0.7
POland ..eeecossvcesesssscoacscencacesscasnsocsossssocs 1958 30 0.7

Source: U.N. Demographic Yearbook 1961, Table 25.
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4, Maximum likelihood estimation

§ 4,1. (Simplification to constant forces.) Let x be an integral age.

For the purpose of estimating the forces of mortality and fertility for ages
in the age interval Eg, x + 1 >, we shall let the constant parameters u and ¢
1. This

represent the values of the functions u(x + t) and ¢(x + t) for 0 : t
has practical interest provided sup [u(x + t) - u| and sup |é(x + t) - ¢| are not
too large. 0551 05t51

Under these circumstances we have for 0 s t <1

(¢t)k -(p+e)t

Py = e "t 5 fl(x,t) = ¢t, Pk(x,t) el e for k=0,1,2,.00.,
and £(x,t) = %—(1 -e T,
Similarly by (2.10) and after some arithmetic
o0 X0 0§ 3 [ Y e feta
(u+e) v=0

We introduce ¢ = ¢ and see that ¢kAt + o(At) for At > 0 may be

I
k’
interpreted as the probability that a parent of age x + t will have one birth
of k children before age x + t + At, and survive to this age. We have

K
X = ¢ . (4.1)
k=1 ?k

We shall assumc that all ¢k and W are functionally independent.

§ 4.2, (Further definitions,) Assume that a given number n of parents

whose lives are independent, are observed as they pass through the ages in the
interval [3, x + 1 >, In order to avoid unnecessarily restricting the generality
of our results, we shall not assume that we are able to observe all parents
throughout the age interval. Let the length of the period of possible observation
through ages in Ex, X + 1 > of parent no. j be zj S 1. For this parent, we

shall start measuring time at the start of his (or her) personal interval of
observation, and shall thus keep track of him (or her) during a time interval

[bg Zj >
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Perhaps we should stress that [b, zj > is the interval of possible
observation. If the parent dies at time u while under observation, the
actual interval of observation will be [b, u >, with u <zj.

In our model =z > 2 will represent given positive numbers.

s Zns .

Let Bj be the number o; biiths and let Dj be the number of deaths experienced

by parent no. j during [b, zj> . (Note that Bj is not necessarily the number of

children born if multiple births are permitted.) Obivously Dj = 0 or Dj = 1.
If Bj >0, let Tj(l), Tj(2)> ceo s Tj(Bj) be the moments when births

occur to parent no. j (in time order). If Dj = 1, let Tj(Bj + 1) be the moment

when the parent dies. We let
[;. if D, = 0, and
] J
U. =
J T.(B,+1) if D, = 1.
1 3 ]

Thus <0, Uj]is the actual periocd of observation for this parent.

If Bj > 0, let Cji be the number of children born at time Tj(i), for
< . < B3
1=1i= Bj’ and let Cj = _ZiCji‘be the total number of children born to parent
i=
nc. j during [b, z. > . For typographical reasons, we shall sometimes write

]
¢(k) for ¢k'

§ 4.3, (The likelihood.) We shall find the likelihood for parent no. j.

We get

P {B.=0and D, = 0} = e "Mz

3 3
Furthermore, for bj > 0,
) bﬁ+l
P{B. =b.,D. =1, N t.(1) < T.(1i) < t.(1) + dt.(1)
t By = by, Dy ) [e5(8) < 7500 <t j 1
b3
and N (c.. = c..)}

i=1 Ji ji
~(utd ). (1) ~(ute) [£.(2) - . (1)
e j . ¢(le)dtj(l) . e 3 j <ch2)dtj(2) .

e (ut9) ey (by) - by - 1’3¢<cjbj)dtjcbj) :

o ~(ur0) [ (by41) - t, (b, )]

udt. (b.+1)

