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FORORD

I denne serien samles notater innen feltet
befolkning og levekdr som har krav pd en
viss allmenn interesse, men som ikke pre-
senterer avsluttede arbeider. Det som pre-
senteres vil ofte vaere mellomprodukter
pé vei fram mot en endelig artikkel eller
publikasjon, eller andre arbeider som for-
fatteren eller avdelingen er interessert i
en viss spredning av og & fi kommentert.
Niér de er ferdig bearbeidet, vil noen av
arbeidene bli publisert i andre sammen-
henger.

Synspunktene som presenteres er forfat-
ternes egne, og er ikke ngdvendigvis
uttrykk for for SSBs oppfatning.

PREFACE

This series contains papers within the field
of population and living conditions. The
papers are expected to be of some general
interest, and presents work in progress, or
other notes worth a limited distribution.

The views expressed in this paper are
those of the author(s) and do not neces-
sarily reflect the policies of the Central
Bureau of Statistics of Norway.
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ABSTRACT

Existing translation formulas, originally derived by Ryder, express the relation between
changes in cohort quantum and tempo, and changes in period quantum and tempo. These
formulas have been developed for repeatable events, such as age-specific births irrespective of
parity. An important property of repeatable events is that the corresponding quantum indicator
is simply the sum of the age-specific ocuurrence-exposure rates, and translation formulas are
based on this additive property. However, many events studied in demography are considered
as non-repeatable: first-marriage, death, migration, birth by parity, etc. Existing translation
formulas cannot handle non-repeatable events, because quantum indicators (i.e. the proportion
of the cohort that has experienced the event at a certain age) for these events are a
multiplicative function of age-specific occurrence-exposure rates.

This paper derives translation formulas for non-repeatable events. Expressions are investigated
for the cohort quantum indicator as ‘a function of period quantum and period tempo, and
changes therein. Formulas for cohort tempo indicators (for example the mean age at which
cohort members experience the event) are also derived, but these tum out to be too
complicated for analytical treatment. Instead it is suggested to analyse that part of the quantum
which is restricted to a certain age interval (for instance the prime ages of the process in
question), in order to get some insight in the tempo of the process.

One of the results of this paper is that cohort quantum is a constant function of time when
period quantum is constant, and period tempo, as measured by the age pattern of the
occurrence-exposure rates, changes linearly with time. For repeatable events, the same result
was obtained earlier by Ryder, but the degree of distributional distortion (that is, the upward or
downward shift in cohort quantum caused by changes in the period age pattern), given a set of
occurrence-exposure rates, is generally less for non-repeatable events than for repeatable
events, in particular for high quantum levels. Furthermore it was found that when tempo is
constant, and period quantum falls with time according to a straight line, period tempo
underestimates cohort quantum for high period quantum levels, and overestimates it for low
period quantum levels. The no-distortion point (i.e. the point where period quantum equals
cohort quantum, irrespective of the slope in the period quantum) can easily be evaluated.
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TRANSLATION FORMULAS FOR NON-REPEATABLE EVENTS

1. Problem formulation

The period Total Fertility Rate (TFR) in Sweden has shown a continuous rise since the mid-
1980s. Whereas many West-European countries display a similar pattern of fertility trends, the
case of Sweden is remarkable: compared to these other countries, current TFR levels are |
relatively high (around 2.1 in 1990), and the increase is rather steep (the 1983-TFR was 1.6).
As Hoem!' states "... (the) rise in period fertility reflects a change in the time paftem of cohort
fertility. Ultimate cohort fertility may eventually also rise as a result of this change ...". He
concludes that recent TFR trends in Sweden result, to a large extent, from initial postponement
of childbearing, followed by a compensation for it, and he analyses in some detail birth rates
of parities 1-3, controlling for age at previous births.

Dinkel? observes a decline in the life expectancy of males in the Soviet Union between 1964
and 1980 by almost five years. In his discussion of the causes for this trend, he argues that
two factors commonly mentioned (the Soviet health system, and alcohol abuse) can only be of
minor importance. Instead he points out the weaknesses of a period life table, and he contends
that selection effects due to World War II operating to successive birth cohorts offer a more
reasonable explanation: the less frail were affected more severely by that war than the frail. In
spite of a lack of proper cohort data, his hypothesis receives some support from the data.

Rodgers and Thomton® investigate, within the framework of a descriptive study into first
marriage patterns in the United States for cohorts born between 1880 and 1965, the
implication for proportions ever marrying in these cohorts of period effects in age-specific
marriage rates. One of their findings is that peaks and valleys in the time development of these

! .M. Hoem, “Social policy and recent fertility change in Sweden’, Population and
Development Review 16(1990), pp. 735-748.

2 R.H. Dinkel, ‘The seeming paradox of increasing mortality in a highly industrialized nation:
The example of the Soviet Union’, Population Studies 39(1985), pp. 87-97.

? W.L. Rodgers and A. Thomnton, ‘Changing patterns of first marriage in the United States’,
Demography 22(1984), pp. 265-279.
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rates are barely reflected in the cohort proportions ever marrying.

What these three papers have in common is that they empirically investigate summary period
and/or cohort indicators for variables describing a non-repeatable event: births by parity, death
and first marriage. Analytical treatments of the reciprocal impact of period and cohort
indicators, known as translation methods, were provided by Ryder several decades ago®, and
they have shed considerable light on the fine interplay between quantum and timing of both
cohort and periods. For example, these translation methods facilitate to isolate the impact of
changes in cohort timing on period quantum, from the consequences exerted by changes in
cohort quantum. One of Ryder’s results (applied to fertility) is that when timing patterns in
cohorts are constant, the TFR is (upon a linear approximation) a linear function of the
completed cohort fertility.

" Translation methods cannot be applied to such processes as parity-specific fertility, mortality
and first marriage. The reason is that these methods were developed for repeatable events, for
instance age-specific fertility irrespective of parity. The salient feature of age-specific rates of
repeatable events is that they simply add up (both for the cohort perspective and the period
perspective) to quantum indicators (completed cohort fertility, and TFR, respectively). On the
basis of this simple additive relationship, Ryder was able to derive his translation formulas.
Age-specific rates for non-repeatable events do not possess a simple additive relationship on
the basis of which one can derive measures of quantum and tempo. For instance, when m(x) is
a first-marriage rate for age x, and n(x)=2-m(x)/(2+m(x)) is the corresponding one-year
probability, then the quantum of first marriage, e.g. the proportion ever-marrying (in the
absence of mortality and emigration) is found as

l-;c(l-n(x)).

This multiplicative relationship between age-specific measures and the quantum indicator is
characteristic for non-repeatablé events. Translation formulas for such non-repeatable events

4 N.B. Ryder, ‘The process of demographic translation’, Demography 1(1964), pp. 74-82;
‘Components of temporal variations in American fertility’, in R.W. Hioms (ed.), Demographic
Patterns in Developed Societies (London, Taylor and Francis, 1980), pp. 15-54.
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are not known of, and to derive such expressions is the purpose of the present paper.’

2. Quantum and tempo indices of a life table

First we introduce some basic notions for the life table with an underlying first-order Markov
process and piecewise constant jump intensities. The life table as we will use it in this paper
describes a process in which individuals at any age x (or, more generally, "seniority") may
occupy only one of two states: (i) not yet having experienced the event, and (ii) having
experienced the event. Thus, "the event" is.a jump from state (i) to state (ii). A Jump in the
opposite direction is not allowed: state (ii) is absorbing.

Let I(x) (x =0, 1, 2, ..., w) represent the number of persons in the life table who did not yet
experience the event at age x5, For the radix 1(0) we may take any convenient number, for

5 Ryder derives expressions for the impact that births of various orders may have on the
quantum and the tempo of cohort fertility, see op. cit. (1980), in fn. 4, pp. 47-52. However,
the age- and parity-specific birth rates he uses do not have person years of mothers by parity
and age in their denominators - only age is considered. The approach that Brass follows shows
essentially the same defect, see W. Brass, ‘Cohort and time period measures of quantum
fertility: Concepts and methodology’, in H.A. Becker (ed.), Life Histories and Generations,
vol. I (Utrecht, ISOR, 1990), p. 475. The rates these authors use (also known under such
names as "taux de deuxi¢éme catégorie”, "frequencies”, or "incidence rates") are not proper
occurrence-exposure rates, see R. Pressat, L' Analyse Démographique: Concepts, Méthodes,
Résultats, 4th edition (Paris, Presses Universitaires de France, 1983), p.87; AJ. Coale and
D.R. McNeil, ‘The distribution by age of the frequency of first marriage in a female cohort’,
Journal of the American Statistical Association 67(1972), pp. 743-749. To use such indicators
for translation purposes may introduce a certain amount of bias in the results, cf. the problems
that arise when interpreting the Period Total First Marriage Rate (period sum of age-specific
first marriage frequencies) as an indicator of period quantum, see G.J. Wunsch and M.G.
Termote, Introduction to Demographic Analysis: Principles and Methods (New York and
London, Plenum Press, 1978), p. 55. In general, rates that relate the event in question (first
birth, first marriage) to all individuals are easily distorted by shifts in the composition (by
parity, by marital status) of the individuals counted in the denominator, cf. also G. Feeney and
W. Lutz, ‘Distributional analysis of period fertility’, in W. Lutz (ed.), Future Demographic
Trends in Europe and North America: What can we Assume Today? (London etc., Academic
Press, 1991), p. 193.

¢ Age and time are considered here as discrete variables, similarly to Ryder’s approach. It
should be noted, however, that the approach taken in this paper may equally well be applied in
case time and age are considered as continuous variables. Calot investigates in detail
translation formulas for repeatable events treating time and age as continuous variables, see G.
Calot, ‘Relations entre indicateurs démographiques longitudinaux et transversaux’, forthcoming
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instance 1(0)=100,000. In the case of mortality, I(w) is zero; for other types of events (first
marriage, migration, parity-specific birth), I(w) is generally larger than zero. Let m(x) (x = 0,
1,2, ..., w-1) be a series of occurrence-exposure rates (o-¢ rates), each rate being defined for
the age group (x,x-i-l).
We assume that the stochastic process in question is a first order Markov process, for which
the jump intensity is constant on the interval (x,x+1). Hence for the entire age range (0,w) we
say that the intensities are piecewise constant, and each intensity is equal to the o-e rate for the
corresponding age group.
With these assumptions we can write

lx+1) = Ix).expl-m(x)}, x =0, 1, 2, .., w-1 1)

and thus »
Ux) = l(O).exp{-lo:m(y)}, £=0,1,2, .., w1l @)

The proportion among the original 1(0) persons in the life table who have experienced the
event before age w is called the quantum of the process, and it is denoted by Q. By definition,
Q equals {1(0)-1(w)}/1(0), and from (2) we see that

w-1
Q =1 - expf- Tm(x)) 3)
°
The number of persons in the life table who experience the event during (x,x+1) is denoted by
d(x). Since.there is only one event we have

dx) = Ix) - [x+1). @

The mean age at experiencing the event is denoted as p, and it is defined as

y - 2o 24E) )
Ydi)

The numerator of (5) is

1.U)-12) + 2.UR2)-I3) + 3.{UB)-I@) + ... + (w-1).Uw-1)-I(w)} (6)

in Population. The expressions he finds are the same as Ryder’s formulas for the discrete case.
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which is equal to '}_.:1;(,) . Because of (4), the denominator of (5) may be written as 1(0)-I(w),
1

or, equivalently, as Q.I(0). Using (1) we find for the mean age that

w-1 z-1
X expf- Tm(i)}
=l ™
Q
The mean age p is one possible index which may be used to express the tempo of the process:
p indicates at which age, on average, the individuals experience the event. Other tempo indices

are the mean age of the schedule of o-e rates (denoted by 5 ) and the median age at

experiencing the event. For the former we havel
Ex.m(x)

X =

@)

'Z-:lm(x)
[}

For non-repeatable events, 3,y , and in practice there is a strict inequality. The reason is of
course that the number of persons alive, which is used in the calculation of p declines with
age, while in calculating 5 the basis does not decline. (For repeatable events the two indices

coincide.)

3. Cohort indices as a function of period indices

We assume that our data consist of a set of age-specific rates for a number of years. The rates
show a time pattern which is mﬁected in the indices for period quantum and tempo. The
problem is how the time-dependent indices for the quantum and the tempo of the process
obtained on the basis of a period perspective may be translated into cohort quantum and tempo
indices. In other words, we want to infer developments in cohort indices from time-dependent
period indices. This perspective is the opposite of that generally taken in translation studies.
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For instance, Ryder’s formulae’ show the implications for period quantum and tempo indices
of changing cohort patterns. But given our problem formulation ("What can we leamn about
cohort indices on the basis of observed period indices?"), the usual approach would be largely
inductive, whereas the approach we advocate in this paper is deductive: given the observed
period patterns, together with the assumptions of our model, the cohort patterns can be inferred
unambiguously. The usual inductive approach would leave much more room for uncertainty.
Ryder’s expressions imply that if cohort indices change according to pattern A, then period
indices necessarily show pattern B. We observe pattern B, and therefore it is not unlikely that
the cohort indices have indeed developed according to pattern A. However, a different cohorf
pattern C could also have produced period pattern B. Although our deductive approach gives
more ground for firm conclusions, there is a price to be paid: the behaviour of ﬁeﬁod indices,
in particular quantum indicators, is much more irregular than that of the corresponding cohort
indices. This implies that the models we use following the deductive perspective are more
complicated than those in the inductive approach. For example, a linear decline over a
relatively long period of the proportion ever marrying by birth cohort (cohort quantum of first
marriage) is not unlikely; however, due to shifts in the cohort mean age at first marriage, the
period quantum indicator shows a curvilinear development which cannot be modelled by
means of a straight line - a second- or higher order degree polynomial would be more
appropriate.
It should be noted that the analysis of this paper may equally well be carried out following the
more traditional inductive approach. In section 5 we shall argue that changing perspective just

requires to change a few plus signs in our basic expression (13) into minus signs.

Let m(t,x)20 be an o-e rate which not only depends on age x, but also on time t. All
expressions for quantum and tempo derived in section 2 now become time-dependent. We
introduce the following notation: Q,(t) and p,(t) are time-dependent quantum and tempo
indices derived from a period life table (i.c. aggregation over x with fixed t); Q.(g) and p.(g)
are time dependent quantum and tempo indices derived from a cohort life table (ie.
aggregation over x with a fixed value g=t-x for cohort g). We write for the period sum of rates

w-1
Lm(tx) - A()
0

7 Op. cit. in fn. 4.
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and for the cohort sum of rates®
w-1
T m(g+x,x) = B().
=0

We assume that the rate sums A(t) and B(g) are finite for all t and g - this implies that there is
no age for which the o-e rate is infinitively large. The consequence is that in theory our
analyses do not apply to mortality, since there must be a highest age w for this process beyond
which no one survives. In practice, however, with values for w around 105 or 110, the death
rate m(t,w-1) may be made so large, but still finite, that the few persons who are still alive at
age w-1 (I(w-1)) all die between ages w-1 and w.

The definitions of A(t) and B(g) imply that the period quantum and the cohort quantum may
be written as (see expression (3))

Q,0 - 1 - expl-A®), (32)

Q.8) - 1 - expl-B(g). (3b)

When the rate sum is small it is approximately equal to the corresponding quantum index’. In
that case translation formulas for non-repeatable events are the same as those for repeatable
events, as we shall see in section 3.1 (expression 12). However, most non-repeatable events
have quantum indicators between 50% and 100 %, for instance first and second births, first
marriage, and, not the least, death. For such events it would not be justified to approximate the
quantum index by the rate sum.

When the period rate sum changes over time, the period quantum of the process also becomes
time-dependent. Since A(t)=-In(1-Q,(t)), we find for the first two derivatives of the period sum

Q0
) = — 27 9a
AQ - 1 o0 (92)

' We disregard the fact that a period rate for period t and age x differs from a cohort rate for
(t,x). The period rate is usually defined over a square between time points t and (t+1), and
ages x and (x+1) in the Lexis diagram. The cohort rate is defined over a pargllelogram
between ages x and (x+1) and diagonal lines g and (g+1), with g=t+x. Hence the cohort rate
covers two periods, i.e. (t,t+1) and (t+1,t+2). We think that the bias introduced by assuming
that the period rate m(t,x) equals the cohort rate m(g+x,x) is sufficiently small to ignore it. In
a time-continuous approach the problem is absent, cf. also fn. 6.