J 3
bj+l

c..)n dat.(ij.
TR

b5

- e —(u+¢)tj(bj+l) LT
i=1
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By treating the other cases similarly, we see that the likelihood for parent

no. j amounts to

B. B.
- (ure)u, D. J . e,y = 1 ifB. = o
F. = e jowTi. O ¢(Cji) with T o( 31) if B,

J ) izl i=1

Let Njk be the number of the Bj births that have multiplicity k. We then
get

K
z

InF. = -(u+¢)U. + D. 1n u +
J J k=1

j Njk 1n ¢k

where 1ln denotes the Napierian logaritm. The total log-likelihood for all
n independent parents is therefore

K
InF = -(u+¢)U + Dlnp+ I N In e (4.2)

k=1
where U = ZUj is the aggregated lifetime observed, D = ZDj is the
total number of deaths observed, and Nk = '§l Njk is the total number of
births observed of multiplicity k. We shail also need the total number
of births observed, B = ? Bj = iNk.
3

By the properties of Darmois-Koopmans classes of probability
distributions, the random vector (U, D, N., ... , NK) is minimal sufficient.
Ve note in particular that neither the birth times Tj(i) nor the numbers
Cji of children born in the various births enter directly into (4.2).

It is now ecasily scen that the maximum likelihood estimators for

the various parameters are

A—DA —.———A—E ~ - =
HEgs ¢k = T ¢ = e and Hk = . (4.3)

All of these are natural estimators. From (4.3) we derive the maximum

likelihood estimators Py, = € “ut, %l(x,t) = ¢t, f(x,t) =

A —A " K n .

2 (1-e ™™y, anafl = 1 Kl = /B, where C = zIC,, is the total
u k=1 23 Ji

number of children born during observation. We shall call p the (age-

specific) mortality rate to distinguish it from the corresponding force u,

which it estimates.
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§ u.4, (M.1. estimators for fX and f:{.) By (4.3) and the definitions

of fx and f;, maximum likelihood estimators for these two parameters are

Froo= fig : = ﬁA = C
&1 fif, (x,1) ¢ /U
and %x = ﬁ%(x,l) = ﬁ%K(;) = %;K(ﬁ) (4.4)
. _ 1 -u
with k(u) = m 1-¢e 7). (4.5)

Thus %; is the common age-specific fertility rate. By (4.4) we may regard
K(4) as a correction factor which transforms the estimate of partial fertility
into an estimate of influcnced fertility. We shall call %; the (age-specific)

partial fertility rate, and we shall use the term (age-specific) influenced

fertility rate for %x°

As k(P) R 1 - iy, we get §x4% f; (1 - 3u), which is quite similar

to (3.10).

§ 4.5, (Probability limit of U/n.) The distribution of Uj may be

found as follows: We see that P{Uj = zj} = P{Dj = 0} = e_uzj.

FPurthermore, for 0 < t < 25 P{t < Uj <t +dtr= e .udt. Thus var Uj

exists, and

- J - -

EU. = z..c "5+ f ute Mt ar = -i(l - e M%),

j 3 0 H

Therefore, plim Y. gl -2 (1- e-uz) with z defined by
n>o n n u

- n -

e = 1im = 1 M3, (4.6)
nreo I j:l

provided the right hand limit of (4.6) exists.
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§ 4.6. (Consistency of u.) Since P{Dj = 0} = e "% and
P{D. = 1} = 1 - e—uzj, ED, = 1 - e-pzj, and we get plim D/n =
J - J . D n--e
D -Hz .o° plim = N .
E—= 1-e¢ . Therefore, plimu = = yu. Thus u is consistent.
n n->o : U
plim =
n
. A . - _ 0 ~Uz.,
§ 4.7. (Consistency of ¢.) Since EBj = f(x,zj) = <E(l -e 73),
. B
= plim -=
we have glim B o g = E(l - euz), and plim = LS. ¢,
3o n n U oo . U
n plim Py
so ¢ is consistent.
§ 4.8. (Consistency of M ..) Given that Bj = b, Njk will be
binominally distributed (b,M, ). Thus E(NjkiBj) = Bj’nk’ and it follows
N
. k
N N = A plim —
that Plim'“k = E—JS = I .-i(l - e ™). Thus plim1n, = —2 = T,
nr>e n n k™ u : k . B k
n>o plim a

A
so also each Hk is consistent.