? Op. cit. in fn. 6, section 8.
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L Q0 , 9b)

All -
®- 1 QN 1-Q0

We introduce the age-specific proportions a(t,x) and b(g,x) of the period rate sum A(t) and the
cohort rate sum B(g) with

m(tx) = A(9.a(tx) - BE).bgx), g-t-x (10)

w-1 w-1
Tatx) - Lbgy) - 1.
0 20
Thus we have for the cohort sum of rates the fundamental identity
w-1 w-1 )
B@g) = Lm(g+xx) = LA@g+x).a(g+x3).
=0 0

This expression states that the cohort sum of rates B(g) is a function of period sums A(t) and
age-specific proportions a(t,x) for all possible ages (and periods) that individuals belonging to
cohort g go through as they grow older. The formula will serve as a basis for our further
analyses. The idea is to expand both A(g+x)=A(t) and a(g+x,x)=a(t,x) in a Taylor-series
around t=g, resulting in an expression for B(g) as a function of A(g) and a(g,x) and their
derivatives with respect to time (section 3.1). Next, some special cases will be analysed based
on the assumption of constant and/or linearly changing values of indices for period quantum
and period tempo (sections 3.2 and 3.3). In section 3.4 we expand m(g+x,x) in a Taylor-series
in order to find expressions for cohort tempo indices.

The Taylor-series expansion of the o-e rates implicitly assumes that the rates may be written
as a polynomial function of time, one polynomial for each age™®. Shields and Tracy!
investigated the case in which the o-e rates are a polynomial function of age (one polynomial
for each cohén), given a low-degree polynomial behaviour of the age-specific rate over time.
The latter approach will not be pursued here.

19 0p. cit. (1964) in fn. 4, p.75.

11 M.P. Shields and R.L. Tracy, ‘A translation of period rates into cohort rates’, American
Statistical Association: 1982 Proceedings of the Social Statistics Section (Washington D.C.,
American Statistical Association, 1982), pp. 339-342.
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3.1  The general case

A Taylor-series approximation of A(g+x) and a(g+x,x) yields

A@g+x) = A@) + xA'(®) +¥ex’A"(g) + ...,

algexz) - algs) + xa'(gs) WVrla@g) + ..

where derivatives of A(t) and a(t,x) are taken with respect to time. The latter formulae imply
that B(g) may be written as

Bg) - T {A(@g) + xA'(g) + %x2A4"(g) + .. M a(gx) + xa'(gx) + Yex?a"(gx) + ... } =
-A@){1 + X xd@gx) + X %x?a(gx) + ..} +
A@IX xagx) + X x%4'gx) + X %x’a’(gx) + ..} +
AL XL vxlagy) + T Wa'algs) + £ Yaxa"(gx) + o } + ..

(11)

Now define the k-th absolute moment of the distribution a(t,x) as M) = Txtalty) » and the
i-th derivative (with respect to time) of the k-th moment as p® [0 = Txtal). (Thus the
first moment 1 () - Txa(rx) cquals the mean age of the schedule defined in (8).)
Substitution in (11) yields

B(g) = A(g){ 1+ M/,(g) + aM",(g) + ...} + A'(®){ M,(g) + u',(g) + BMyg) + . } 4
AII@){ %Mz@) + W (8) + v‘ull @) _._

(12)

This is the general translation formula for cohort quantum in the case of repeatable events,
when A(t) and B(g) serve as indices for period and cohort quantum, respectively.
Substitution in expression (12) of the rate sums A(t) and B(g), and of the derivatives of A(t)
given in (9) results in

-infl - Q@) = -fin(1 - Q@M1+ M',(g) + %M",(g) + .. } +
KyN
1-0,®

2 2
T-0@  T-0@

—L—M(p) + M) + WM'yg) + .. } +

VLM, (g) + eM/y(g) + VaM"(g) + ... } + ...
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When we solve for the cohort quantum Q,(g) in the above expression we finally obtain the
 following translation formula

Q.® = 1 - 11 - Q@ .expi-Eje) 13)
with
E@ -1+ M@ + WM @@ + ..,
and
E® - %mw - MIfE) + WMD) + ..

W, W b

-0 'T-o@

,8) + M/ (g) + VaM" () + ...

Calot'? derives a special case of our more general expression (13), namely one in which
E,(g)=1+M’((g), and E,(g)=0. Thus his formula is a first-order approximation with respect to
quantum (assuming a time-constant Q,(t)), and a second-order approximation with respect to
tempo (assuming a straight line for M,(t)).
Formula (13) tells us that there are two distinct factors that govem the relation between cohort
quantum, and period quantum and tempo of a non-repeatable event. The first is the exponent
E,(g), which expresses the impact of changes in the tempo of the period index. In case the
period tempo is constant, the first- and higher-order derivatives of the moments M,(t) are zero,
which implies that E,(g) is one. When the period tempo changes according to a straight line,
all derivatives of the moments vanish, except M’,(g). Assume that M’,(g)>0, which means that
the mean age of the age-specific schedule of rates increases (considered from a period
perspective). Other things being equal (in particular the value of E,(g)), this translates into an
increase of the cohort quantum Q,(g), since the term 1-Q,(g) always lies between 0 and 1.
The second factor is a mixture of the contribution of period quantum and period tempo. When
the period quantum is constant, its first- and higher-order derivatives vanish, implying that
exp{-E,(g)}=1, and the second factor exerts no inﬂuénoe on the cohort quantum. In case we
have the situation of a linear increase in the period quantum (so that Q’,(t)=Q’ >0 for all t),

- together with a constant period tempo (which implies M,(g)=M,), E;(g) equals

2 Op. cit. in fn. 6, section 8.
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B® - My 40;,@) . ““’"%f&? ..
which is positive for Q’,>0. In that case exp{-E,(g)} is smaller than one. Moreover, E,(g)=1
by assumption. This implies, with the assumptions stated above, that the cohort quantum for
cohort g is larger than the period quantum for period t=g. This is an obvious finding. In
section 3.2 we will investigate a case which is of more practical interest, namely the situation
in which we want to infer information from period data applying to the cohorts that are in the
prime ages of the birth of the first child, of first marriage, etc. rather than to the cohorts who
still have to start with these events.

Returning to the general case, it will be clear from expression (13) that when the period
quantum is close to one, the cohort quantum will also be close to one, almost irrespective of
the pattern of period tempo. This agrees with what could be expected. Take for example the
extreme case of mortality: since everyone dies, both the period and the cohort quantum are
equal to 100 %. On the other hand, a period quantum which is almost zero may lead to a
value for the cohort quantum which is larger than tﬁat for the period quantum, the difference
depen_ding on the changes in period quantum (first- and higher-order derivatives of Q(t)
contained in E,(g)) and on the period tempo (contained in E,(g)) and the changes therein (both
in E,(g) and E(g)).

A final remark concerning the general case is that often the interest is not only in the cohort
quantum, but also in its changes: can we conclude, on the basis of period indices, that the
cohort quantum is rising, or perhaps falling? A formula for the first derivative of Q.(g) as a
function of period cohort and tempo, and changes therein, may be obtained in a relatively
straightforward manner from (13), although the result is a complicated expression. The
derivative of the cohort quantum is easier 6btained for a special case of (13), based on
simplyfying assumptions (cf. section 3.2).

3.2  Constant period tempo and a linear change in period quantum
In this section we shall assume that period tempo is constant, and that period quantum changes

linearly. This implies that first and higher-order derivatives of M,(t), and second and higher-
order derivatives of Q(t) are all zero. As before, we write for this special case Q’,(t=Q’, and
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M, (t)=M for all t. Furthermore we assume that Q’, is 5o small that third- and higher-order
terms in that variable may be ignored. In the discussion of expression (13) we already noted
that these assumptions lead to

Q' Q
-1-{ - M. —P { 2__pj (14)
Q@ -1 {1 Q,(g)}.exp[ M, = Q, ) %M, T Q, )

Here the cohort quantum for cohort g is expressed as a function of the level of period quantum
for time t equal to g, the value of the slope of the period quantum, and those of the first two
moments of the distribution a(t,x). The situation in which there is no distortion may be
evaluated by setting Q(g) equal to Q,(g) in (14). This leads to the conditions (i) Q’,=0, (ii)
Q,(g)=1, and (iii) Q,(g)=1+%4Q’,.MyM,. Thus, when either conditions (i), (ii), or (iii) are
fulfilled, there will be no distortion, and the period quantum will be an accurate estimator for
the cohort quantum (under the assumptions of this section). Since the value§ of Q,(t) are
“restricted to the (0,1)-interval, condition (iii) only. holds provided that -%2M,/M,<Q’<0. Thus,
because all moments are non-negative, a negative slope of the period quantum Q,<0)isa

necessary condition for case (iii).

In order to analyse the relation between the quantum for cohort g and the tempo and quantum
for any time T, not just t=g, we use the concept of "dating"??, (Ryder, 1964, 77) and write
for the period quantum

QD =R+ ST (0<Q,(D<1).

Here the slope S equals Q’(T)=Q’,, and the value of R was arbitrarily set equal to Q,(g).
(This means that T is relative to g - negative T-values represent calendar years before the year
g.) Then we have for any time T (with -R/SST<(1-R)/S for positive slopes, and (1-R)/S<T<-
R/S for negative slopes) that Q(T)=Q,(g+Q’,.T, and thus Q,(g) = Q,(T) - Q’,.T. Substituting
the latter expression for Q,(g) in expression (14) leads, together with our assumptions, to

Q® -1-{-Q + Q, Dexpl-E(D} (15a)
| 4 Q
EXT) - M, 2 + VM, { —r P (15b)
"1-9m+@,T 1-Q+Q,T

Expression (15) gives the relationship between the quantum for cohort g and that for a period

13 Op. cit. (1964) in fn. 4, p. 77.
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T years later than g, assuming a constant period tempo and a period quantum which follows a
straight line over time. The cohort quantum is clearly non-linear. Hence, under certain
conditions, which are defined by the parameters Q(T), Q’,, M, and M,, there may be a time
T*, say, in which the cohort quantum for the cohort bom in year g equals the period quantum
for the calendar year g+T'. T" may be evaluated by requiring that Q (g)=Q,(T") in expression
(15) and solving for T, This yields

_ 1 - Q1 - exp(E(T) (16)
2, '

r

where E,(T") follows from (15b). An obvious iterative procedure to find T* given the values of
the other parameters is to start with some initial value for T°, evaluate the right-hand side of
(16), re-enter this value in the right-hand side, etc. until the process converges.

3.3 A constant period quantum and a linear change in period tempo

Assume that the period tempo changes linearly, and that the period quantum is constant on
some interval. In other words, M’,(t)=M’;, while second- and higher order derivatives of the k-
th moment are all zero. In addition, we have that Q,(t)=Q,, while all derivatives of Q(t)
vanish. In that case the general expression (13) becomes

Q@ -1- 1 -g)™ an
This implies that the complement of the cohort quantum for cohort g equals the complement
of the period quantum raised to the power 1+M’,, where M’, is the (constant) slope in the
mean age of the schedule. Hehce, under the assumptions of this section, the cohort quantum is
constant. The power 1+M’, expresses the distributional distortion, i.e. the upward or downward
shift in the cohort quantum caused by a shift in the period age tempo; in this multiplicative
model for non-repeatable events the power 1+M’; plays the same role as the factor 1+M’,
does in the addifive model for repeatable events',
When the mean age of the rate schedule declines, M’,<0 and therefore Q,(g)=Q.<Q,. Thus

14 See expression (12) and op. cit. (1964) in fn. 4, p. 76.
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when events take place at ever younger ages, the period quantum overestimates the cohort
quantum. For M’;>0 the opposite is true.

34  Cohort tempo

In order to derive an expression for indices of cohort tempo we develop m(g+x,x) in a Taylor-

series:
mgezs) = T X m0g.).
- 10

Then we calculate for cohort g the mean age at experiencing the event (p(g)), and the mean

age of the schedule of o-e rates ( E3P)) )

'é:exp{-gm(gﬂ,i)}
e N

w-1 21 o i’
Yeapl-X T -ﬁm‘”(g,i))

21 10 J0

Q.® ’

'f;x.m(g-rx,:) ‘gx.i-x-{.m“’(g,x)
- 20 joJ!

Fe - =
k-~ -In(1-Q.(8)
Em(g+xx)

Unfortunately, these expressions do not provide much insight. The problem with p(g) is the
partial sum (from i=0 to i=x-1) in the numerator, which defies further analysis. The expression

for % (g) may be simplified, for example by restricting the Taylor-series approximation to
the first two or three terms, and next substituting for the corresponding moments M,(t) and

their derivatives. The result, however would be difficult to interpret, because of the rather
abstract notion of a mean age of a schedule of age-specific rates (either period or cohort).
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Probably the only way to approach the translation problem for tempo indices is by way of
extensive simulations, in which a relationship is established between the time paths of

M®(n and py(t) (and likewise for the corresponding cohort indices).

However, instead of the cohort tempo, one may fruitfully analyse the cohort quantum between
two exact ages y and z, with 0Sy<zsw. In the study of mortality in particular, it may be
important to know what the cohort proportion is which survives up to age 70, say, given a
certain development of the period proportion surviving to that age, and the various moments of
the schedule of age-specific mortality rates for ages between 0 and 70. In that case, the age
interval (y,z) is equal to (0,70). By choosing various values for y and z one may get detailed
insight into the cohort tempo. One of the illustrations in section 4 is based upon this idea of
"partial quantum", applied to first marriage between ages 20 and 30.

4. Nlustrations

Observed first marriage rates for males aged 15-59 in Norway for the period 1961-1989 were
used to compute the rate sum A(t), the period quantum Q,(t), and the first three moments
M;(t) through M,(t). Results are given in table 1.

*** table 1 here ***

To illustrate the consequences for the cohort quantum of a change in period quantum and
tempo we used the following values for Q,(t), M,(t) and My(t): 0<Q,(t)<1; M,(t) = 26, 30, and
34; and M,(t) = 800, 1000, and 1200.

Table 1 shows that during the 1970s and 1980s the average annual drop in the period quantum
was approximately 1.4 percentage points. Therefore it seemed reasonable to choose, for the
illustrative calculations, values for Q’(t) that range from -2 to +2 percentage points annually.
As to period tempo, expressed by the mean age of the schedule of age-specific first marriage
rates, this index first fell by 0.22 years of age per calendar year, but in the beginning of the
1970s the trend was reversed and the mean age increased by 0.38 years per year on airerage at
the end of the 1980s. Values for M’,(t) between -0.4 and +0.4 per year were selected to show
the consequences of changes in period tempo.
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The choices described above are probably broad enough to cover most cases of interest when
it comes to fertility by parity and first marriage. Figures 1 illustrates expression (14), showing
cohort quantum Q,(g) as a function of period quantum for year t=g (Q,(g)), this period
quantum following a straight line over time. The slope of the line (denoted by Q’ in the
figure) varies between -2 per cent and +2 per cent per year. The period tempo is constant, with
the first and the second moment equal to M,=30 years, and M,=1000 years?, respectively. The
solid straight line between points (0, 0) and (1.0, 1.0) denotes the situation in which the period
quantum is constant in time (Q’=0). In that case there is no distortion: cohort quantum equals
period quantum. The figure clearly shows that the degree of distortion generally increases
when (other things remaining equal) the period quantum falls, or the (upward or downward)
slope in the period quantum becomes steeper (however, this is not always the cése for negative
slopes in the period quantum, cf. below). Already for a period quantum of 90 per cent the
distortion is considerable: the cohort quantum exceeds the period quantum by at least 8
percentage points, irrespective of the slope in the period quantum. The distortion is much
larger for relatively low levels of the period quantum: figure 1 shows that for Q, equal to 65
per cent (which is probably close to the level for first marriage in Norway in the beginning of
the 1990s, see table 1), the cohort quantum is 20 percentage points lower in case the period
quantum falls by 1 per cent annually, and it is 25 percentage points higher in case the period
quantum grows by 1 per cent per year. Most striking perhaps is the fact that the degree of
distortion is less for a fall in the period quantum of 2 per cent than that for a decrease by 1
per cent. The no- distortion point is given by the condition Q,(8)=1+4Q’,. My/M,; (see section
3.2), which leads in figure 1 to Q,(g)=0.67 for Q’,=-0.02, and Q,(g)=0.83 for Q’,=-0.01. The
change from underestimation to overestimation when period quantum falls is counter-intuitive:
from figure 1 one may conclude that in general, the steeper the downward/ﬁpward slope in the
period quannim, the larger the overestimation/underestimation of the cohort quantum by the
period quantum. But surprisingly enough this does not hold in the case of a downward slope
when the period quantum is high: on the interval between Q,(g)=1+%2Q’,.M,/M, and Q,(g)=1
the period quantum underestimates the cohort quantum, and this effect is stronger the steeper
the downward slope is. The effect disappears as 12Q’,.My/M, approaches to zero, because the
no-distortion point then moves towards Q,(g)=Q.(g)=1. No satisfactory interpretation could be

given sofar for this counter-intuitive cross-over.
ek ﬁgm l here e dje ke

In addition to the values used in figure 1, we computed expression (14) for two other choices



128

of M,, viz. 26 and 34 years. Other parameters (Q’, and M,) were the same as in figure 1. The
results will not be shown here, but they indicate that the pattern is similar to that of figure 1
(underestimation of the cohort quantum by the period quantum for positive slopes in the period
quantum, and a cross-over for negative slopes), but the distortion grows with increasing values
of M,. For instance, taking the first moment equal to 26 yrs and Q,(g)=0.5, we found Q(g)-
values of 0.36 and 0.92 for Q’,-values of -0.2 and +0.2, respectively. For the first moment
equal to 34 years the corresponding values were 0.12 and 0.94 (and 0.25 and 0.93 for M,

equal to 30 years, see figure 1).

It should be noted that expression (14) results in negative values for the cohort quantum for
low levels of the period quanturn, and a downward slope in that period quantum. Such
negative values are more likely the higher M, is. There are two explanations for this
phenomenon. The first is that one of the assumptions behind expression (14), i.e. a linear fall
in period quantum is untenable for a very long period, when the period level is already low.
And the higher the mean age, the longer this period must be for the cohort to complete its life
course (in other words, to reach age w) - given a particular value for the second moment. The
lowest Q,(g)-value which yields a non-negative Q.(g)-value on the basis of (14) can be found
by iteratively solving for Q,(g) in the following equation:

q' ‘/nQ_".M,

%0 -1 - e T ow

)»

which follows immediately from (14) by setting Q.(g)=0. Given a starting value for Q,(®
together with values for Q’,, M, and M,, one can evaluate the right-hand side of this
expression, and this results in a second value for Q,(g). This can again be entered into the
right-hand side, etc. The iterative procedure described here converges in just a few steps to
one unique value for all cases that we investigated (including those illustrated by figure 1).
The second reason for negative values is that third and higher order terms were not included in
the Taylor-series expansion that led to expression (14), and the latter expression is more
sensitive to this omission at low values for the period quantum than at higher values. Adding a
third-degree term in (14) leads to somewhat higher values for the cohort quantum (but
negative values still appear).'®

15 Assuming a linear change in the period quantum we find for the i-th derivative of the rate
sum A(t) that A®(t)=(i-1)!{(A’(t))'}, i21, where A’(t) is given by expression (9a). Then it may
be verified that adding a third degree term in the Taylor-series approximation results in an
extra term in the expression for Ex(g) in (14):
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Table 2 is a variation on figure 1, in that it contains cohort quantum values for three choices
of the second moment: M,=800, M,=1000, and M,=1200. A value of 0.65 was chosen for the
level of the period quantum Q,(g), which is probably close to the period quantum for first
marriage among Norwegian males in the first half of the 1990s.

*%% table 2 here ***

Table 2 shows that low values for the second moment tend to decrease the cohort quantum,
and this effect is stronger the lower the value of the first derivative of the period quantum is.
Whether this leads to a larger or to a smaller amount of distortion depends on the "reference
value" of the cohort quantum. For instance, compared to the case M,=1000 and'Q’p-=-0.02, the
distortion changes from -3 percentage points (0.62-0.65) to +7 percentage points (0.72-0.65)
when M, increases by 200 to a value of 1200. However, a drop in M, by the same amount to
a level of 800 results in a larger distortion of -18 percentage points.

The final remark with respect to expression (14) concerns a comparison with the case of
repeatable events. For this type of events the period quantum equals A(t), and the cohort
quantum is B(g). Assuming a constant period tempo, and a linear increase or decrease in
period quantum, expression (12) simplifies into B(g)=A(g)+A’.M,. In that case the distortion
has a constant value of A’.M,, and, unlike the case of non-repeatable events, it is independent
of the period quantum and the second moment. A figure similar to figure 1 would show a
number of straight lines parallel to the "no-distortion" line, for instance one through the points
(0, 0.3) and (0.7, 1) for A’=0.01 and M,=30. The findings confirm what was stated in section
3, namely that the cohort quantum for the non-repeatable case may be approximated quite
accurately by the cohort quantum for the repeatable cases, provided that the period quahtum is
small.

Figure 2 illustrates expression (17), indicating the impact on cohort quantum of a period

._QIL Q’ l‘u.{ Q’, P
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where M, is the third moment. Without the third degree term, expnession (14) results, for
Q,()=0.25, in a negative value of -2.4 per cent far the cohort quantum in figure 1 (for the
case Q’=-0.01). Adding the third degree term leads to a value of +2.8*10" per cent, and Q,(g)-
values below 0.25 still resulted in negative Q,(g)—values (M; was chosen equal to 30,000,
approximately equal its value for first marriage among Norwegian males after 1960, see table

1).

E@ -
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quantum which is time constant and a period tempo which is a linear function of time. The
slope of the first moment (i.e. the mean age of the schedule of age-specific rates) varies
between -0.4 and +0.4 years of age per calendar year. Deviations from the unmarked solid line
M’;=0 give the amount of distributional distortion. For instance, if the period quantum is
constant at a level of 75 per cent, and the mean age of the schedule increases by 0.4 years of
age per calendar year, the cohort quantum is 86 per cent, or 11 percentage points higher than
that of an undistorted cohort. The largest amounts of distortion in figure 2 occur for Q= 55
per cent together with M’,=0.4 (+12.3 percentage points), and for Q,=70 per cent together with
M’;=-0.4 (-18.6 percentage points). Note that the lines in figure 2 are not symmetric around
the no-distortion line: distortions caused by a negative slope of the first moment are stronger
than those caused by a positive slope of equal absolute value. It is straightforwafd to prove
that the condition 0<Q_(g)<1 is equivalent to M’,<1 for this model. We believe that the latter
condition, implying a rise in the mean age of the rate schedule of at most one year of age per
calendar year covers all cases of practical interest.

In figure 3 we have illustrated the distributional distortion for repeatable events - all other
parameters are equal to those used to draw up figure 2.'® Comparison of figures 2 and 3
reveals that the distributional distortion for non-repeatable events is less than that for
repeatable events, all other thmgs being equal, but at low values for the period quantum there
is very little difference. This agrm with what we could expect on the basis of the
approximation of the quantum index by its corresponding rate sum, cf. the remarks about this
issue in section 3. But for high period quantum levels the differences in distributional
distortion between repeatable and non-repeatable events become large: for instance, in case of
a drop in the mean age of the rate schedule by 0.4 and a period quantum of 90 %, the
distortion is -.15 percentage points for non-repeatable events and -36 percentage points for
repeatable events. The reason for the relatively small amount of distributional distortion for
non-repeatable events is of course the fact that the cohort quantum equals the period quantum
for period quantum values just below 100 per cent (see expression (17)), and that the cohort
quantum cannot exceed this level - there is no such constraint for repeatable events.

' The formula used here is Q(g)=Q,(1+M’,). Note that we have adjusted Ryder’s original
formula Q,(g)=Q,(1—M’1) - in which the period mean age of the rate schedule coincides with
‘the period mean age at childbearing, see op. cit. (1964) in fn. 4, p. 76 - to our perspective,
which is to infer information on cohort patterns from observed period patterns, rather than the
other way around. See also section 5.
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*%* figures 2 and 3 here ***

Inspection of table 1 reveals that from the beginning of the 1970s, the period quantum of first
marriage for Norwegian males fell ‘more or less linearly, and that the first moment raised
approximately according to a straight line. If we are willing to assume that both the period
quantum and period tempo follow a straight line, we may infer the cohort quantum from
expression (13) by setting all derivatives of order two or higher equal to zero. This implies
that E,(g)=1+M’,, and that (upon a second-order approximation)

o

2_P{Mg) + M. (18)

Q
-—2r_ (M + M)+ %l
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If this situation of linear trends in period quantum and period tempo were to last long enough,
the proportion ever married for the five-year cohort whose members were 15 years old in the
period 1976-80 (i.e. birth cohort 1961-65) may be computed using the observed values
Q,=0.82, Q’,=-0.014, M,=29.53, M’,=0.18, M,=925, M’,=10.8 and M’,=523. (The values of
the first derivatives of the period quantum and the three moments in 1976-80 were estimated
as one-tenth the difference of the values of the corresponding indices in neighbouring periods.)
This leads-to E,(g)=1.18 and E,(g)=1.2424, resulting in Q.=0.962. The fact that period
quantum underestimates cohort quantum in this example (by 14 percentage points) is not
surprising, since both figure 1 (assuming a constant period tempo and a linear change in
period quantum) and figure 2 (assuming a constant period quantum and a linear change in
period tempo) suggest that the cohort quantum be higher than its period counterpart. But the
degree of distortion (leading to an assumed 96 per cent ever married at age 60 for birth cohort
1961-6S) is perhaps higher than intuitively expected. Clearly, the straight-line extrapolations
underlying the calculations are too crude, and higher order polynomials may lead to lower Q.-
values. For instance, a second degree polynomial for M, gives a rather accurate description of
the data for the entire period 1961-1990. This results in M’,=408 in 1976-1980, which in turn
yields a value of 94.6 per cent for the cohort quantum. If, in addition, the slope in the period
quantum is estimated on the basis of a second-degree polynomial, we find Q’,=-0.012, and a
cohort quantum of 90 per cent.

To illustrate the concept of partial quantum, which may be used when we want to gain insight
in the tempo of the process, consider table 3, which is similar to table 1, the only difference
being that the ages for which the various indicators are computed are restricted to 20-29. Thus,
on the basis of the synthetic first marriage table for the period 1981-85, 52 per cent of those
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who were not married at age 20 did so before age 30. We note that this proportion falls
steeply since the end of the 1960s. The mean of the age-specific marriage rates in the age
interval 20-29 was 25.3 years in 1981-85, and there is a weak U-curve in this indicator over
the period 1961-1990. Now consider the period 1981-1985. Assuming a linear decrease in the
partial quantum of 2.7 percentage points per year (one-tenth of the difference between
neighbouring periods), and annual increases in the first, second and third moment by .07, 3.2
and 118, respectively, expression (18) results in a value of 32.2 per cent for the partial.
quantum for the "cohort" 1981-1985 (E,=1.07, E,=-0.3918). Thus, on the basis of an
assumption of linear developments in the partial quantum and the first three moments for the
age interval 20-29, we may expect that males born in 1961-1965 who never had married by
age 20 will have a probability of 32 per cent to have experienced first marriage ﬁefore age 30,
i.e. roughly one-third of the estimated total cohort quantum (ages 15-59) for this birth cohort.

*%% table 3 here *ekk

5. Conclusions and discussion

In this paper we have derived expressions for the quantum of non-repeatable events
experienced by members of a cohort, as a function of indices for quantum and tempo as
observed in a period perspective for synthetic cohorts. These new expressions complement the
set of Ryder’s translation formulas for repeatable events. By adopting the perspective of a life
table based on piece-wise constant age-specific intensities, both the period quantum and the
cohort quantum could be written as a simple logarithmic transformation of the (period or
cohort) sum over all ages of occurrence-exposure rates. A Taylor-series expansion was applied
to the rate sum for a given cohort, and next terms were recollected into contributions from the
period rate sum and the moments of the age-specific distribution of the period rate schedule,
togethef with the derivatives with respect to time of these indices. Finally, the period rate sum
and the cohort rate sum were transformed back into period and cohort quantum indices.

-Ma:hematically, we can summarize our approach as follows in concise form !, Let V,(t) and‘

17 See also, for the case of repeatable events, L. Yntema, Inleiding tot de Demometrie.
Deventer (The Netherlands, Van Loghum Slaterus, 1977), p. 162.
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W,(g) denote the absolute moments defined for the age-specific rates for period t and cohort g
(m(t,x) and m(g+x,x), respectively):

Vi = Zximz),

Wie) = Tx'm(g+x).

Assuming that the rates follow a time trend which can be described by a polynomial function
of time, Taylor-series expansions for m(g+x,x) and m(g,x)=m(t-x,x) lead to

mg+xx) = 2.3 -’;“:Jn%.x).

m(t-xx) = X %—’:—’-‘m"’(t,x)-
[ ]

Then it follows that
Wi - %W,,,(g),
ZCEP> (—‘“Q.W"’N(x).

The expression for W,(g) takes period moments and their derivatives as given, and translates
these into cohort moments. This is the approach we followed in this paper. In traditional
translation studies the focus was on period indices as a function of cohort moments and their
derivatives, i.e. the second expression. By inserting minus signs at appropriate places and
replacing cohort moments by period moments one can change from one perspective to the
other.

For the cohort sum of rates, denoted by B(g) in this paper, we have

®
Bg) - W@ - T V_'“_@_) (19)

Next the cohort quantum equals Q (g)=1-exp{-B(g)}. By including sufficiently many period
moments and their derivatives in the expression for B(g) the cohort quantum may be evaluated
to any desired level of precision. Finally, it may be useful to factor the period moment V()
into a factor A(t)=V(t), representing the period sum of rates, and a factor Zx"a(t,x)=M,(t),
representing the absolute moments of the period distribution of the age-specific rates. (Each
derivative of V,(t) should then be written as an appropriate function of the derivatives of A(t)
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and M,(1)).
The cohort mean age of the rate schedule (W,(g)/W(g)) may also be computed on the basis of
period indices, but the results are difficult to interpret. Alternatively, the mean age at which
the cohort members experience the event (see expression (7) in the paper) leads to a
complicated formula which does not provide much insight. This would imply that the
expressions derived in this paper might be used fruitfully in the analysis of such non-
repeatable events as first marriage, birth by parity, emigration etc., but nor for death: the
quantum of mortality is 100 % by definition, and therefore the attention is only to tempo
aspects of this phénomenon. However, as a second best to the analyses of tempo indices, one
may apply the notion of "partial quantum", by restricting the age interval for the o-e rates to
some ages that are central for the process (for instance ages between 20 and 30 for first
marriage or first births, or ages up to 70 or 80 for mortality), and analysing the partial
quaxitum for the cohort on the basis of the "partial” period indices defined for the relevant age
interval.

We investigated in some detail three special cases of expression (13) (summarized in (19)): (i)
a constant period tempo and a linear change in period quantum, see expression (14); a constant
period quantum and a linear change in the period distribution of age-specific rates (expression
(17)); and (iii) a linear change in both the period quantum and the period distribution
(expression (18)). More complicated models, involving polynomials of degree two or higher
may also be evaluated. However when applying these models one must be aware of the fact
that they include fourth and higher order moments of the period distribution of the age-specific
rates, which may be rather unstable'®. Another problem connected to the present approach is
that polynomials may yield an accurate description of observed trends for period indices, but
that extrapolations may easily lead to unrealistic values (fgr instance a period quantum value
outside the (0,1)-range). To circumvent this problem, alternative trend specifications have been
proposed in the context of translation formulas for repeatable events, for instance a logistic
function and a periodic function'®. This approach might be applied to non-repeatable events,
too. But even with the present polynomial-based approach it would often be wise (mough not

18 Calot investigates in detail age-specific fertility rates for France for the cohorts born *
between 1875 and 1959, see op. cit. in fn. 6, section 6. His analysis of translation of these
repeatable events (parity was not included) suggests that moments up to the third one give a
good fit - the patterns become unstable when the fourth moment is added.

19 3. de Beer, ‘Translation.analysis as a device for extrapolating fertility rates’. Unpublished
paper, Netherlands Central Bureau of Statistics, 1982.
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always sufficient) to try and fit the polynomial to the period rate sum A(t), instead of the
period quantum Q,(t). Expression (3a) restricts the period quantum value to the interval (0,1),
irrespective of the extrapolated value for the period rate sum.

Numerical illustrations were given for first marriage of Norwegian males for the period 1961-
1990. We demonstrated that the proportion ever married for the period 1976-1980 of 82 per
cent underestimates the cohort proportion ever married for the birth cohort 1961-65 by
between 8 and 14 percentage points, assuming, among others, a linear fall in period quantum_
of 1.2-1.4 per cent per year. Approximately one-third of the cohort quantum would be located
in the age interval 20-29.