§ 4.9. By the results above, the estimators Py ? fl(x,t), f(x,t),

~

fx, f;, I, and the ¢k are all consisten as n > «, Beside this, maximum

likelihood estimators in the present kind of model have certain additional
optimal characteristics which makes one prefer them to other natural

estimators. We shall give one example.
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Assume in this paragraph that all Zy have thc same value z. By Hoem

(1968, § 5.6), ¢l,..¢,¢K, and u are asymptotically independent and normally

distributed with means ¢lg..., ¢K’ and u, respectively, and with asymptotic

variances
2 U
A~ Ll A
as.var p = %~.<~————:—2 and as.var ¢k = é-. ———-—35—- for k = 1,2,¢.0.., K.
1- e7® S L

By Sverdrup (1965, Appendix B), these rates are furthermore optimal among Fisher-
consistent estimators.
Similar results hold for the other estimators above. Asymptotic properties

~ A A~

of ¢, F,(x,t), fX, f;, and the N, will be studied in chapter 7. The asymptotic

k
properties of Py have been studied by other authors, notably Sverdrup (1961).
The properties of fl(x,t) and II easily follow from the results for ¢ and the Hk

and will not be considered here.

§ 4.10. One of the advantages of an approach where the length zj of the
period of observation of parent no. j may depend on j, is the possibilities it
gives for permitting entries into the group of parents studied after the start of
the observations. In certain cases it is natural to regard Zys Zgreeey 2, A8
values of independent and identically distributed variables. The estimators
will still be consistent, and ;l,.,., ;K and ; will again be asymptotically
independent and normally distributed with means ¢l,..., ¢K,and u, and with

asymptotic variances

N 2 A Uo
21 U 21 K e 1o =
as.var Tn T oI as.var ¢k =S T for kK = 1,2,..., K,
z
with I = J e—uz dG(z), where G is the distribution function of the z) s and z,
0

is the maximal lenght of possible observation, so that G(zo) = 1. The optimality
of our rates among Fisher-consistent estimators is preserved at least if G is
fully known.

These aspects have been discussed by Hoem (1968) in a wider context.

The idea of introducing random z, is due to Sverdrup (1961, 1965).

k
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§ 4.11. It is also possible to allow for several causes of decrement from
the group of parents considered by splitting p into a corresponding number of
forces u,. This will leave unchanged such formulae as (4.3) and (4.4) as well as
the properties of thosc estimators. (Note that u will then be the total force
Ly, of decrement from the group.)

Such procedures will make possible moresophisticated methods of fertility
analysis than the ones sketched in previous paragraphs, as well as a simultaneous

analysis of nuptiality. This is not the subject of the precsent paper, however.

5. TFurther notes on estimation

§ 5.1. In the present chapter, it will be assumed that all zj equal a
preassigned value z. A natural estimator for f(x,z) is then the average number of

births per parent:

%(x,z) =B =

™M 3

B..

1
njl]

A corresponding estimator for fX if z = 1, is the average number of children per

parent:
N n K
£ =z =% 3 =% 1w,
X n j=1 3 n k=1 K
where C, = L Cji still is the number of children born to parent no. j. By

§§ 4.7 and 4.8, both of these estimators are unbiased and consistent. We shall

find their variances in §§ 5.3 and 5.4 below.

s

§ 5.2, If z = 1, a natural estimator for L; is similarly the average

number of children born to parents who survive age x + 1:

o1
£ ° @b 3

e R=]

1-1D.)C.
1( J) 3’

provided D < n. In the (improbable) case where D = n, some other formula must
N n, v

n

be found, e.g. f; = C. Comparison of fX and f; again brings out the distinction

between £ and f!.
X X
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By previous results, E(B, | Dj 0) = f,(x,1) = ¢, Moreover,

K 3
C. = L k.N.,. Thus by § 4.8
J k=1 jk us oy >
" K
E(f' {[D=4d) =E(C.|D, =0) = ¢ kE(N. |D=0) =
X | J | J k=1 ]kl
K K K
= Ik E{E(N., |B., D. =0)} = £ k.E(B.N, |D. =0) = 2 kI, = oI
k=1 ik | 37 73 k=1 ] kl J ¢ k=1 K ot

v
so E(f! D = q) = f£:  ford =0,1,..., n-1. D will be binominally

-Hn

HosoP(D=n) = e ", Thus

distributed (n,p) with p = e

v
B! = £ (1 -e ™) +E(£|D=n).e "R,
X X X

N
and f; is generally at least asymptotically unbiased as n - =,

Since E(1 - Dj) C. = E(le Dj = 0) P(Dj = 0) = ¢Il. eﬁu, we get

o]

]
1
n

. plim Q- Dj)cj
s ey - 1=1 = o = §
plim fx 0 fx’

. D
plim (1 ~-;)

N
S0 f; will also be consistent. We may find its variance, but the

mathematical formula is ugly and probably of little use. One should prefer
N

£f' to f' 1in any case.
X X
v 1
§ 5.3. Since var f(x,t) = = var Bj’ we need a formula for var Bj'
We are then primarily interested in g(x,t) = I k2 Rk(x,t) = E B?.
k=1
- 2 - 2
If gl(x,t) = % k Pk(x,t)/tpx, and gz(x,t) = E k Qk(x,t)/thg

k=1 k=1
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then g(x,t) = Py gl(x,t) 4, - g2(x,t). The formulae of § 4.1 give

e 7% = (4t)? 4 4t.

g, (x,t) = 1 17 (4t)

k=1 ki

The combination of this result with (2.10) gives

t
g2(x,t) NG é gl(xgt) » Py - wdT.

= 9 $ - —ut 2 k4 9
“ (2 Tt 1) - ¢ {(ot)” + (2 ot 1) (ot + u)}.

Thus g(x,t) = (1 - e _“t) b (2 k) +1) - 2e Ht @ ot = EB?,
u u u 3
and var Bj = g(x,t) - C%)z (1 -e -ut)Q. (5.1)
It is possible to show that, when all zj =z,
n > ~
var f(x,t) = as.var f(x,t), (5.2)

A 4
so f(x,t) would be preferred. (Cfr. Stverdrup (1965, Appendix B).) fx is Fisher-
consistent.) The combination of (5.1) and (5.2) gives an upper bound for

-~

as.var f(x,t). A formula for this asymptotic variance will be given as (7.4).

v
§ 5.4, To find var fx =-% var Cj’ we return to § 2.7 and note that

> K 2 2
var (C..|B, = i) = k@I -1
Ji 3 k=1 k
. 2 _K 2 2 .2 . .
Thus if = =kZl k Hk’ var (Cj[Bj =b) = b(t" -N7). In §2,7we similarly

found E(leBj = b) = bll. Thus

"

var C. = E var (C.|B.) +var E(C.|B.) = (T2 - HQ)EB. + 2 var B.
J 33 33 J J

- ) - -2
or var C. 12-3 (1 -e "y ¢ (Gi)2 (L -2 .¢e B e M.
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6. Some applications to estimation in demography

§ 6.1. The application of the results of the previous chapters to demo-
graphic estimation is fairly straightforward. We shall give three examples
to indicate how this may be done. Adaption to other situations can be made
ad hoc.

To fix our ideas, we shall concentrate on a situation where it is desired
to investigate female fertility with respect to (live) children cof both sexes

in a population. Let x be an integer. We define

Figgre 6.1
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LiN) as the number of women of age x in the population on January 1 of
the year N,

MiN) as the number of women who experience their x-th birthday in the
populaticn in the year N,

CiN)+ as the number of live children born in the year N by mothers who experience
their x-th birthday in that year and who have the birth no earlier than
this birthday, and

CiN)_ as the number of live children born in the year N by x-year old mothers
whce have the birth before their own birthday in that yearl).