There are at least two types of problems where the expressions derived in this paper may be
applied fruitfully. The first is when we observe, for a number of years, information regarding
the quantum and the first two or three moments of the process in question, and want to-
analyse the implications for recent cohorts which have not yet completed their life course.
Provided we can assume that period indices follow some low-degree polynomial function of
time, the translation formulas give us the apparatus to infer the quantum and the partial
quantum for these recent cohorts. The second type of application is in formulating assumptions
in population projections for parity-specific fertility. Projection assumptions are frequently
formulated at the level of a few summary indicators (for instance, the proportion childless and
the mean age at childbearing for parity one), and only broken down into age-specific rates at a
later stage. The translation formulas may be used to investigate the implications for cohort
behaviour of extrapolated period indices, and vice versa.

One of the limitations of the present approach is that it only deals with one event, for instance
birth of the first child or first marriage. It would be desirable to work out the expressions for
more complicated models, in which more than one event can take place at a certain age, for
instance a first or a second or a third birth, or first marriage, divorce, transition to widowhood
and remarriage. Instead of the simple life table which was used in this paper with only two
states and one event, the more complicated approach would lead to a multistate life table with
two or more intercommunicating states, for mstance, progression from parity 0 to parity 1,
from parity 1 to parity 2, and from parity 2 to parity 3. Despite the apparent usefulness of
translation formulas for such a multistate life table, it is not at all certain that these will be
discovered easily. The reason is that the multistate analogue of our basic expression (3) for the
quantum of a process as a function of a set of age-specific occurrence-exposure rates (ie. the
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sum over all ages of the age-specific matrix containing the relevant events) turns out to be a
complicated matrix formula in which the matrices of o-e rates and vectors of person years for

cach age appear®.

2 See for example E. van Imhoff, ‘The exponential multidimensional demographic projection
model’, Mathematical Population Studies, 2(1990), p. 176.
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Table 1. Rate sum, period quantum, and moments of the schedule of age-specific first

marriage rates, males, Norway
1961- 1966- 1971- 1976- 1981- 1986-
1965 1970 1975 1980 1985 1990
A(t) 247 2.56 222 1.74 1.37 1.15
QM 0.92 0.92 0.89 0.82 0.75 0.68
M;,(¢) yrs 30.16 29.17 28.76 29.53 30.51 3240
M(t) yrs? 936 905 878 925 986 1108
M,(t) yrs’ 32581 30102 28696 30888 33924 40042

Source: computed on the basis of table 5.7 in "Befolkningsstatistikk 1991 Hefte III" (Statistisk Sentralbyr4,
Oslo-Kongsvinger, 1991). Marriage rates for five-year intervals were assumed to apply to each one-year
interval within the broader interval.

Table 2. Cohort quantum Q, as a function of the slope in the period quantum (Q’,) and the second
moment of the age pattern of rates (M,) - results of expression (14) with Q,=0.65 and M,=30

Q’,

-0.02 -0.01 0 0.01 0.02
M,
800 047 041 0.65 0.89 098
1000 0.62 045 0.65 0.90 0.99
1200 0.72 0.49 0.65 091 0.99
Table 3. Rate sum, period quantum, and moments of the schedule of age-specific first marriage rates

for ages 20-29, males, Norway

1961- 1966- 1971- 1976- 1981- 1986-

1965 1970 1975 1980 1985 1990

A(t) 1.39 1.55 141 1.02 0.73 0.46
Q,(®) 0.75 0.79 0.75 0.64 0.52 0.37
M(t) yrs 25.02 2490 2486 25.05 2528 25.70
M,(t) yrs? 634 - 628 626 635 647 667
M(t) yrs* 16260 16032 15957 16313 16738 17493

Source: see table 1.
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Figure 3. Cohort quantum as a function of period quantum
and a linear change in period tempo with slope M'1
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1. Introduction.

One of the most outstanding developments of the last two decades has been the large increase in
female labour force participation. In Norway in the 1970s, the growth was especially strong among
wdmen with pre-school children aged 3-6 and young school children aged 7-10. According to a survey
covering the 1970s (Women’s Work, 1980), the participation rate among these two groups of mothers
about doubled from 1970 to 1980, from 35 to 72 per cent and 40 to 78 per cent, respectively. Most of
these mothers had part-time jobs (Ellingszter & Iversen, 1984). During the 1980s, the mothers of even
younger children, aged 0-2, were rapidly catching up on the trend set by the mothers of the somewhat
older children. According to the Norwegian Labour-Force Sample Surveys less than half of the mothers
of children under the age of 3 belonged to the labour force in 1980 (48 per cent), but by the end of the
decade more than two thirds (68 percent) had joined. In addition, these mothers seemed to enter the
labour market in full-time jobs to a larger extent than before (Ellings=ter, 1989).

With data from the Norwegian Family and Occupation Survey of 1988 we are able to study the
labour market adaptation of mothers of small children in more detail. A question of interest is whether
the trend of increased employment activity also is evident at the time when mother’s (re)enter the labour
mﬁrket after birth.- In Norway, working mothers have been entitled to a matemity leave of 12 to 18 weeks
with full income compensation during the period covered by our data (1962-1988). Since 1977 there has
also been a statutory period of unpaid matemity leave up to 12 months after birth. We shall, therefore,
focus on the labour market adaptation one year after birth. The first birth has been selected as previous
research suggests that a woman’s employment choices around the birth of the first child may be an
important predictor of the extent of later work activity (Mott & Shapiro, 1983; Waite et al., 1985).
Another motivating factor has been a similar analysis performed with data from the Swedish Fertility
Survey of 1981 (Berhardt, 1985). Although not attempting to repeat the Swedish study with Norwegian
data, we should be abie to make some comparisons between Norwegian and Swedish mothers at the same
stage in their motherhood and working lives.

Besides giving a brief description of the development in the employment activity of mothers one
year after the birth of their first child, we shall devote much attention to the determinants of the (re)entry
into the labour market. According to economic theory of labour supply, important determinants are the
woman'’s own market wage and her labour-free income such as the disposable income of the spouse. As
our data contain excellent inconie information, we are able to control explicitly for these determinants in
our analysis. This is, as far as I know, a novelty compared to previous American and Swedish studies
of the employment activity of mothers surrounding the first birth. Having controlled for the influence of
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economic factors, we shall also study the effects of important socio-demographic variables that can be
expected to influence the employment decision.

2. Conceptual framework.

We shall base our analysis on economic theory of labour supply, which is an extension of
consumer theory. Applied to employment chéices, the consumer’s choice between goods and services is
extended to the case of choosing between consumption and labour-free time or ’leisure’. Leisure is here
defined very broadly, comprising all time not spent in paid work. Given her set of prefelencesf, a woman
chooses a combination of market goods and leisure that maximizes her utility at a given real §vage rate,
subject to a budget constraint and a time constraint. The budget constraint implies that the individual
cannot consume more than her eamings plus other disposable labour-free income (husband’s income,
social security etc.). The time constraint just reflects the fact that each period (day, week, etc.) has a
maximum amount of time available for work and leisure.

Having decided on the best possible combination of consumption and leisure, the woman will offer
the remaining time, if any, on the labour market. Labour time can theoretically range from zero (when
the woman chooses not to work) to the maximum. of the time constraint. However, institutional or other
regulations will often imply that the choice of working hours is restricted. The woman may not be able
to work the exact number of hours she would have preferred, but is obliged to choose between a limited
number of altemnatives. In such a case, she will compare the maximum utility attainable with the various
alternatives and choose the alternative that makes her best off.

Clearly, there are other factors besides consumer goods and leisure that affects a woman'’s utility.
Her preferences will obviously be influenced by socio-demographic factors such as her number of children,
the childrens’ ages, and her own age and education. These factors can normally be observed, but there
will always be some influential factors that cannot be observed, and these will have to be represented in
the utility function by a random term. Taking account of such known and unknown explanatory factors,
the maximum utility, U,, associated with a specific working hours altemative, ;, can be expressed as

where v; represents all observable factors and e; is a random error term. The individual woman chooses
the alternative with the highest utility, i.e. altemative j is chosen if and only if
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@ U>U, forall ks

Under certain assumptions', it can be shown (see e.g. Amemiya, 1981) that the probability, P;, of
choosing a certain alternative j of working hours satisfies

(3) P; = exp(v) / Z exp(vy).
k

The choice probability in (3) will be a function of characteristics specific both to the individual
as well as to the alternative. The main component that differs across altematives is labour income.
However, due to joint income taxation of spouses and deductions in social security benefits when labour
income rises, labour-free income will also differ across altemnatives. Calculating the budget constraint
across alternatives for the individual woman is therefore no menial task. For the present purposes we shall
leave out the tax component and instead estimate a reduced form of (3) which only includes individual-
specific characteristics. Choosing a linear specification of v;, this leaves us with the standard multinomial
logit model

@ P=expXB)/ 12‘ exp (XB,)

where X is a vector of covariates comprising market wage, labour-free income and socio-demographic
variables, and P, is a vector of coefficients. In this model, the coefficients differ across alternatives, i.e.
individual characteristics are allowed to influence each altemative choice differently, which is less
restrictive than assuming the same influence regardless of the altemnative.

3. Data and variables.

The Norwegian Family and Occupation Survey contains complete bidgraphies on pregnancies,
cohabitation and marriage, educational activity and employment of 4019 women bom in 1945, 1950, 1955,
1960, 1965 and 1968. In addition information on registered annual income and taxes during 1967-1988
for the respondents and their husbands (if they were married at the end of 1987) were obtained from the
Directorate for Taxation and linked to the s111:vey data. To be included in the present analysis a woman
must have at least one child and the first child must be born at least one year prior to the time of the

! The assumptions are that the ¢,s have a Type I extreme value distribution and are independent across alternatives.
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interview’>. The number of women who fulfilled these criteria were 2327.

During the collection of the employment histories, employment spells of less than three months
and weekly work activity of less than ten hours were not recorded. Weekly working hours above this
limit were recorded in four intervals: 10-24, 25-34, 35-45 and more than 45 hours per week. Information
on working hours was missing for 53 employed women, rendering 2274 analysable cases. Due to further
missing covariate values, the model estimates are based on 2217 observations. Less than one per cent (17
mothers) worked more than 45 hours per week one year after first birth. In the analysis, the two upper
time categories have therefore been collapsed into one interval. This leaves us with four altenative

employment choices:
- non-employment ( <10 hrs/week),
- short part-time (10-24 hrs/week),
- long part-time (25-34 hrs/week) and
- full-time (235 hrs/week).

The variable to be analysed is employment activity as measured by the probability of choosing
one of the above working altematives. The choice probabilities are likely to depend on a number of
factors, as discussed in section 2. We now tum to a brief description of the various explanatory variables
available in our data and a discussion of their expected influence on the choice probabilities.

3.1 Economic factors®.

Hourly wage.
The data contain excellent information on yearly income and taxes from the Directorate of

Taxation. However, the broad intervals of working hours make it difficult to calculate hourly wage
directly. Besides, we do not observe the wages of individuals who do not work. The wage rate used in
the model is therefore an estimated rate. It is based on observations of full-time woman-years and is
adjusted for possible selection bias introduced by using data from a restricted group of women®,

2 The main part of the interviews took place during October-December 1988.

sItnpo:'tm'umonomi(:de!ermimntssm:hasdneoostandpmvisionofciﬁldcareandfactoxsdlataffectthedanandforfqnale
labour are not available in the data material.

‘Seeappendixforfnrdza'denilsaboutmeesﬁmaﬁonpmdnre.
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A female wage rise affects a woman's employment choice in two ways. It becomes more costly
not to work, making her more inclined to spend more time on paid work and less time on ‘leisure’
activities. This is the substitution effect of a wage rise. However, higher female wages also raise the
family income of wo:king women. The woman can then ’afford’ more leisure, and this income effect will
tend to reduce the amount of time spent on paid work. Theoretically, therefore, the final result is
uncertain, and will depend on the strength of the two opposing effects. Empirically, most studies find a
positive and significant effect of marginal wage on the labour supply of women.

Labour-free income.

To a large extent, the nature of labour-free income will depend on marital status. Among married
and cohabiting women the main component of labour-free income is normally the disposable income of
the partner. Due to separate taxation of cohabiting couples, the register does not contain information on
partners in a consensual union. Our data on partners’ income and taxes are therefore limited to women
who were married by the end of 1987, and who had never broken a marriage or consensual union
previously. Among single mothers the main component of labour-free income will normally be social
security benefits. Unfortunately, the data do not contain information on such income.

A rise in labour-free income will reduce labour supply as long as °leisure’ is a *normal’ good (i.e.
a good‘that will be consumed in greater amount when afforded). In empirical analyses of labour supply
there is} weaker evidence of a negative income effect than of a positive effect of marginal wage.

3.2 Socio-demographic factors.

Education.

Education is an important human capital variable. The higher the education, the more valuable
will be the labour of a given individual, and the higher will be the reward in terms of wages. The effects
of education on employment activity can thus be conceptualized as working mainly indirectly through the
market wage rate. Besides, education may also be a motivating factor for labour force participation in
itself, and we shall not a priori leave out a direct positive effect of education.

Educational level is the hlghest level attained one year after first birth, and is measured by the
required number of years needed to reach this level. The years have been grouped into three levels:
primary school (<10 years), secondary school (10-12 years) and post-secondary school (>12 years).
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Work Experience.
Work experience is another crucial component in the human capital of individual women. It is

not often observable and is commonly operationalized by age. Based on the employment histories in our
data we are able to measure work experience in years or woman-years. We have chosen to let woman-
years at first birth represent the human capital component of work experience inourmodel. Like
education, work experience affects labour force participation through its effect on the wage, but it may
also have a direct positive influence through stronger employment bonds.

Unemployment experience.
Even if very few mothers report to be unemployed one year after first birth (17 mothers or less

than 1%), the proportion with some experience of unemployment in their previous working career is larger
(200 mothers or close to 9%). Unemployment experience may turn the woman into a 'discouraged’
worker. She develops poor expectations about her own opportunities on the labour market, and may
withdraw from the labour force. Altematively, unemployment experience may be conceived as
strengthening a woman’s work attachment through the fear of becoming unemployed again. Which of
these opposing effects is the more pronounced will be left for further investigation in the multivariate
‘analysis.

Social Background.

A woman’s social background is likely to have great effect on early life-course choices like
education and family formation. For instance, women who grew up in working class homes may be
expected to have different attitudes about appropriate sex roles than daughters of salaried employees.
Having a stronger orientation towards family-building and home-making the former group will tend to
invest less time in education®. Apart from the indirect effect through education, it is less clear whether
there is also a direct linkage between social background and employment activity. A priory, we shall not
rule out this possibility, and shall include social background among the covariates in the analysis.

The main variable capturing social background in our data is the occupation of the main bread-
winner of the parental family, in most cases the father. The social groups are defined in accordance with
the Norwegian Standard Classification of Socio-Economic Status, and is aggregated into three main

K In studies of the relationship between social background and family formation, the effect of social status is often believed
to work mainly through education as families with sufficient resources can steer their daughters into the educational system and off
the road to early marriages (see e.g. Carlson, 1979).
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groups: workers, salaried employees and farmers/fishermen.

- Marital status.

As mentioned, marital status will influence the nature of labour-free income available to the
woman, and will thus affect employment activity indirectly. When labour-free income cannot be observed,
marital status will be a valuable proxy variable. However, there may also be a direct linkage from marital
status to employment activity through differential family values and work attachment. For instance,
cohabiting women may feel less ’secure’ about the future than those who are married, and may thus keep
closer ties to the labour market. Also, strongly work motivated women would feel less need to get
married, intending to support themselves in any case. We shall therefore retain marital status among the
covariates even when we are able to control for labour-free income.

There are four different categories of marital status. Besides single mothers and cohabitants,
married women have been grouped according to whether they married directly or only after an initial
period of cohabitation. This division is introduced to capture possible differences in attitudes which would
otherwise remain obscure.

Religiosity.

In several studies of demographic events this variable have proved a good indicator of differences
in values. Both in Sweden and Norway religious activity has been found to exert a strong influence on
the likelihood of having a third child (B. Hoem, 1990, @. Kravdal, 1992). Swedish analyses have also
shown that religiously active women have kept the traditionalistic pattern of direct marriages longer and
that their unions are more stable than others (Hoem & Hoem, 1988). It would not be surprising if these
differences in familism also would show up in different employment pattems.

Religiosity is measured by church attendance one year prior to interview. As religious attitudes
are probably fairly stable over the life-course, the time gap should not invalidate its usefulness as a proxy
for values and attitudes. Yearly church attendance has been collapsed into three groups, low (<3), medium
(3-19) and high (2 20 visits).

In Figure 1 we sum up the causal relationships between the various explanatory variables that we
have discussed so far and employment activity:
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Figure 1. Causal diagram of female labour force participation.
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3.3 The time dimension: period and cohort.

Our data comprise six cohorts bom from 1945 to 1968 and cover a period of about 25 years.
Even if much of the increase in female employment may possibly be ascribed to time changes in the
covariates, it is mterestmg to examine whether there are separate period or cohort effects. Normally, we
run into difficulties when we try to separate the effects of period and cohort in one single model along
with age, as the three variables measured continously are exact linearly related (calender year = year of
birth + age). As far as I know, there is no theory that suggests that age in itself is a determinant of
employment activity. But being easily observable, age commonly serves as a proxy for the human capital
component of work experience. By substituting age with women-years employed as our human capital
vaﬁable and collapsing the calendar time variable into broader intervals, we have endeavoured to include
both period and cohort among the covariates.

The aim of the different time intervals has been to single out periods that differ in economic
activity in order to capture the possible influences of macro-economic factors. We have employéd the
same period partition as in the wage estimates, except that we have collapsed two intervals which proved
very similar when we estimated the employment probabilities. Calendar time refers to the year of the
employment choice, i.e. one year after first birth, and the intervals are 1963-1973, 1974-1980, 1981-1984
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and 1985-1988. A more detailed description of the intervals and the reasons for the partions can be found
in the Appendix.

3.4 The development in employment activity one year after first birth.

Norwegian Women’s Employment Activity

One Year after First Birth
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Figure 2

Figure 2 shows that the large increase in employment that has been observed among mothers with
small children from other sources is evident among mothers of one-year olds too. According to our data
less than 30 percent of the mothers had paid work one year after first birth in the 1960s and early 1970s,
but by the end of the 1980s the portion had more than doubled (62 percent). The employment increase
in the 1970s were mainly due to a rapid increase in part-time work, which counted for about two thirds
of the growth from 1963-73 to 1974-80. During the first spell of rising unemployment, 1981-84, the
employment growth slowed down. Full-time work continued growing, but ‘at a reduced speed, while part-
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time work either stagnated (long part-time) or declined (short part-time), compared to the previous period.
When the economy regained speed in 1985-88, there was also rising growth in employment among
mothers one year after first birth. Again, much of the growth was due to growing part-time work, which
had a share of about 60 per cent of the total growth from 1981-84 to 1985-88.

As only a tiny fraction of the mothers claim to be unemployed one year after first birth, reduced
growth in employment also implies reduced growth in labour-force participation®. This may suggest that
worsening macro-economic conditions have a dampening effect on the motivation of young mothers to
re(enter) the labour force after birth. This will be a matter for further investigation in the multivariate
analysis.

4. Results.

In the estimation of the model, we had to leave out labour-free income, as information on this
variable is only known for the sub-group of women who were married at the end of 1987 and who had
not broken a marriage or consensual union previously. However, to get an indication of the effect of
labour-free income, we have also estimated the model based on this sub-group of women only. Being a
select group, the results fmm this procedure may be biased. We shall returh to this issue when we
comment on the results for the sub-group of mothers in stable unions later. First, we tum to the estimates
based on the observations of all women, as reported in Table 1.

© The labour-force is commonly defined as the sum of the number of employed and unemployed persons.
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Table 1. Multinomial Logit Estimates of the Employment Choice.
All
Covariates Full-time Long part-time Short part-time
(F) (LP) (SP)
Intercept - 4.97 " - 8.18 " - 5.31
Education:
<10 years® 0 0 0
10-12 years 0.68"" 0.71 0.38
>12 years 1.61°" 1.27* 0.72

Experience 0.31"" 0.04 0.14*
Experience squared 0.13*™ 0.02 - 0.07
Hourly wage! 0.02* 0.05*" 0.03*
Marital status:

single 0.40" - 0.69 - 0.27
cohabiting 0.63" 0.02 - 0.51
married after cohab. 0.31° 0.10 - 0.03
directly-married® 0 0 0
Social background:

worker 0.07 - 0.25 - 0.10
salaried employee® 0 0 0
farmer/fisherman - 0.35" - 0.04 - 0.002
Reliqgious activity:

<3 church att./year* 0 0 0
3-19 " " 0.22 0.10 0.37

>20 " " 0.80" - 0.44 - 0.03
Unemployment experience:

Yes 0.51" - 0.38 - 0.16
No~ 0 0 0
Cohort:

1945* 0 0 0
1950 0.07 0.11 -0.11
1955 0.49 0.54 0.22
1960 0.82* 0.73 0.54
1965+1968 0.73 0.75 0.72
"Period:

1963-1973 1.11" 1.13 0.46
1974-1980 0.51 0.64 0.49
1981-1984°F 0 0 0
1985-1988 0.19 0.43 0.46
LR: 4229.57

DF: 6501

N : 2217

r=reference group.

1) Estimated NOK, 1990-prices.
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All women.

Our results confirm that the hourly wage is an important determinant of female employment. It
exerts a significant positive effect on all three working-hours alternatives. Even though it is not
significantly different in the three alternatives, there are indications of a stronger wage effect on long part-
time than on the full-time and short part-time. This may reflect that the true determinant is the wage rate
after tax, and our model does not include taxes. Due to the progressivity of the tax system, higher income
is taxed more heavily than lower income. But married women also face higher marginal taxes on income
in the lower than in the medium categories, due to the joint taxation of spouses’. Taking account of
taxes, a given gross wage will yield a higher net value in the medium income categories, and it may thus
have a larger effect on corresponding working hours such as long part-time.

As discussed in Section 3.2, some of the effects of education and work experience will be captured
by the wage variable when we include wage in the model. However, we also. see that there is a direct
effect of these human-capital variables on employment activity, which indicates that there are independent
motivating effects. Both variables show a strong positive gradient, especially on full-time work. The
motivating effects of higher education on short part-time work seem less important. Longer working
experience seems to exert a stronger ppsitive influence on short part-time than on long part-time work.
This could reflect differences in the opportunities of obtaining a short part-time arrangement, as women
with closer ties to the labour market and an established position might be more successful in securing the
working-hours arrangement they prefer. Similar reasoning has been suggested in studies of Swedish
mothers’ employment activity after first birth (Bemhardt, 1988; Korpi, 1989), which also found that
mothers with longer work experience were more inclined to work part-time®.

When we estimate the model without labour-free income, the effect assigned to marital status will
also contain effects of such income. The main dividing line is between single mothers, whose main labour-
free income is social security benefits, and the remaining mothers, whose main component is the
disposable income of the partner. But only the labour-free income of cohabiting mothers is completely

7 Married women in low income categories are normally taxed jointly with their husbands as this makes the couple better off
than with separate taxation. The effective marginal tax rate is thus the husbands’ marginal tax rate. When income exceeds a certain
level, the couple will be better off with separate taxation and the wife’s marginal tax rate will be lower.

% Part-time in the Swedish studies was defined as 16-34 hours per week, but the great majority worked less than 25 hours
(Berhardt, 1988).
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independent of personal labour income, as partners in a concensual union are always taxed separately’.
Because of this independence, cohabiting mothers may be less restricted in their employment activity by
high marginal taxes. In the Swedish studies, cohabiting mothers were found to be more inclined to take
up full-time work than those who were married (Bemhardt, 1989). Our results confirm that mothers in
consensual unions are more likely to work full-time than the reference group of directly-married women.
However, there is also a significant difference between the two groups of married women, as mothers with
a period of cohabitation prior to marriage seem more inclined to take up full-time work. Encountering
the same set of family income tax regulations these differences may be interpreted as diﬂ’érences in
attitudes and values. Single mothers are also more inclined to work full-time than directly-married
mothers. This may be due to economic necessity, but if they choose to work, single mothers also have
an incentive to escape the income interval with the highest marginal tax rate, and this will often imply
working full-time.

There is not much evidence of a direct effect of social background on employment activity in our
study, except that daughters of farmers and fishermen seem less inclined to work full-time than daughters
of salaried employees. As is often the case, social background seems to work mainly indirectly through
education and differential values. When we estimate a model that does not include social background
among the covariates (not shown), there is a somewhat steeper positive gradient of education on all -
working altematives and a somewhat steeper negative gradient of religious activity on full-time work.
There are also larger differences in the effects of marital status, probably because this variable then picks
up more of the value differences.

Our main indicator of differences in values, religious activity, shows a clear negative gradient, but
only on full-time work. Even if the group of women who attend church fairly regularily (20 times or
more per year) is a rather small sub-group (146 women), the evidence of less full-time activity is clearly
significant. Sticking to more traditionalistic family values they seem to prefer working arrangements that
can be combined more easily with a stronger home attachment.

Women with previous unemployment experience also constitute a fairly small gxoup, but there is
still some evidence of a negative effect on employment of having been unemployed sometimes previously.
The 'discouraged worker’ effect thus seems’to be. more pronounced than a possible positive effect of

’Singlemﬂmgeldedncﬁonsinlheireocialsecmityullowmceswhmlabomincomeexceedsacemin(low)level. The
deduction is added to the ordinary marginal tax, and implies a very high effective marginal tax rate on moderate income. When
earnings exceed an upper limit, the benefits are lost completely. The marginal tax then consists of the ordinary tax rate only, and.
will be lower than in the medium income categories.
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fearing renewed unemployment. The effect seems to be more pronounced for full-time and long part-time
than for short part-time, but is significant only for the full-time alternative.

Having examined the effects of unemployment on the individual level, we are also interested in
seeing whether there is any evidence of negative effects from unemployment on the macro level. The first
period of high unemployment in 1981-84 presents an opportunity to use this period as basis for
comparisons between the different economic periodé. We notice that all the period coefficients have a
positive sign in all working hours altematives, suggesting that mothers are generally more engaged in work
activity during economic prosperous periods. For the fuil'-time alternative there is also significant evidence
of less activity in 1981-84 than in the two previous periods.

These macro effects might be interpreted as demand-side effects, i.c. mothers with small children
have greater difficulties finding suitable work arrangements when the economy is at an ebb. As we have
noted, however, very few of the mothers in our study report of unemployment at the time. The adverse
macro conditions may thus discourage the mothers from even looking for jobs, and therefore contribute
to a shrinking of the female labour force.

As mentioned, we have endeavoured to include both a period and a cofiort variable among the
covariates, recognizing that the two effects might be difficult to separate due to problems of
multicollinearity. The outcome seems quite promising. As we have seen, there are some interesting
period effects, which are easily interpretable, and the estimated cohort effects also show a gradient in the
expected direction. When we control for all the other factors, younger cohorts show increasingly higher
employment activity one year after first birth than the reference group of women born in 1945. Among
mothers bomn in 1960 there is also significant evidence of a higher full-time employment activity.

Women married at the end of 1987.

To get an idea of the effects of labour-free income we have estimated the model on the data for
the sub-group of women whose partners’ income is known. This implies that we exclude mothers who
were single at the time of the employment choice or married or cohabiting women who were divorced or
broke their consensual union before 31.12.1987. To assess if this procedure introduces bias, we have re-
estimated the model in Table 1 based on the sub-group of women with lasting unions only. The results
are reported as Model A in Table 2.
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Table 2. Multinomial Logit Estimates of the Employment Choice.
Women married by 31.12.87 and in stable unions.
Model A Model B
Covariates F Lp SP F Lp Sp
Intercept - 6.13° - 8.51° - 6.29° - 6.28° - 8.54° -6.3"
Education:
<10~ 0 0 0 0 0 0
10-12 0.64" 0.63 0.23 0.58" 0.50 0.22
>12 1.30* 0.92 0.44 1.10" 0.73 0.33
Exp. 0.30"" 0.03 0.19* 0.31""* 0.03 0.19"
Exp.2 - 0.14" - 0.005 - 0.12 - 0.14" - 0.009 -0.12
Hrl. wage! 0.04"" 0.06""" 0.04™ 0.05"" Q.07*** 0.05™
Disp.income? . - 0.004" - 0.001 - 0.001
Marital st.:
cohab. 0.16 -1.19 - 0.28 0.04 - 1.02 -0.17
married a.c. 0.19 - 0.07 - 0.14 0.18 - 0.09 -0.14
dir.-married” 0 0 0 0 0 0
Social backgr.: ,
worker - 0.004 -0.21 - 0.15 0.05 - 0.20 -0.09
sal.empl.” 0 _ 0 0 0 0 0
farmer - 0.22 - 0.10 - 0.03 - 0.21 - 0.02 0.04
Rel. act.:
<3F 0 0 0 0 0 0
3-19 - 0.24 0.16 0.41 - 0.27 0.14 0.45
>20 - 1.03"" - 0.52 - 0.09 - 1.08" - 0.50 -0.04
Unempl. exp.: .
Yes - 0.42 0.02 0.06 - 0.38 0.05 0.08
No* 0 0 0 0 0 _. 0
Cohort:
1945F 0 0 0 0 0 0
1950 0.10 - 0.02 0.07 0.08 - 0.19 0.13
1955 0.43 0.18 0.24 0.45 0.04 0.34
1960 0.85 0.29 0.76 0.83 0.14 0.87
1965+1968 1.33* 0.88 1.18 1.38" 0.70 1.22 -
Pefiod:
1963-1973 1.28" 0.98 0.56 1.39" 0.93 0.73
1974-1980 0.58" 0.65 0.61" 0.61° 0.60 0.69"
1981-1984F 0 0 0 0 0 0
1985-1988 - 0.12 0.24 0.12 0.16 0.24 0.15
LR 2992.66 2866.03
DF 4521 4263
N 1542 1442

r=reference group.

1) See footnote to table 1.

2) NOK/1000, 1990-prices.
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When we compare the estimates of model A in Table 2 to the estimates in Table 1, it does not
seem that the exclusion of single mothers and mothers with non-lasting unions affects the results in any
important manner. The direction of the gradients are the same and most factors found significant when
we estimated the model based on all observations are still significant when we use the reduced sub-group,
with only a few exceptions. There is now less evidence of a *discouraged worker’ effect of unemployment
and of social differences between daughters of salaried employees and farmers. Not surprisingly, the
biggest changes are found in the effects of marital status, where especially the difference in full-time
employment between directly-married and cohabiting women have been reduced considerably. As the
latter group is very small, these changes could still be caused by random factors.

In model B in Table 2, we have also included labour-free income among the covariates. This
further weakens the difference between directly-married and cohabiting mothers, while the difference
between directly-married and non-directly-married women remain the same. Even if they are not
significant, these changes may still indicate that part of the differences between cohabiting and directly-
married women may be due to differences in the taxation of married and cohabiting couples. Since the
two groups of married women are taxed similarily, one would not expect the introduction of labour-free
income to affect existing differences between these groups.

Our results supply some further evidence for the existence of a negative effect of labour-free
income on the labour supply of women, as higher disposable income of the parlnér significantly reduces
the full-time activity of the mothers. The estimated coefficients for the part-time alternatives are also
negative, but they are not significant.

S. Summary and conclusion.

This study has analysed the choice between four employment alternatives one year after first birth:
full-time, long part-time, short part-time and none-employment. Based on economic theory of labour
supply, we have developed a multinomial logit model which expresses the choice probabilities as functions
of individual economic and socio-demographic determinants.

With high quality income data from the Directorate for Taxation and survey information on
weekly working hours, we have estimated hourly wages for all women. Due to broad working-hours
intervals the estimates are based on observations for full-time women-years only. As this procedure may
introduce selection bias, the esnmam have been adjusted for such bias.

Our analysis confirms that the woman’s wage is an important determinant of the employment
activity of mothers. It exerts a significantly positive effect on both full-time and part-time work. The
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estimates of labour-free income are also as predicted by economic theory, but are only significant for the
full-time altemative.

Besides their effect on employment activity through higher wages, higher education and longer
working experience also have direct motivating effects, especially on full-time work.

In models which do not include labour-free income among the covariates, marital status may also
pick up differences in labour-ﬁee‘ income in addition to reflecting differences in family values and work
attachment. We find that both single and cohabiting mothers are more inclined to work full-time than
mothers who keep to the tradition of direct marriages. As there are differences in labour-free income
between these groups (single mothers get social security benefits, and cohabiting mothers are always taxed
separately), some of these differences may be due to income effects. However, we also find that married
women who lived with their partner in’a consensual union prior to marriage are more likely to work full-
time than their directly-married counterparts. As these groups have similar labour-free income and are
subject to the same family taxation, the differences in employment activity may be ascribed to differential
values and attitudes.