Thus LiN) is the number of female lifelines that cross the line DG in
(N)

figure 6.1, and MX is the number of female lifelines that cross DE. Similarly,
CiN)+ is the number of children born 'in the triangle DEH", and CiN)_ is the
corresponding number of children in A DHG.

Quantities DiN)+ and DiN)— will be defined quite similarly to (iN)+ and
- AT
C(N) , respectively, and will signify numbers of femalec deaths. Similarly UiL)+

o an-

and UX will signify aggregated {emale lifetimes.
Thus e.g. UiN)+ is the total lenghts of the female lifelines in A DEH in
figure 6.1.

We shall consider the estimation of fertility in the parallelograms
DEKH, AEHD, and DEHG. As a side result we will simultaneously get mortality

estimates.

§ 6.2, (Age ycar methed,) It may be desired to analyse fertility in

the parallelogram DEKH. Let fiN) be the quantity corresponding to the fx of (3.5)
7
for a woman whose lifecline has points in the parallelogram, let fiN) be the

(V)
X
(regarded as a constant parameter throughout the parallelogram). By (4.3) and

quantity corresponding to the f; of (3.7), and let u be her force of mortality

§ 4.4 one would estimate these three quantities by

(N)+ (N+1)-
;(N) _ D + D
X U(N)+ N U(N+l)—
X X
(N)+ (N+1)-
£ % 5% , (6.1)
X
U}({N)+ . UiN+l)—
and %iN) = %iN)? . K(QLN)).

1) At this birthday, these mothers will become x+l1 years old.
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If the data are not available in a form which gives the relatively detailed
information required in these estimation formulae, various approximation
techniques can be used. For example

e’ -
i [&iN) + M(N+l?] may be chosen as an approximation to U(N)+ + Uil+l) .

x+l X
If not even the MiN) are available, their values again may be approximated by
similar techniques. One may e.g. choose 3 Li?i + LiN+l?1 as an approximation
to M;N). In this case, U(N)+ + UiN+l)— will be approximeted by
1.(N) 1 (N+1) | 1 _(N+2)
b Lx--l 3 Lx g Lx+l :

N
The quantity corresponding to the fx of § 5.1 will be

C(N)+ + C(N+l)-

&(N) _ % X
fx = M(N) : (6.2)
pY

§ 6.3. (Calendar year mecthod.) Let XfiN)v xfiN)i and xuiN) be the

quantities corresponding to the fx of (3.5), the fé of (3.7), and the force

of mortality, respectively, for a woman whose lifeline has points in AEHD. Then

D(N)— + D(N)+

x;(N) _ Tx-1 P
- - S
X U(N) + U(N)+
x-1 X

C(N)— N C(N)+

x%(N)“ .o_x-1 X i (6.3)
X U(N)~ N U(N)+
x-1 X

and x%iN) - x%iN)f. K(xuiN)).
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-, 0+ . ) () (mﬂ
If
necessary, U . + U may be approximated by M_~° or by 3 L.y t1L, .
The relation corresponding to (6.2) is
: (N)- (¥)+
x N6 '
x-1
I ]
§ 6.4. Let 1-f(I\') TF(N) and +uiN) be the quantities corresponding to

x 7 7x
the fx of (3.5), the f; of (3.7), and the force of mortality, respectively, for

a woman whose lifeline has points in DEHG. Then

(N)+ (N)-
oy Px T
X G+ -
X X
(N)+  (N)-
L S (6.5)
x U(N)+ N U(N)m
X X
FA(N)  _ ta(N)? +7(N)
and fX = fX . k( ux ).

(N)+ + U(N)—
X

x suggested by Sverdrup (1961) is

An approximation to U

1 .(N) 1 (M) .1 _(N+#1) 1 _(N+l)
Flx1 T3l T3l * % g

It is an essential feature of the present situation that not all zj are equal

so there is no formula corresponding to (6.2) and (6.4).