Our analysis supplies some evidence of adverse effects of unemployment. On the individual level,
we find that mothers who have experienced unemployment in their previous working career are less
inclined to work full-time one year after birth. Unemployment on the macro level also seems to have
reduced the labour supply of these mothers. By comparing the employment 'activity during a period of
high unemployment in Norway, namely 1981-84, to the other economic periods in our study, we find
significantly less full-time activity in 1981-84 than in the periods of the 1960s and 1970s. The full-time
coefficients of the late 1980s and all part-time coefficients are also estimated to be positive, but
insignificantly so.

This is the first report of the employment activity of Norwegian women following the birth of
their first child. So far, the analysis has focused on their labour-market adaptation one year after birth and
the main determinants of this adaptation. Later, we intend to study the complete work histories more
closely by means of intensity regression. Also, we shall pay closer attention to possible interaction effects
between the explanatory variables, especially between the period variable and other covariates in the
model®®

1 In the Swedish analyses, important interactions were also found between education and other covariates such as work
experience and marital status (Berhardt, 1985 and 1988).
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APPENDIX

Estimates of Hourly Wage based on Observations of Full-time Woman-years in the Norwegian Family and
Occupation Survey, 1988 (F&Y88).

1. The selection problem.

F& Y88 contains excellent annual income data (from the Directorate of Taxation), but has only information on weekly
working hours in broad intervals (<10, 10-24, 25-34, 3545 and >45 hours). The interval 3545 hours was
constructed to encompass normal working hours during the period of observation (1962-1988). By using National
Accounts information on normal working hours each year we should get reasonable estimates of hourly wages for
full-time years. However, if we want to predict hourly wage for a random individual, the estimates based on full-
time woman-years will be biased for two reasons: 1) We do not observe wages for individuals who do not work
during the year (self selection). 2) The income observations for part-time years cannot be used because of the broad
hours intervals (sample selection).

2. The model.
We assume a simple linear wage relation as follows

1) W,=XB+e, ieM; t=1967, ...., 1987,
Mz1174, ......, 4019,

where W, is hourly wage of individual i in year t (there are no income data before 1967). M, is the sample size in
year t, which varies from 1174 before 1969 (when only women born in 1945 and 1950 were old enough to be
included) to 4019 from 1982 onwards (when the 14-year-olds of the 1968 cohort are included). X is an exogenous

. vector of human capital variables (age, education and experience) plus a trend factor, and ¢ is a stochastic error term
with the following properties (to simplify notation, the indices i and t are suppressed)

(@  E(e]X) =0, Vare|X)=c.

If we estimate (1) based on hourly wage observations only from individuals with recorded full-time woman-year
equivalents, we estimate the conditional wage relation

3 W=EW=h)+0,

where h=working hours per year, h,=a full-time woman-year, and E(0)=0. We therefore need to find an expression
for E(W |h=h,) and the probability of observing a full-time woman-year, P(h=h,)=P,.

P, will depend on the individual’s preferences for work and working hours. For the sake of this argument, suppose
there are three possible alternatives: a full-time woman-year (h=h,), a part-time woman-year (h=h,) and not working
(h=h,). The choice will determine the individual’s labour income, which together with other income (husband’s
income, social security etc.) will set an upper limit to the individual’s consumption possibilities. The budget
restriction can be written as

@) C=Y+Wh, ;1,13.

where C; is the maximum consumption possible when the woman works h; hours and Y is labour-free income (for
the moment, taxes are ignored). The utility associated with each alternative can be expressed as
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(5) IJ] =v(cpl-‘]'z)+ejsvj+ejv
" where L, is "leisure’ (i.e. time disposable for other activities when the woman works h, hours), Z is a vector of socio-
demographic variables, v, is the non-stochastic part of the utility function and ¢, is a random variable (taste shifter”).
The individual chooses the alternative with the highest utility, i.e. alternative j is chosen iff
©) U>max U, k#; kj=123.

If the e,8 are independent and the distribution function of e, is given by exp(-exp(-¢,)) (the Type I extreme value
distribution) it can be shown (see ¢.g. Amemiya, 1981) that the probability of making choice j is

) P, = exp(v)/Z exp(v)).
k

From (1), (4), (5) and (7) we observe that P; depends on the random error term € through the hourly wage, W. For
a given W, P, is non-stochastic.

From (1) and the rules for conditional expectations it follows that

®  E(Wlh=h) = XP+E(e|h=h,)
= XB + Ele P(h=h,|W)] / E[P(h=h,|W)]
= XP + E[ePy(e))/EPy(€).
To find EP,(e), we expand P,(€) in a Taylor series around €=0, and leave out higher order terms, i.e.
® Py(e) = Py(0) + €[0Py(e)/de |e=0)
Taking logarithms and differentiating (7), we get
(10)  dPy(e)/de = Py(e){dv,/oe - [X dexp(v,)/0e] / Zexp(v,)).

To arrive at a more explicit expression, we must choose a functional form for the utility function. For the sake of
simplicity we shall choose a linear specification as follows: .

(20 B O =0+0,CtZy+g=v +¢,
where v is a vector of parameters and o, and o are parametres. Substituting v; as expressed in (5°) into (10) and
differentiating, we obtain

(11)  3Py(e)/0e = a,Py(e)(h, - TP,h,).
Let v=vy, and P=P,, when &=0. It then follows that

(12)  dPy(e)fdeje=0 = o,Py(h, - ZPch,) = 0Py, S.

Substituting (12) into (9) and taking expectations yields

(13) EP, =Py + 0,Py, S Ee = Py,
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(14)  E(ePy) = o,P;, &° S, and
(15)  E(ePy)/EP, =0’ S.
From (3), (8) and (15), it follows that
(16) W=XB+0,6°S+ 0.

As we have seen, assuming a linear utility function and a linear wage relation thus results in the following selection
term:

(A7)  S=hy-ZPch,

Other (and more complicated) functional forms would yield other (and more complicated) selection terms. If we
e.g. make the common assumption

(1) logW=XB+e
our selection term would become
A7) S =W, (h - ZPsh)

where Wg=exp(XB), i.e. the *true’ hourly wage (without any error term). However, we do not know W,. Instead
of introducing extra uncertainty by using a selection term that involves W, we have chosen a linear formulation of
the wage relation that leaves us with a simpler selection term involving only estimates of P,,.

3. Estimation results.

Table 1 shows the estimates of a reduced form multinomial logit model of the probabilities P, of choosing each of
the three working hours alternatives. The wage estimates are shown in Table 2. We report estimates from models
with and without the selection term S (model A and B, respectively). A list of labels explaining the variable names
can be found at the end of this appendix.

The estimation has been performed separately for different economic periods, as there is no reason to believe a priori
that the parameters would remain stable during such a long period (21 years). The main characteristics of the
different periods chosen are:

1967-1973: Stable period of steady economic growth.

1974-1977: First oil price shock followed by governmental countercyclical policies to offset the
adverse effects in international markets of the rise in oil prices. Continued economic
growth,

1978-1980: Contractionary policies to remedy an overheated economy and a rapidly growing deficit
in the balance of payments. Price and income stop. Second oil price shock (doubling of
oil prices).

1981-1984: Rising unemployment, peaking in January 1984 with nearly 80 000 unemployed persons
(Norwegian Labour Force Sample Surveys), or more than a doubling during the period.

1985-1987: Liberalization of the credit markets. Huge rise in private consumption spending. Renewed
economic growth and fall in unemployment.



164

Table 2 shows that the selection term S has a significant effect on the wage estimates, and indicates that it is
important to correct for selection bias when estimating wage based on observations of full-time woman-years only.
Noting that S can be interpreted as the difference between full-time woman-years and expected working hours per
year, the negative coefficient means that the higher S is (i.e. the lower expected working hours are relative to a full
woman-year) the lower is the expected hourly wage, conditional on working a full-time woman-year. This result
confirms apriori intuition. We also note that the selection correction has a dampening effect on the estimates of the
remaining parameters in the model

Variable Labels:

Variable: Label:

AGE2 Age squared

EXP Experience in fulltime years

EXP2 Experience squared

EDU2 Less than 10 years of education (ref.group)

EDU3 10 years of education

EDU4 11-12 years of education

EDUS 13-14 years of education

EDU6 More than 14 years of education

EDU Education made continous by taking the interval midpoint as number of years
NC Number of children

YCO Youngest child aged 0 years (by end of year)

YC12 Youngest child aged 1-2 years

YC36 Youngest child aged 3-6 years

YC710 Youngest child aged 7-10 years

YCOBIG Youngest child aged more than 10 or no children (ref.group)
SSTATO Single

SSTAT1 Cohabiting

SSTATI12 Married after initially cohabiting the same partner
SSTAT2 Directly married (ref.group)
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a e . . Multinomial Logit Estimates of the Participation Decision (F= Full-time year. P= Part-time year)
Variabel 1967-73 1974-77 1978-80 1981-84 1985-87
aria , ;
BF pP BF BP . BF pP BF pP BF pP

INTERCEPT ........... -23.07 -23.68 -24.08 -28.22 -19.0 -15.5 -17.31 -15.65 -22.75 -14.43
AGE .............. ... 1.68 1.74 1.65 1.25 1.21 0.95 092 0.57 0.19 -0.03%
AGE2/10 .............. -045 -043 -0.38 -0.27 -0.27 -0.19 -0.20 -0.11 -0.07 -0.02
EXP .......coviinnnn. 1.76 0.74 1.12 0.38 1.02 0.40 091 0.42 0.89 0.49
EXP2/10 .............. -0.93 -0.37 -0.39 -0.07 -0.31 -0.11 -0.23 -0.11 0.22 -0.14
EDU3 ................ 1.18 0.68 1.27 0.77 1.27 0.88 0.96 - 0.60 098 0.87
EDU4 ................ 1.81 0.98 1.42 0.88 1.57 0.97 1.41 0.72 1.66 1.18
EDUS ................ 291 1.88 2.29 1.53 2.19 1.10 1.79 1.14 1.93 142
EDU6 ................ 6.31 4.36 434 2.68 4.15 258 3.78 2.21 4.13 2.69
NC ot 0.19% -0.03% -0.01° -0.07% 0.32 0.13° 0.35 0.10° 0.31 0.16
YOO ..., -3.46 -1.86 -3.29 -148 -3.96 -2.03 -4.01 -1.98 -3.59 -1.75
YCI12 ................ -2.39 -1.40 -2.40 -1.14 -3.09 -1.73 -3.25 -1.74 -3.06 -1.69
YC36 ............ ..., -0.75 -0.62 -1.31 -0.53 -2.30 -1.30 -2.40 -1.18 -2.39 -1.03
YC710 ............... 1.70° 2.39 1.09 0.69 -0.29% -0.02% -1.02 -0.32: -0.98 0.17%
SSTATO .............. 1.85 0.79 1.21 0.37 0.72 0.19% 0.28 -0.27 -0.49 -0.71 .
SSTAT1 .............. 0.55° 0.14% 1.26 0.53 0.84 0.16% 0.76 0.04% 0.29° -0.21°
SSTATI2 ............. -0.19% -0.39° 0.06% -0.00% 0.18° -0.01" -0.20° -0.24 -0.33 0.23
YEAR ................ 0.04” 0.07 0.03% 0.17 » 0.03° 0.04% 0.04° 0.10 023 0.18
N ... ... ceeeee 11 673 10 408 9 198 15 355 12 057

LR ....... .., 11 640.4 11 655.3 11 947.8 19 4219 17 1975
DF(LR) ............... (10 864) (11 834) (11 686) (19 658) (18 326)

® — Not significant at the 5% level.
® = Not significant at the 1% level.



Table 2.  OLS Estimates of Hourly Wage based on Full-time Year Observations with (Model A) and without (Model B) correction for Sample Selection Bias.
(Std. errors in parenthesis)

991

Variabel 1967-73 1974-77 1978-80 1981-84 1985-87
ana A B A B A B A B A B
INTERCEPT ........... 275.14  -32057  -31523  -381.35  -20,75°  -102.67° 2.38° 5442°  -380.02  -484.75

(26.37) (25.18) (43.87) (42.48) (58.62) (58.30) (37.82) (37.84) (56.29) (55.53)
AGE ..o, 11.79 14.82 2.39° 481 397 6.43 0.84° 2.20° 3.32 3.37
(1.84) @1.77) (2.10) .07)  (1.56) (1.55) (1.07) (1.07) (0.89) (0.90)
AGEY10 .............. -2.01 2.80 -0.43° -1.08 -0.81 -1.43 -0.16° -0.53 047 -0.61
0.41) 0.39) 0.41) 040)  (0.28) 027) (0.18) 0.17) 0.14) 0.14)
EDU ....... e 2.84 353 5.93 6.81 5.78 7.06 5.77 7.06 5.46 6.79
0.35) 0.32) (0.44) 042)  (0.40) 0.37) (0.30) (0.26) 0.31) (0.26)
25,4 -1.36® 0.83. 1.58° 403 1.46° 425 1.05° 3.92 0.27° 3.06
(0,68) 0.55) (0.83) 070)  (0.75) 0.64) ©0.57) 0.47) (0.58) (0.46)
EXPY10 .....ooueennn. 0.42° 0.77 0.52° -1.35 -0.19° -0.94 -0.06° 0.78 0.12° -0.49
(0.50) (0.45) (0.44) ©041)  (0.34) 0.32) 021) 0.20) (0.19) 0.17)
YEAR ......oovuununn.. 2.03 2.03 3.81 408 -0.13° 0.18° 0.04° 0.15° 427 5.00
(0.19) 0.19) (0.48) 048)  (0.67) (0.68) 0.41) 0.42) 0.62) 0.62)
S -0.33 0.52 0.83 -0.94 -1.12
(0.06) (0.10) 0.12) ’ (0.10) 0.14)
Riadj. ..ovvvvnennunnns 041 0.40 0.31 0.29 0.30 0.28 0.30 0.28 0.32 031
) ST 1 906 1558 1615 2 665

° not significant at the 5% level.
% not significant at the 1% level.
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Introduction

Several numerical as well as methodological studies of the effects
of immigration on population growth have been published in the
course of the 1980’s. (See References. Zlotnik (1991) gives an
instructive survey.) Some studies have also been concerned with
development and characteristics of subpopulations, consisting of
immigrants and their descendants. (Espenshade et alt. 1982,
Espenshade 1984, 1986, Mitra 1983, 1984, 1989.) These methodo-
logical studies have mainly been concerned with 1long term
tendencies, which in population matters usually means centuries.

However, Espenshade (1986) sets out the laws governing the develop-
ment of a population of immigrants and descendants from the point
~of time, when a fixed annual inflow is started, assuming a constant
age and sex distribution in the flow of immigrants and constant
demographic rates. He also gives some results of numerical simu-
lations based on observed figures.

Other numerical studies, which have been concerned with the less
remote future, have been conditioned by the current situations in
actual populations as starting points for projections. Conse-
quently, they have not easily lent themselves to generalisations.

Considering from a systematic point of view the elements in the
development of subpopulations of immigrants and descendants over
the short as well as the long run brings into focus some general
characteristics, which condition the development of such subpopu-
lations. Familiarity with these conditions may be useful for the
analysis of trends in the development of such sub-populations, an
issue, which is of great concern in many European countries at
present.

In the debate on immigration and refugee policy we see frequent
references to expectations about explosive growth of subgroups of
"foreigners" in national populations. Such expectations are
usually based on rather diffuse and unrealistic assumptions. By
a numerical study of the precise consequences of spesific
assumtions it is possible to make the debate more realistic. A
general knowledge of the laws governing the development of goups
of immigrants and their descendants will make it possible to reason
in more general terms about possible developments.

From the point of view of assessing the social, educational and
labour market policies which will be required in order to accom-
modate a group of immigrants and their descendants is it important
to know something about the prospective development, not only of
the total size of the group, but also about its composition by sex
and age.

By combining studies of the development. of immigrant population
groups with forecasts of population growth with no immigration, the
effects of alternative assumptions in regard to immigration on the
growth and structure of the total population may be studied.

A study of the laws governing the development of a subpopulation
of immigrants and their descendants is the subject of this study.
We also utilize these laws to develop a set of "baseline"
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projection for growth and structure of a population group of
immigrants and descendants under conditions which seem to  be
realistic for Norway, and specified in such a way that alternative
stipulations about important assumptions easily may be introduced.

The model used is identical to the one applied by Espenshade, but
we go a little further in the description of the characteristics
of the subpopulation at various stages in the growth process, and
while he works his model in continuous time, we find it more
convendient to work in one-year steps.