§ 6.5. It appears that fertility rates are commonly estimated by
formulae like (6.1), (6.3), and (6.5), generally with some approximation included.

This amounts to estimating partial fertility. (Cfr. § 3.2).
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7. Asymptotic properties of maximum likelihood estimators

§ 7.1. Let ©® = (0 20 )' be any parameter vector, let @ (Gl,..., O )¢

sees
be a maximum likelihood eoilnator for 0, and assume that vn (O - 0) is asymptotlcally
multinormal with mean O and some covariance matrix I. (This will generally

though not always be the case for maximum likelihood ecstimators.) We introduce

a new parameter vector o = (o, ,..., oy )’ by a one-to-one transformation ¢y of

the form @, = wk(al, cees O ) for k = 1,2,..., s. The differential quotients

k
(a ey as) are assumed to exist and be continuous. We introduce

aaj & 2
1 1
aal’ tee ’ da
J =g - .o ,
I By
Bal ’ tee ? Bas
—

A

and let o be the maximum likelihood estimator for a. It may then be shown that
vn (o - ) is asymptotically multinormal with mean 0 and some covariance matrix

r = (Yij)‘ Hoem (1968, § 6.1) shows that

S S vk ) ‘p

i3 9y )
I Lo —_—, — for all i and j (7.1
vzl k=1 B(xj > 1

v =

where F-l = (ylj) and Z-l = (ol]). This formula may also be written F—l = J‘Z_lJ.

§ 7.2. We studied asymptotic properties of the estimator O = (¢l,...,¢K,u)'
in §§ 4.9 and 4.10, and found that Y& (0- 0) will bc asymptotically normal with

mean 0 and asymptotic covariance matrix BA, where
p/(1 - e “%) under the assumptions of § 4.9, and

, zg  _
uw/{1-7" ™2 45(2)} under the assumptions of § 4.10,
0

and A = diag (¢l:¢23"'3 ¢K9u)'
In the present chapter it does not matter which onc of these two sets

of assumptions apply. Our results hold in either case. Formula (7.1) will now

reduce to
. 3y Y
ij _ 1 K+l k k 7.2
{ - B k‘E 0. _‘a"“ / (bk’ ( ° )
where ¢K+l U
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A ~

§ 7.3. (Properties of u, ¢, and the I} .) We have defined K to be the

maximal multiplicity possible of a birth. The special case of K = 1 is rather

trivial and will not be considered here. In the rest of this chapter, we shall
>

let K = 2, so t?at it is possible to get at least twins in any birth.

Since I Hk = 1, there are K - 1 “free’ parameters I In the present

k.

paragraph we shall study asymptotic properties of Hl"°°’ HK-l aleng with ¢ and
He K
Since ¢ = I - uats . .
¢ o ¢k, M = ¢ / ¢, we have the situation of § 7.1 with K1
a = (nlgo,.., My 1> dou) ?nd ¢k(a) = ¢l for k = 1,2,.... K-1, wK(a) = ¢(1 - kzl nk),

Vs (¢) = u. Thus /n (o~ o) will be asymptotically multinormal with mean 0 and

some covariance matrix A which we intend to find. We have

-~ -
d)a Os 0: so0 2 0, nl, 0
0, ¢, 0, cee » 0, m,, 0
J =\ . B R . . 7
0, 0, 0, .. 6, i 0
K-1°
K-1
“$s=d,=9, o s e s =¢, 1 - kgl Hk’ 9]
\.Oa 0, 0, s 0, 0, l/
Applying (7.2), we get:
6., . p
-% (ﬁil + ﬁi) for 1 =1 <K, 1=73<K,
i K
] E% for i = j = K,
W= < (7.3)
- for i ==K+ 1, and
Bu
0 otherwise,
N
Here éij is a common Kronecker delta. If A;l is the (X-1) x (K-1) matrix
iy = . 1 1
of the M3 of the first line of (7.3) and Azl = diag (Bﬁ” Bﬁ)’ then

A = ¢ 1 and & =
1-0 9 A 2 J 1 0 9 l’\2
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Thus the three random variables (Hl, cees HK_l)', &a and ﬁ are asymptotically

independent, and
as.var $ = ¢8 /n, while as.var iz uB/n as in § 7.2.

Inverting A;l we also find after some calculation:

as.var I, = Hk(l - Hk) g/ (n¢), and

as.cov (nj, mn) = ~nj M g/ (n¢).

k

R § 7.4, Now let 6 = ml""’“&a’

f(x,t) we introduce % = Hk for k = 1,2,..., K-1, o = f(x,t) ='§ (1 -e -ut), end

¢, u)'. To study the properties of

Oy = He In the terminology of § 7.1, wk(al, .:éa, aKi}) = for k = l,...:ui-{i
and §+l, wh11e_t§(dlg ...,GK+1) = o GK+1(1 -e K+t1) ©. We let a = u(l-e ) 7,
b =-E(l - at ) and
l’a,bl I, 0’]

A= 1? , lJ, and get J = 0 "6T’
where I is a (K - 1) x (K - 1) identity matrixX., Thus

/n (M =My wee My = Moy £(x,t) = £6e,t), w0 = )
. . . . . . nﬁ_ ¢ 21 o\-1
is asymptotically multinormal with mean 0 and civarlance matrix = (J' AT J) 7,

. & . - Af=_ 0
where A is given as in $7.3. Since J' A 1 J=¢1ls -1, }, we see that
a 0 ,A'AZA ~ ~

(Hl’ cee s nK-l) and (f(x,t), ) are asymptotically independent, (nl, cos s nK-l)
1 @s in § 7.3, and (f(x,t), #) has the

asymptotic covariance matrix.%(Aa ;-1 p)~l, Some trivial arithmetic gives
2

has the asymptotic covariance matrix~% A

as,var %(x,t) = (¢ + ub2) B/(na2), and (7.4)
as.cov (%(x,t), ;) = -pBb/(na),

while as.var u = uB/n as before.
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§ 7.5. With 6 = (I
for k =1,2,..., K-1, a

AL HK-l’ ¢, u)?, we now introduce o = Hk

= f;, and a = fx’ We shall conclude this

K K+1

~

chapter by studying the asymptotic properties of I; and fx‘

In the terminology of § 7.1, ¢ (al,...9 aK+l) = o for k =1,2,.0.4 K-1,
K-1
Yo seees oyyy) = aK/{K - kZl(K -k) o }, and ¢K+l(al,..., aK+l) =
-1 .
K (aK+l/aK). Letting
o 1L K250, 1
D = -* and
I 0 yeeuy O
l s‘
= . 0
G = il ,
k(u) 1
KPE 2 kTGOEL
we get J = } where I is a (K-1) x (K-1) identity matrix and
() = %;.K(u) = = [e-“-K(ui] Defining H = J* AL J, we have
-1 - 1
lAl + D' A D, D'AS G
H = \
' -1 -1
? 9
{\G A2 D 5 G,.2 G
Here
¢ 2
(K-1) > (K-1)(K-2), (K-1)(K-3),..., K-l\l
A e JEDKD), k-2, (K-2)(K-3),..., K-2
D'A2 D= -3 s
BH - L] . ® o e L3
K"l 2 (K-2) 5 (K"S) 9ceny l
4, k(|
-1 -1 c ’
! = ' =z =
GA2D-B¢HD and GA2G g .

-k(u), 1
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with e= 1/ [ £7% and d = ) + oufkr ()] (7.5)
The vector (ﬁl’°"

R ﬁK—lﬁféa%x)Will be asymptotically multinormal with
£f' , £ ) and covariance matrix L H
X X n

mean (Hl,...., nK—l’ —l.
We shall not invert H for general K, but shall be content with the case

K = 2, We then account for twin births but rule out triplets and births with

even higher multiplicjty. In human populations, such births are rare in any case.