This has also been done in a recent contribution by Feichtinger and
Steinmann (1992), who demonstate how the characteristics of the
model may be derived by means of matrix algebra. In the present
exposition we need even simpler mathematical tools.

The model

In this analysis we will work with a population projection model
of the usual component type. We will work in discrete time, with
units of one year. We will consider a subpopulation of immigrants
and their descendants, starting from zero, and being built up by
a constant yearly (net) inflow of immigrants with a permanent com-
position in regard to age and sex. We will - assume constant mor-
tality (fixed life tables), constant birth rates (which may, how-
ever, be varied proportionally in certain cases) and constant sex
proportion at birth.

The object of study will be a (sub-)population of immigrants and
their successive generations of descendants: l.generation = chil-
dren of immigrants, 2.generation = grandchildren of immigrants a.
S.0. As in several other studies, we will only follow maternal de-
scendance, i. e. a child’s status in relation to our analysis is
determined by that of the mother. This may be given alternative
interpretations: One construction (e.g. Espenshade et alt. 1982 and
others) is to assume for the purpose of analysis, that the immi-
grants and their offspring form a subpopulation in complete isola-
tion from the rest of the population. Alternatively, we may simply
decide that (only) when the mother belongs to the immigrant sub-
population will a child be considered to belong to that subpopu-
lation.

For the first few generations of an immigrant group which is exotic
in relation to the parent population, and where there are few
marriages out of the group, this may not be important. However,
when "mixed" parenthoods assume important proportions, the way we
treat children of these couples may have important consequences for
the count of immigrant descendants. By our definition, the child
will be an immigrant descendant if the mother is an immigrant or
immigrant descendant. But children of men, who themselves are
immigrants or immigrant descendants will not be immigrant descen-
dants unless also the mother is immigrant or immigrant descendant.
This convention has no other logical justification than, that it
ascribes roughly half the offspring in mixed parenthoods to the
subpopulation of immigrant descendants and the other half to the
non-immigrant population. However, analytically, the definition
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is very convenient. The choice may have political consequences,
if model results are used in current debates about policy matters.

If we base our model on the construction of two separate, isolated
subpopulations, mixed parenthoods are of course excluded from the
model. But in the real world, they will be there all the same.
A consequence of following generations through the maternal line,
which applies under both the above "justifications", is that the
generation to which the child belongs is determined by the genera-
tion of the mother, irrespective of to what generation the father
belongs. Thus, a third generation descendant may well have a
father who is an immigrant or first or second generation descen-
dant, or who belongs to the fourth or later generations of descen-
dants. Since we consider a continuous flow  of immigrants, there
will for each age group in a given generation be persons ofthe same
age among immigrants and among all the earlier generations, and the
members of the latest generations will always be fewer than those
in the same age group who belong to earlier generations.

Further, only for the first 15 cohorts of a given generation will
there not be members of at least one later generation in the same
age group (assuming that the fertile period starts at age 15).

Another consequence of following generations is, that we may con-
sider our stipulated immigration figures as net immigration only
as 'long as we assume that there is no emigration of descendants of
immigrants. If an emigrating descendant is replaced by a new immi-
grant, both the number of immigrants and the number of descendant
should be affected, even if the two are of the same sex and age.
Our model does not provide for this. It could be taken care of,
but would require assumptions about this type of migration, and
would make our model less transparent.

In general, it would appear reasonable to assume, that the more
generations there are between an immigrant and her descendants, the
weaker will be the ties connecting the descendant to the culture
of the country form which the immigrant originated. There are,
however, some reservations: Since there may always be fewer genera-
tions back to an immigrant along the paternal line, this will not
necessarily be true. As regards ethnic differences from the popu-
lation of the receiving country, a gradual modification can only
take effect if successive generations tend to marry out of their
ethnic group in growing proportions.

In the sequel we shall use the term entrants for immigrants in the
year they arrive, when this may clarify the discussion.

Simulations

We will analyze the implications of general demographic relation-
ships for the development of subpopulations of immigrants and des-
cendants. In order to illustrate the effects we also study the
numerical effects after 3, 5, 10, 15, 25 years, and every 25th year
up to 150 of a constant stream of immigrants. We normalize the
number of immigrants to 1 000 per year. But results for other
numbers of immigrants follow by proportional adjustments of our
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figures. We assume that the composition by sex and age of the
annual flow of new immigrants is the same as the net flow of
immigrants from countries in the third World to Norway in the years
1984 - 1988. We use survival figures based on Norwegian figures
for 1985-1986.

.The fertility schedule is also based on Norwegian figures, 1986.
(These sets of rates are given in Appendix table V.) However, the
fertility level has been adjusted by proportional changes from a
TFR of 1.71, to replacement level, 2.089 (NNR = 1). This was
chosen as a "baseline figure" as all our figures can easily be
transformed to other fertility 1levels through proportional
adjustments, as long as the changes in age specific rates are
assumed to be proportional.

The subpopulation of immigrants

A yearly flow of immigrants will normally have a very young age
structure, with particularly low proportions in the age groups:
above 50. We show here (see also e. g. Espenshade, 1986, or Mitra,
1989) that when a population of immigrants develops as the conse-
quence of a constant yearly flow of new entrants, its age groups,
starting with age 0, will successively reach stable levels, one
each year, until all age groups remain constant after a period
equal to the maximum living age.

As a consequence, the total subpopulation will grow at a decreasing
rate, reaching a stationary level at the end of the same period.

During the growth period, the age structure will become succes-
sively older; the mean age will end up at a level considerably
above that of a stationary population with the same mortality and
no immigration.

When a flow of immigration with a constant size and composition in
regard to sex and age starts, the number of persons in each sex and
age group at the end of the first year will be the entrants in that
group which survived to the end of the year.

The second year the number in age group -0 will again be the sur-
vivors of the entrants the same year in that age group, and with
constant mortality (and constant distribution over the year of the
immigration flow) the number will be the same as the first year.
The same will apply for this age group in all following years.

In all the other age groups the surviving entrants of the second
year will be augmented by the survivors of the entrants in the next
lower age group the first year. From the second year to the third
and onwards the number in age group 1 will remain unchanged. The
other age groups will be augmented in year three from their size
in year two by the survivors of those who immigrated two years
earlier in age groups two years younger. Thus, each year a new age
group reaches a constant level, until the highest age group at age
Q reaches its constant level in year +1, from which time the
entire immigrant population will remain constant.
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Thus, a constant flow of immigrants will in the course of roughly
100 vears establish a population of immigrants, which from then on

will remain constant as long as the immigration flow continues
without change. It is easily understood that during the period

from year 0 to year Q+1 the immigrant population will be growing
at a decreasing growth rate, and that it will be progressively
ageing, as the increase from one year to the next is restricted to
progressively higher age groups each successive year, as
increasingly high age groups reach their constant levels.

At a given time, t, the number in age group x will be:

t X
- N N
Ny= X 1% /18 ; * g_;

i=max (0, x-t)
Here is
number of a given sex (N= M,K) in age group x at the
end of year t

n number of a given sex (n= m,k) of immigrants in age
group x at the end of the year in which they immigrated

l; proportion surviving from end of birth year to end
of xth year for sex N(N=M,K) according to assumed mortality.

It follows that:

NE= Ni_l for x < t and

- N N
x =/ R, for_Qz_x>t

The fiqures

-Figures based on Norwegian rates are given for the years 3, 5, 10,
15, 25, 50, 75, 100 and 106 in tables l.a - ¢ and 2.a - c¢ and
tables I.A - I.C in the appendix. The development of the total
subpopulation is illustrated in figure 1.

Fig. 1 NUMBER OF IMMIGRANTS




Table 1.a Immigration and projected immigrant population. 6 age groups. Annual immigration 1000. TOTALS.

Age  Immigration Immigrant population

per 1000

Total 1000
0-14 263
15-24 312
25-49 405
50-64 18
65-79 2
80+ 0
Average
age 22.1

Table 1.b Immigration and projected immigrant population. 6 age groups. Annual immigration 1000 M+F. MALES.

Year 3
2998
758
820
1354
58
8
0

230

YearS Year 10
4992 9956
1210 2122
1198 1834
2462 5679

104 264
17 57
0 0
240 26.5

Age  Immigration Immigrant population

per 1000

Total 594
0-14 138
15-24 196
25-49 254
50-64 6
65-79 0
80 + 0
Average

age 223

Year 3
1780
397
506
856
20

1
0

233

Year 5
2962
632
728
1564
36

3
0

243

Year 10
5905
1103
1080
3605

104
12
0

26.7

Year 15
14881
2566
2597
9046
550
119

3

289

Year 15
8821
1326
1487
5725

253
29
0

292

Year 25
24529
2566
3946
15368

2291 -

329
29

336

Year 25
14517
1326
2176
9601
1304
104

5

339

Year 50
45232
2566
3946
21723
11229
5358
410

439

Year 50
26380
1326
2176
12988
6729
3011
150

440

Year 75
54278
2566
3946
21723
13524
9905
2614

48.7

Year 75
30785
1326
2176
12988
7870
5280
1146

480

Yearl00 Yearl06+

55301
2566
3946

21723

13524

10146

3396
494

Yearl00 Yearl06+

31141
1326
2176

12988
7870
5376
1405

484

31141
1326
2176

12988
7870
5376
1405

484

Table 1.c Immi}mtion and projected immigrant population. 6 age groups. Annual immigration 1000 M+F. FEMALES
Age Immigration Immigrant population

per 1000
Total 407
0-14 125
15-24 116
25-49 151
50-64 13
65-79 2
80 + 0

Average
age 21.7

Year3
1219
361
314
498

39
7
0

26

Year 5
2030
578
47
899

68

15
0

236

Year 10
4051
1019

754
2073
160
44

0

26.1

Year 15
6060
1239
1110
3321

296
9
3

285

Year 25
10012
1239
1770
5766
986
225

25

332

Year 50
18851
1239
1770
8735
4500
2346
260

438

Year 75
23493
1239
1770
8735

5654

4625
1469

49.5

Yearl00 Yearl06+

24159
1239
1770
8735
5654
4771
1990

50.5

24160
1239
1770
8735
5654
4771
1990

50.5

Norway
1987
4198289
803586
665446
1454661
596355
529108
149133

37.7

Norway
1987
2076155
411374
341226
746777
294017
232551
50210

36.3

Norway
1987
2122134
392212
324220
707884
302338
296557
98923

390

PLT



‘Table 2.a Immigration and projected immigrant population. 6 age groups. Per cent. TOTALS.

Age  Immigration Immigrant population Norway
(entrants) Year3- Year5 Year10 Year15 Year25 YearS0 Year75 Yearl00 Yearl06+ 1987

Total 100 100 100 100 100 100 100 100 100 100 100
0-14 26 25 24 21 17 10 6 5 5 5 19
15-24 31 27 24 18 17 16 9 7 7 7 16
25-49 40 45 49 57 61 63 48 40 39 39 35
50-64 2 2 2 3 4 9 25 25 24 24 14
65-79 0 0 0 1 1 1 12 18 18 18 13
80+ 0 0 0 0 0 0 1 5 6 6 4

Table 2.b Immigration and projected immigrant population. 6 age groups. Per cent. MALES.

Age Immigration Immigrant population 7 . Norway
(entrants)  Year3  Year5 Year10 Yearl5 Year25 YearS0 Year75 Yearl00 Yearl06+ 1987

Total 100 100 100 100 100 100 100 100 100 100 100
0-14 23 22 21 19 15 9 5 4 4 4 20
15-24 33 28 25 18 17 15 8 7 7 7 16
25-49 43 48 53 61 65 66 49 42 42 42 36
50-64 1 1 1 2 3 9 26 26 25 25 14
65-79 0 0 0 0 0 1 1 17 17 17 1
80+ 0 0 0 0 0 0 1 4 5 5 2

Table 2.c Immigration and projected immigrant population. 6 age groups. Per cent. FEMALES.

Age Immigration Immigrant population Norway
(entrants)  Year3  Year5 Year10 Yearl5 Year25 YearS0 Year75 Yearl00 Yearl06+ 1987

Total 100 100 100 100 100 100 100 100 100 100 100
0-14 31 30 28 25 20 12 7 5 5 5 18
15-24 29 26 23 19 18 18 9 8 7 7 15
25-49 37 41 4 51 55 58 46 37 36 36 33
50 -64 3 3 3 4 5 10 24 24 23 23 14
65-79 0 1 1 1 1 2 12. 20 20 20 14
80+ 0 0 0 0 0 0 1 6 8 8 5

SLT



176

The number will grow at a decreasing rate over the whole peried up
to year 106, when the numbers in all age groups have reached stable
levels. At that time the subpopulation will have grown to 55 times
the annual immigration figure and it will remain at that level as
long as the annual number of new immigrants and the mortality rates
remain constant. The subpopulation in year 106 and succeeding
years will be the survivors of 106 "immigration cohorts".

The growth rate will follow a decreasing trend: From a near doub-
ling from the first to the second year and a rate of 44 per cent
annually between year 1 and year 3, it will sink to an annual rate
of less than 1 per cent after year 75. The total number of
immigrants will reach half its final level after just over 25 years
and 80 per cent after about 75 years.

The annual immigrant flow has a very young age structure, more than
a quarter of the new immigrants are below 15 years of age, while
only 2 per cent are 50 years or more (table 2). This may be
compared to the Norwegian population in 1987, where 19 per cent are
below 15 years, and as many as 30 per cent are 50 years or more.

As the population of immigrants accumulates over the years, its age
structure will deviate more and more from that of the yearly immi-
gration flow, due to the rapid ageing mechanism.

After between 10 and 15 years the proportion under 15 years is down
to the Norwegian level. This proportion continues to decrease, and
stabilizes at only 5 per cent, less than a quarter of the corre-
sponding figure for the total Norwegian population. See fig. 2.

FIG. 2.1 ANNUAL IMMIGRATION FIG. 22 IMMIGRANTS. YEAR S
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FIG. 2.4 IMMIGRANTS. YEAR 25
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The proportion in the age groups of 50 and over at first increases .
at a moderate pace and does not reach 10 per cent until around year
25, but it passes the Norwegian figure of 30 per cent well before
year 50. It reaches 48 per cent in year 75, and stabilizes at 49
per cent.

If we look at the population in the active age groups, between 15
and 64 years, they add up to 74 per cent in the yearly immigrant
flow, compared to a share of 65 per cent in these age groups for
the Norwegian population. As the immigrant subpopulation incre-
ases, this proportion grows and reaches a high of 88 per cent in
year 25, according to our calculations. (The true maximum may be
somewhat higher, and be located somewhere between year 15 and year
50). From its maximum value the proportion in age groups 15 - 64
sinks to its permanent value, 71 per cent, which is still 6 per
cent above the corresponding figure for the Norwegian population
in 1987.

The mean age in the immigrant flow is 22 years (table 1), compared
to a mean age of 38 years for the Norwegian population in 1987.
As the immigrant subpopulation grows successively older, the mean
age follows a curve of sinking growth, until it reaches its
constant level. See fig. 3. It passes the mean age of the
Norwegian population after about 35 years, and is 49 years in year
75, i. e. very close to its final and permanent value of 49.4
years. This is 31 per cent above the mean age in the present
Norwegian population. 1In a stationary population with the same
mortality and no immigration, the mean age is 39.5.

FIG.3 AVERAGE AGE OF IMMIGRANTS
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The annual immigration flow has an overweight of males. See tables
"1.b and ¢. In the figures used here, the proportion is 146 males
to 100 females. In the immigrant population this rate will dimin-
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ish, due to lower female mortality. The Norwegian rates, which
were used, give nearly 7 years longer life expectancy for females
than for males. The effects of this difference on the sex pro-
portion in the immigrant population are, however, quite moderate:
In the first 25 years the proportion is only reduced to 145, and
in the final, constant subpopulation it is 129 males to 100 fe-
males. In the Norwegian mean population in 1987 there were 98
males to 100 females.

The age composition of the immigrants show considerable divergen-
cies between males and females: Relatively more women than men are
below 15 years old. 1In the annual immigrant flow the proportions
are 31 per cent against 23. The difference persists in the immi-
grant subpopulation, but is gradually reduced, so that 5.1 per cent
of the males and 4.3 of the females are under 15 in the permanent
state. The reason for this decrease is that the difference in pro-
portions is greatest for the youngest of the age groups between 0
and 15. As we have seen, the youngest age groups reach their final
levels before the older groups, and thus will constitute dimini-
shing proportions of the whole group under 15.

In the age groups 50 and over there are 3 1/2 per cent of the women
in the immigrant flow, and they are spread out between the ages
50 and 69, whereas the corresponding proportion for the men is 1
per cent, all under 65 years of age. In the immigrant subpopula-
tion this difference is gradually reduced, and in year 50 the age
groups 50 and over are about the same percentages among males and
females (but still there are more males than females even in these
age groups). After year 50 the proportion in the age groups 50 and
over increases slightly more for females than for males, and they
end up at 47 per cent of the males and 51 per cent of the females
in the permanent state.

Since there are more men than women in the immigrant flow, the sex
proportion is not equal to the ratio between proportions in the
same age groups. We find a decreasing excess of males over females
from the flow of immigrants through the successive years up to year
106 for the population totals and for the age groups below 25. The
ratio of males per 100 females is moderate and not so far above the
corresponding ratio in the Norwegian population for the age group
0 - 14, both in the immigrant flow and in the final state. For the
age group 15 - 24 the ratio starts at 169 males to 100 females, and
comes down to 123 in the stable state. The Norwegian ratio for
this age group is 105 to 100. Also the age group 25 - 49 starts
at a very high level, with 168 males to 100 females in the immi-
grant flow. This proportion increases further to become 174 to 100
in year 5 and year 10, and then falls to 149 in the permanent
state. Even the age group 50 - 64, which starts with a heavy
overrepresentation of females, more than 2 females for every male
in the immigrant flow, and passes equality somewhere between years
15 and 25, reaches a maximum, 150 males to 100 females in year 50,
before it settles at 139 males to 100 females. - The two oldest age
groups start with only females but are successively filled up with
males, so that in the permanent state it is only in the age group
of 80 and over that there is a surplus of females, while this is
the case for all age groups from 50 and up for the Norwegian
population.
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Subpopulations of descendant generations

With a constant yearly flow of immigration, the number of births
to immigrant women will stabilize after 40 to 45 years, when the
numbers in the age groups below 45 have reached their constant
levels. The total number of immigrants (men and women) will reach
a constant size after about 100 years. The number of births of
first generation descendants will reach a constant level about 80
years after the start of the immigration flow, and a constant size
after about 140 years. In the same way succeeding generations will
reach constant birth numbers and constant sizes with 40 years de-
lays in comparison with the preceding generation. If the net re-
production rate is 1, all generations will end up with the same
constant number of births and the same final size. The final size
of the generations will be that of the first generation of
descendants.

Since the immigrant women will have had some of their children
before they arrived in the new country, it will take a fertility
well above reproduction level for the size of the first generation
of descendants to reach a stationary level as high as the statio-
nary level of the immigrant subpopulation.

When we study the .development of a subpopulation of descendants
from immigrants, there are several reasons why it is convenient to
specify by generations, starting from the immigrants. One impor-
tant reason relating to the subject matter is, that, with the
reservations mentioned earlier, each successive generation of des-
cendants will be one step further from their country of origin than
the previous one. It must be assumed that they will be increas-
ingly assimilated into the "native" population, and in any serious
long term analysis of immigrant subpopulations the question of how
many generations should be counted must be considered. For many
purposes it may be of interest to distinguish between generations.

However, it also turns out that there are con31derable systematlc
advantages in operating with generations.

As we have discussed above, the size- of a subpopulation of
immigrants will reach a constant level after about 100 years, if
the annual flow of new immigrants is constant. We also saw that
the numbers in .and below a given age group will reach their con-
stant levels after a number of years equal to that age. This im-
plies, that the number of females in the fertile age groups in such
a population of immigrants will have reached their constant levels
after about 40 years. This again means that the number of births
to immigrant women will remain constant from about year 40, pro-
vided that the birth rates are not changed. Thus, with a constant

annual (net) flow of immigrants, both the subpopulation of immi-
grants and the first generation of descendants from these immi-
grants will reach constant levels after about 140 vears, 1f demo-
graphic rates are not changed.

Both the constant size of the first generation and its growth up
to that size will depend on the proportion and age distribution of
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women in the immigrant flow and on the level and age structure of
birth and death rates.

Using the notation already introduced (page 5), we have for the
number of births, B* to immigrant women in year t:

Bt =¥ xter, =81 £ (I pif,

x=15 x=15 max(0,x-t) 1,,.1

The number of respectively females and males surviving to year
t + 8 are then given by the sex proportion at birth and the
survival rates for females and males to age 8. However, we may
note that if we change the birth rates with the same proportion in
all age groups, the number of births will be changed in the same
proportion. 1In our computations we have somewhat arbitrarily
chosen the reproduction level as a norm, since the figures may
easily be transformed to represent other fertility levels. (If the
chosen TFR is £ times 2.089, then all figures for the first
generation of descendants must be multiplied by f, figures for the
second generation must be multiplied by f square, figures for the
third generation by £ to the power of 3 etc.)

We may note already at this point, that with fertility at the
reproduction level, Norwegian figures indicate that the final,
permanent size of the first generation of descendants will be about
80 per cent of the final size of the subpopulation of immigrants.

Obviously, since the first generation is built up from year 0 by
the annual births occurring to an increasing population of
immigrant women, there will in each year be no individuals older
than the number of years since the start of the immigration flow.
Furthermore, each successive birth cohort will be greater than the
previous ones, until the permanent state for births to this
generation is achieved after about 40 years. Nevertheless, this
will be a rapidly ageing population, and it will end up in the
permanent state (about year 140) with the age distribution of a
stationary population with the given mortality structure. Its size
will be determined from mortality and the permanent annual number
of births.

Births of the second generation of descendants will start in a
small scale when the oldest members of the first generation-are 15
years old, i. e. in year 15. As successive cohorts of first
generation mothers enter fertile age, the number of births will
increase until all cohorts under 40 of the first generation have
reached their permanent levels. The annual number of births to
immigrant women will have reached its permanent level after about
40 years. 40 years later, in about year 80, the numbers of des-
cendants belonging to the first generation must consequently have
reached their permanent levels in all age groups below 40, and,
.with constant fertility, the annual number of births of second
generation individuals will be stable.

We see that while it took 40 years - from year 1 to year 40 - for
the annual number of first generation cohorts to reach their per-
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manent level, it will take 65 years for the second generation co-
horts, from year 15 to year 80.

The second generation will reach its permanent size about 100 years
after the time when births to the first generation stabilize, i.e.
in year 180. If the net reproduction rate (NNR) is 1, both the
total and the number in each age group as well as the annual birth
number will be the same for the second generation as for the first
in the permanent state. If the net reproduction rate deviates from
1, permanent figures for the second generation are derived from
corresponding figures for the first generation through multipli-
cation by the NNR.

The gestation of each successive generation will now be an exact
replica of the transition from the first to the second:

- Each new generation will be built up from birth cohorts which
start 15 years after the birth of the first cohorts of the previous
generation.

- Each new generation will consist of birth cohorts which are of
a constant size from 40 years after the year when birth cohorts
constituting the previous generation became constant.

- The cohorts of each new generation will be growing over a period
25 years longer than the growth period for the previous generation.
- Each new generation will reach its permanent size 40 years after
the previous one (and 100 years after its constituent birth cohorts
reached their permanent sizes).

- In the permanent state.the dimensions of each new generation is
equal to the corresponding dimension in the previous generation
multiplied by the NNR.

We may note the following corollaries:

If NNR < 1, each successive generation will stabilize at a level
lower than the previous one, and converge to 0, so that the total
sum of immigrants and descendants will become stationary, as also
shown by Espenshade et al. (1982).

If NNR > 1, the "gross immigrant population™ of immigrants and
their descendants will be growing, but as time goes on, the
additions will occur in generations successively farther removed
from the genuine immigrants. If a limit is set to the number of
generations which are considered to be part of the gross immigrant
population, then the immigrant population will eventually reach a
stationary level, even if NNR 2 1.

The time perspectives for tendencies to stabilisation to become
effective are very long:

- Number of births to immigrants stabilize after 40 years.

- The subpopulation of immigrants stabilizes after 100 years.

- The first generation of descendants stabilizes after 140
years ‘ :
- Each successive generation stabilizes after another 40
years.

- Even if NNR is quite low, it takes a very long time before
stabilisation: If NNR=0.8 (TFR=1.66) it takes 16 generations, i.e.
more than 700 years, to get down to a new generation which is 3 per
cent of the size of the first. If NNR=0.6 (TFR=1.24) it takes 7
generations or nearly 400 years.
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- If NNR 2 1, the subpopulation of descendants will at all
times comprise 1 or more generations which are in the process of
being built up towards the stationary state, and may in addition
contain one or more generations, which have already reached this
state. In the still growing generations, the stationary states
will be reached successively for the age groups, starting from age
group 0 and being reached by one additional age group each succes-
sive year. As long as they are in the process of growing, these
generations will have age distributions which are younger than that
of the stationary state, and younger the shorter they have come in
the growth process. The generations, which have arrived at the
stationary state will have age distributions corresponding to the
assumed mortality structure. This implies that if NNR 2 1, the
subpopulation of descendants will have an age structure which is
younger than that corresponding to the mortality structure, but it
will approach this distribution as time goes and more and more
generations reach the stationary state. If NNR < 1, the process
will be the same, with the difference that the stationary state
will be reached for the whole subpopulation of descendants after
a finite time period.

The figqures

Figures based on Norwegian rates (NNR "normalized" to 1) are given,
specified in 6 age groups, for each generation for the years 3, 5,
10, 15, 25, 50, 75, 100, 125 and 150 in table 3 and in 5-year age
groups in table II in the appendix. The growth of the totals in
each generation is illustrated in fig.4 and the growth in the total
number of descendants in fig.5. We notice that the growth curve for
each generatiom has a typical S-form, with the major part of the
growth taking part over a limited, central part of the total
growth period. This is particularly pronounced for the later gene-
rations, since the initial period of slow growth is longer for each
successive generation. Thus the first generation achieves 88 per
cent of its total growth in the central 80 per cent of the growth
period, the second generation 72 per cent in 56 per cent of the
growth period and the third generation 82 per cent in 50 per cent.

4 FIGUR 4 NUMBERS OF DESCENDANTS
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TABLE 3. PROJECTED NUMBER OF IMMIGRANT DESCENDANTS NNR=1 6 AGE GROUPS

a. Descendants at the end of year 3
Age  First generation

years Total Males Females
0-14 83 43 40

b. Descendants at the end of year 5
Age  1l.generation

years Total Males Females
0-14 251 129 122

c. Descendants at the end of year 10
Age  l.generation

years Total Males Females
0-14 1072 551 522

d. Descendants at the end of year 15
Age 1.generation

years Total Males Females
0-14 2390 1227 1163

e. Descendants at the end of year 25

Age 1.generation 2.generation
years Total Males Females Total M
Total 6273 3220 3053 56 29
0-14 5206 2673 2533 56 29
15-24 1067 547 520 0 0

f. DmmdantsatmemdofyearSO
Age 1.generation 2.generation
years Total Males Females Total M

Total 19620 10013 9607 5122 2625

0-14 8450 4332 4118 4272 2191
15-24 5097 2602 2494 794 406
25-49 6074 3079 2995 55 28

g.Descendants at the end of year 75

Age 1.generation 2.generation
years Total Males Females Total M
Total 33127 16827 16300 18023 9230
0-14 8525 4376 4149 8282 4251
15-24 5656 2898 2758 4682 2400
25-49 13352 6794 6557 5006 2552
50-64 4757 2367 2390 53 27

65-79 837 392 445 0 0

TOTAL

F  Total M
27 6330 3249
27 5262 2702
0 1067 547

3.generation

F Totadik M
2497 79 41
2081 79 41
389 0 0
27 0 0

3.generation

F Total M
8793 4209 2160
4030 3500 1797
2283 630 323
2454 79 40
26 0 0
0 0 0

F

3081

2561
520

39
39

2049
1703

38

TOTAL

Total M
24821 12679

12801
5891
6129

6564
3008
3107

F

12142
6237
2883
3022

F

TOTAL
Total Males Females
41 55444 28261 27183
41 20392 10468 9924
0 10968 5621 5348

0 18436 9387 9050

0 4810 2394 2417
0 837 39 445
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TABLE 3. PROJECTED NUMBER OF IMMIGRANT DESCENDANTS NNR=1 6 AGE GROUPS (Cont.)

h. Descendants at the end of year 100

Age ~ l.generation 2.generation 3.generation 4.generation
years Total Males Females Total M F Total M F Total M F
Total 41907 20810 21097 31509 16021 15487 16283 8341 7943 3455 1773 1682
0-14 8525 4376 4149 8548 4383 4160 7949 4081 3868 2863 1470 1393
15-24 5656 2898 2758 5666 2904 2763 4194 2150 2045 507 260 247
25-49 13900 7071 6829 12715 6472 6244 4065 2073 1992 84 43 41
50-64 7694 3818 3876 3925 1954 1971 75 37 37 0 0 0
65-79 5074 2279 2794 653 303 350 0 0 0 0 0 0
80+ 1058 368 690 T 1 1 0 0 0 0 0 0
i. Descéndants at the end of year 125

Age 1.generation 2.generation 3.generation 4. generation
years Total Males Females Total M F Toal M F Total M F
Total 43648 21467 22181 41093 20471 20623 29861 15196 14665 14602 7481 7122
0-14 8525 4376 4149 8548 4388 4160 8567 4398 4169 7510 3855 3654
15-24 5656 2899 2758 5672 2907 2765 5641 2891 2750 3696 1894 1802
25-49 13900 7072 6827 13933 7089 6844 11913 6064 5849 3318 1692 1626
50-64 7733 3837 3896 7519 3732 3787 3209 1598 1610 79 40 40
65-79 5836 2608 3228 4577 2059 2518 525 243 282 0 0 0
80+ 1998 674 1324 844 295 549 6 2 4 0 0 0
j. Descendants at the end of year 150

Age 1.generation 2.generation 3.generation 4.generation
years Total Males Females Total M F Total M F Total M F
Total 43677 21475 22203 43677 21496 22181 40131 20048 20084 28189 14356 13833
0-14 8525 4376 4149 8548 4388 4160 8570 4400 4171 8567 4398 4169
‘15-24 5656 2899 2758 5672 2907 2765 5686 2914 2772 5562 2850 2712
25-49 13900 7072 6827 13938 7092 6846 13926 7086 6840 10996 5598 5398
50-64 7733 3837 3896 7754 3848 3907 7222 3586 3637 2627 1309 1318
65-79 5836 2608 3228 5836 2609 3227 4052 1826 2226 428 198 231
80+ 2027 682 1345 1928 653 1276 674 236 438 ( 8 3 5

5.generation
Total M F
83 43 40
82 42 40
1 1 0
0O 0 O
o 0 O
0o o0 o
o 0 O
5.generation 6.generation
Total M F Total M F
2847 1461 1386 78 40 38
2351 1207 1144 76 39 37
414 212 202 2 1 1
82 42 49 0 0 O
o 0 o0 0 o0 O
o o0 o0 o o0 O
o 0 0o 0 o0 O
5.generation 6.generation 7.generation
Total M F Toal M F Tot M F
13008 6665 6343 2354 1208.1146 71 36 34
6990 3589 3402 1937 995 %43 69 35 33
3219 1650 1569 340 174 166 2 1 1
2721 13871334 77 39 38 0 0 O
77 38 38 0 0 0 O 0 O
1 0 0 0 O o0 O0 o0 o
o 0 0 O o o0 0 o0 O

TOTAL
Total Males
93236 46988
27968 14357
16025 8212
30764 15658
11694 5809
5727 2582
1059 369

TOTAL
Total Males
132129 66115
35576 18264
21080 10803
43146 21960
18540 9207
10939 4910

2848 972

TOTAL

Total Males
171108 85283
43207 22181
26138 13395
55558 28275
25413 12617
16154 7241
4638 1574

Females
46249
13611

7813
15106
5884
3144
691

Females
66014
17313
10277
21187

9333

1876

Females
85824
21026
12743
27283
12796

8913
3064

S8T
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FIG. 5 TOTAL NUMBERS OF IMMIGRANTS AND DESCENDANTS

What is not so easily seen analytically, is that the growth in the
total descendant population is virtually linear after year 50.
(Fig.5)

Each generation of descendants is built up from new, 0-age, birth
cohorts. This implies that their growth starts in the lower age
groups and that the higher age groups are only successively filled
up, as the years since the birth of the first cohorts go by. -Each
generation accordingly starts from an extremely young age distri-
bution, and gradually grows to assume the age distribution corre-
sponding to the mortality level assumed, when the generation has
reached its permanent level. In the growth process the younger age
groups w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>