WhenK:QSA_l:(p(.]; +.J_'.) :-L,D'A-ID :_i..,andD'A_lG =
1 B I il BI_TI 2 2
1 1 2 12 BII
- —=(1,0). Thus
gI2
og 172 , 0
P | 12
= 3 - , cd/u > ~x(n) c/u
L 0 , -x(u)c/u , c/u J
with e = (7.6)
12 it
Thus
1/¢ , 1, k(u)
-1
Hi=enn, . {1 , T%g , 12 pgk (1)

), Tog k), o1 [gx”(w)+oute' () 2/(1,1,)]

For K = 2 we therefore get

- 1 2
1 - = ? I
as.var fx S fx BIM(1 + Hl I, / 1%),
as.vap £ = = BI[£ (1 + M T /H2)K(u) + £! ¢u(KT(u))2]
' X 0 b 172 X

and an asymptotic covariance between f; and fx equal to % BHfX(l + Hl I, / HQ).
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8. Appendix

§ 8.1. In § 2.4 we considered a parent known to be alive at age x, and
studied conditional probabilities of events occurring in the interval [k, x+ﬁ] .
given that the parent would survive to age x + t. We asserted that such
probabilities and the corresponding mean values could be evaluated by simply

letting u(x + 1) = 0 for O R RT

§ 8.2. Although intuitively plausible, such an assertion is not obvious
and it needs a proof, all the more so as a seemingly corresponding assertion is
not correct in ordinary multiple-decrement theory. Specifically the 'partial
probability" qx,v of § 3.2 may not be interpreted as the probability that a person
of age x will die before age x + 1 of cause v, given that he will not die of one
of the other causes before age x + 1. The latter, conditional probability in fect
quals q;v) / '{qiv) t D, }, which is generally quite different from %Y ve

A proof of the assertion of § 8.1 is given below.

§ 8.3. The model of chapter 2 is a time-continuous age-dependent Markov
chain with a double infinity of states. A parent is studied over the age interval
E%D X + t], say. In the following let 0 2t s t. The parent will have a
number k of births at ages in the interval [%, X + 1]. If the parent is still
alive at age x + T, we shall say that he then belongs to state (k,l1). Otherwise

he belongs to state (k,2). Designating his state at age y by S(y), we define

n
x

Py (v, w) = PS(y +w) =3 | S(y) =1, () = (0,1} fory 2

The force of transition from state i to state j at age y is defined as

Mig (y) iig Pij (y, u) /u for it j.

Then Pk(X,t) = )(th), Qk(X,t) = P(O,l)(k32) (X,t), U(X)

P(0,1),(x,1

> .
u(k,l)a(k,Q) (x), ¢(x) = u(k,l), (k+1,1) (x) for all k = 0, and uij = 0 otherwise.

Probabilities conditional on the assumption that the parent will still be alive

at age x + t, are introduced by
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Ay (y,u) =P { S(y +u) = (5, 1) | s(x) = (0,1), S(y) = (i,1), B },

<

for x <y =y +u==x+t, where B is the event that the parent actually survives

HV I1A

age x + t. For j i we get

P{s(y)=(i, 1), S(y +u) = (5, 1), B | S(x) = (0,1) } =

=Py (x, 5 = %) Pj—i (y> u) . x+t -(y+u)Py+u

and P { S(y) = (i,1), B | S(x) = (0,1) } = P, (x, y - %) .
Thus

x+t-ypy'

Ai].(y, u) = Pj—i (y, u) . /

x+t—(y+u)py+u x+t-ypy°

We therefore get

lim A,. (y, u) / u =6, . ¢(y) for j % i,
uy0 1]

j,i+l

This means, however, that the Aij(y’ u) may be regarded as the transition
probabilities of a simple age-dependent birth process with intensity ¢(y),

as was our assertion.
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